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Abstract
Background The most common cause of end-stage renal dis-
ease in children can be attributed to congenital anomalies of
the kidney and urinary tract (CAKUT). Despite this high
incidence of disease, the genetic mutations responsible for
the majority of CAKUT cases remain unknown.
Methods To identify novel genomic regions associated with
CAKUT, we screened 178 children presenting with the entire
spectrum of structural anomalies associated with CAKUT for
submicroscopic chromosomal imbalances (deletions or duplica-
tions) using single-nucleotide polymorphism (SNP) microarrays.
Results Copy-number variation (CNV) was detected in
10.1 % (18/178) of the patients; in 6.2 % of the total cohort,
novel duplications or deletions of unknown significance were
identified, and the remaining 3.9 % harboured CNVof known
pathogenicity. CNVs were inherited in 90 % (9/10) of the
families tested. In this cohort, patients diagnosed with
multicystic dysplastic kidney (30 %) and posterior urethral
valves (24 %) had a higher incidence of CNV.

Conclusions The genes contained in the altered genomic re-
gions represent novel candidates for CAKUT. This study has
demonstrated that a significant proportion of patients with
CAKUT harbour submicroscopic chromosomal imbalances,
warranting screening in clinics for CNV.

Keywords Congenital anomalies of the kidney and urinary
tract . CAKUT . Copy-number variation . Posterior urethral
valves . Kidney development . Ureter development

Introduction

Congenital anomalies of the kidney and urinary tract
(CAKUT) account for one third of all congenital
malformations detected by routine fetal ultrasonography [1].
Severity may vary from incidental clinical findings to chronic
ill health and end-stage renal failure in childhood. In fact, 40–
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50% of childhood renal failure worldwide can be attributed to
CAKUT [2–4]. CAKUT comprises a broad spectrum of renal
and lower urinary tract structural and functional abnormalities,
including renal hypoplasia/dysplasia, renal agenesis,
mult icyst ic kidney, duplex kidney, hydroureter,
hydronephrosis, vesicoureteric reflux (VUR) and obstruction
at the vesicoureteric (VUJ) or ureteropelvic (UPJ) junction
and posterior urethral valves (PUV) [5]. These anomalies can
occur in isolation (nonsyndromic CAKUT) or as part of
multiorgan malformation syndromes [6, 7].

Much of our understanding of CAKUT etiology comes
through mouse studies in which single-gene mutations can
result in kidney and urinary tract anomalies [8, 9]. The genes
identified in these models have increased the range of genes
available for genetic screening of families with CAKUT. Until
recently, only a handful of CAKUT-causing genes had been
screened in large cohorts, with mutations inHNF1B and PAX2
being the most prevalent [10, 11]. With the recent advance-
ment in new and more affordable sequencing technologies,
there has been a rapid increase in the number of CAKUT-
causing genes identified [12–16]. Genes contained in altered
genomic regions may also be responsible for CAKUT [17,
18]. Despite the fact that mutations in >20 genes have been
shown to cause CAKUT, mutations responsible for the ma-
jority of CAKUT remain unknown [19]. In addition, variable
CAKUT conditions have been reported in family members
harbouring mutations in the same gene, demonstrating the
complex genotype–phenotype relationship in CAKUT.

We used molecular karyotyping to detect submicroscopic
ch romosoma l imba l ance s (m ic rode l e t i on s and
microduplications) in a cohort of 178 patients presenting with
a broad range of CAKUT as a first-tier approach prior to
embarking on candidate-gene and exome sequencing
approaches.

Methods

Participants

A consecutive series of patients with CAKUT presenting to
tertiary referral paediatric nephrology and urology units at
either The Royal Children’s Hospital or Monash Children’s
Hospital, (Victoria, Australia) between September 2012 and
August 2013 were invited to participate. A total of 201 pa-
tients from 195 unrelated families, aged newborn to 18 years
old, were recruited. The patients presented with one ormore of
the following CAKUTconditions: renal hypoplasia/dysplasia,
agenesis, multicystic or dysplastic disease, duplex kidney,
VUR (grade 4 or 5), VUJ obstruction (>5 mm retrovesical
ureter), ureteropelvic junction (UPJ) obstruction with
hydronephrosis >10 mm, hydroureter and posterior urethral
valve (PUV). Diagnoses were made following abnormal

antenatal screening or early-onset urinary tract infection.
Anomalies were further characterised by renal and/or bladder
ultrasound (US), nuclear medicine studies [using
mercaptoacetyltriglycine (MAG3), dimethylsulfoxide
(DMSO) or diethylenetriamine pentaacetic acid (DTPA)],
micturating cystourethrogram (MCUG), cystoscopy and ret-
rograde pyelography, as clinically indicated. The diagnosis of
PUV was made in all cases following cystoscopy and
urethroscopy to visualise the valves. Patients with syndromic
CAKUT as part of a diagnosed syndrome or who had more
than three nonrenal congenital anomalies, suggesting a possi-
ble syndromic condition, were excluded. Extrarenal anoma-
lies were detected in 20.5 % of patients: genital disorders
(hypospadias, undescended testes, vaginal-cavity defect),
macrocephaly, neurocognitive, neurobehavioural and learning
problems, constipation, hypothyroidism and respiratory tract
and cardiac problems. Patients were not screened for muta-
tions in any known CAKUT-causing genes. Informed consent
and/or assent were obtained from patients and/or parents, as
appropriate. Parents of children determined to have CNVs
were also invited to participate in the study, and consent was
obtained. The study was approved by the Human Research
Ethics Committee of the Royal Children’s Hospital, Monash
Children’s Hospital and Monash University, and performed in
accordance with the Declaration of Helsinki.

DNA extraction and molecular karyotyping by microarray

Molecular karyotyping was requested for all 201 patients;
however, 23 tests were not performed, either because the
patient did not present for blood collection or because the
DNA quality or volume was insufficient. Genomic DNA
was isolated from peripheral blood samples (171/178) (Ja-
nus/Chemagic MSI, Perkin Elmer, Waltham, MA, USA) or
saliva (9/178) (Oragene OG-250), according to the manufac-
turer’s instructions. Molecular karyotyping was carried out on
either the Illumina Human CytoSNP-12 v2.1 arrays (Illumina,
San Diego, CA, USA), Illumina HumanCoreExome-12v1.0
(Illumina) or Affymetrix CytoScan 750 K (Affymetrix, Santa
Clara, CA, USA). Microarray hybridisations for the Illumina
platform were performed at the Australian Genome Research
Facility (Melbourne, VIC, Australia) and for the Affymetrix
platform at the Victorian Clinical Genetics Service, (Mel-
bourne, VIC, Australia).

Data Analysis for CNV Detection

Raw data were processed using either Karyostudio (Illumina)
or Chromosome Analysis Suite (Affymetrix) and probe-
intensity measurements were normalised to a reference set of
100 and 150 clinical samples, respectively. CNVs that did not
contain genes, were well-established polymorphisms or were
<0.2 Mb (unless containing a gene of known pathogenic
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significance) were excluded. The significance of each CNV
detected was determined by comparison with public CNV
databases [i.e. Children’s Hospital of Philadelphia (CHOP),
International Standards for Cytogenomic Arrays (ISCA), Da-
tabase of Chromosomal Imbalance and Phenotype in Humans
using Ensembl Resources (DECIPHER), Database of Geno-
mic Variants (DGV) and an in-house database of 30,000
Australian (multiethnic) samples analysed for CNVs locally].
Analysis was performed using UCSC Genome Browser
March 2006 hg18 assembly for patients run on the Illumina
Human CytoSNP-12 v2.1 platform, and the February 2009
hg19 assembly for patients run on the Affymetrix and Illumina
HumanCoreExome-12v1.0 platforms.

CNVs were classified according to the following four
criteria; Benign (well-established polymorphic variants);
Pathogenic (well-established CNVs known to be associated
with any genetic disease in humans, not just kidney disease);
CNVs of uncertain significance (recurrent CNVs previously
associated with phenotypic abnormality but with incomplete
penetrance and/or variable expressivity); CNVs of unknown
significance (novel CNVs that are not represented in the
public databases, do not have a clear association with genetic
disease or contain at least one gene of potential relevance but
meet the laboratory reporting criteria). CNVs were reported
according to these criteria to compare identical breakpoint
boundaries. Long, continuous stretches of homozygosity
(LCSH) >5 Mb long were also reported.

Results

A total of 201 patients were recruited for the study, 137
(68.2 %) male and 64 (31.8 %) female patients, representing
the first report of an Australian CAKUTcohort to be analysed
for genetic aberrations. No molecular karyotype result was
available for 23 individuals, who either did not provide a
blood/saliva sample (n=21) or because DNA quality or vol-
ume was insufficient (n=2). The most common primary
anomalies displayed by the 178 patients who underwent mo-
lecular karyotyping were VUR (n=29), PUV (n=29), PUJ
obstruction (n=26), duplex kidney (n=25) and renal
hypodysplasia (n=23) (Table 1). CNVs were detected in 18
of 178 patients (10.1 %) and LCSH in 4/178 (2.2 %). Within
the anomaly groups, CNVs were identified at the highest
frequency in patients with multicystic dysplastic kidney
(MCDK) (3/10; 30 %), followed by patients with PUV
(7/29; 24 %) (Table 1). Of the 18 patients with CNVs, patients
diagnosed with PUV were the most frequent (n=7; 39 %),
followed by VUR (n=4; 22 %), MCDK (n=3; 17 %),
hydronephroureterosis (n=3) and dysplastic kidney (n=1)
(Table 1). Duplications were identified in 11 patients, dele-
tions in five, both in one and one case was XYY (Table 2). The

size of the rearrangements ranged from 0.2 Mb to 6.3 Mb
(Table 2). CNVs >1,000 kb were the most common (44 %),
followed by those between 500 and 999 kb (33%), 250–499 kb
(11 %) and 249–200 kb (11 %). Parents of 10/18 patients
harbouring CNVs participated in the study; a de novo mutation
was found in one case, and nine cases were inherited (Table 2).
Interestingly, only 1/9 inherited CNVs was inherited maternal-
ly; the remainder were paternal. The cohort included six pairs of
affected siblings in which both individuals underwent molecu-
lar karyotyping; a significant genomic alteration was identified
in one of these families. The index patient (Case1 (CP1)) in this
family has a brother who also has bilateral VUR and a deletion
in 6q15q16.1 (Table 2). Thirty two families within the total
cohort (32/195; 16.4 %) indicated that they had family mem-
bers with CAKUT. Of the patients detected to have CNVs, only
two (CP156 and CP88) reported family members with renal
anomalies (Supplementary Table 1).

In the total cohort, seven patients (CP85, CP138, CP75,
CP27, CP123, CP169, CP177) had pathogenic genomic dis-
orders that have been described before (3.9 %) (Table 2). Of
these seven, only two genomic regions involved genes previ-
ously associated with CAKUT; hepatocyte nuclear factor 1
homeobox B (HNF1B) (CP85) within the recurrent 17q12
deletion has been associated with renal cyst and diabetes
(RCAD) syndrome (OMIM 137920) [20]; myosin, heavy
chain 11, smooth muscle (MYH11) (CP75) within the recur-
rent 16p13.11 deletion has been described as a candidate gene
in a patient with renal hypodysplasia [18] (Table 2 and Sup-
plementary Table 1). The remaining 11 patients (6.2 %) had

Table 1 Primary anomalies and copy-number variation (CNV) detection
in 178 patients with congenital anomalies of the kidney and urinary tract
(CAKUT)

Anomaly Number of
patients with
anomaly (%/
total cohort)

Number of
patients with
CNV /anomaly
(%/ anomaly)

Number of
patients with
CNV/total
CNV (%/
total CNVs)

VUR 29 (16.3) 4 (14) 4 (22)

PUV 29 (16.3) 7 (24) 7 (39)

PUJ obst 26 (14.6) 0 (0) 0 (0)

Duplex kidney 25 (14.0) 0 (0) 0 (0)

Hypoplasia/dysplasia 23 (12.9) 1 (4.4) 1 (5.6)

Hydronephroureterosisa 17 (9.6) 3 (18) 3 (16.7)

MCDK 10 (5.6) 3 (30) 3 (16.7)

Renal agenesis 10 (5.6) 0 (0) 0 (0)

VUJ obst 9 (5.0) 0 (0) 0 (0)

Total 178 18

VUR vesicoureteral reflux; PUV posterior urethral valves; PUJ
pelviureteric junction; MCDK multicystic dysplastic kidney; VUJ
vesicoureteric junction, obst obstruction
a Hydronephroureterosis with no evidence of obstruction or VUR
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genomic disorders of unknown significance when compared
with public databases and an in-house database of 30,000
Australian samples analysed for CNVs locally. Of these 11,
four had duplications of 1q23.1, 4p16.1, 7q33 and
8q13.2q13.3, containing genes NEPH1, SLC2A9, AKR1B1
and EYA1, respectively, which have all been associated with
renal anomalies or disease (Table 2 and Supplementary
Table 1). Deletions or mutations in EYA1 have been associated
with branchio-oto-renal syndrome (OMIM 113650) [7] and
NEPH1 with nephrotic syndrome in mice [21]. Mutations in
SLC2A9 have been associated with renal hypouricemia [22]
and AKR1B1 with diabetic nephropathy [23]. To the best of
our knowledge, there are no reported duplications of these
genes being associated with renal anomalies; therefore, their
clinical significance is unknown. Case 93 had a deletion
(8q24.13) containing gene ZHX1, which has been associated
with nephrotic syndrome in rats [24].

We identified only one genomic disorder in which the
breakpoint occurred within a gene. CP138 carries a 0.3-Mb
deletion of 7q31.1, resulting in loss of the first two exons of
FOXP2 (NM_014491.3), which includes the ATG start site.
There are no known reports of the role of FOXP2 in the
urinary tract. In addition, 7/18 patients contained noncoding
miRNA (Supplementary Table 1) within the altered regions.
The most common anomaly within patients identified as hav-
ing CNV was PUV (7/18; 39 %). The chromosomal regions
affected were 3p25.1p25.2, 8q13.2q13.3, 9p24.2p24.1, 9q32,
11p15.2, 17p12 and Xq28 (see Supplementary Table 1 for list
of genes).

Discussion

In this study using single-nucleotide polymorphism (SNP)
microarrays, we identified CNVs in 10.1 % of patients with
CAKUT. Using a similar approach, Sanna-Cherchi et al. re-
ported that CNVs were identified in 16.6 % of individuals
with CAKUT [18]. This difference in CNV frequencies be-
tween the two studies may be due to sample size (522 vs 178),
differences in laboratory-reporting policies, demographic dif-
ferences, proportion of individuals with multiple
malformations versus isolated CAKUT, and the renal anomaly
inclusion criteria of both studies. In particular, there are two
notable differences: In our study, CNVs ≥200 kb were con-
sidered significant (commonly used in clinical practise),
whereas Sanna-Cherchi et al. used a threshold of >100 kb, in
which 47.9 % of their cohort had CNVs of 100–250 kb [18].
Secondly, our cohort represents an unselected, consecutive
series of all cases of CAKUT presenting to tertiary referral
units, and as such, includes a full range of CAKUT that is seen
in clinical practise, whereas the cohort described by Sanna-
Cherchi et al. is selected for renal agenesis, congenital solitary
kidney and renal hypodysplasia only [18]. Using a different

approach to detect genomic imbalances (array-based
comparative genomic hybridization) in a relatively small co-
hort (n=30), Weber et al., reported that 10 % of patients with
syndromic CAKUT carried DNA microimbalances [17]. Al-
though the frequency and range of CAKUT diagnoses are
comparable with our study, Weber et al. focussed on
syndromic CAKUT cases, whereas the majority of our cohort
(80 %) consists of nonsyndromic CAKUT.

Approximately 6.2 % of the altered genomic regions in our
CAKUT cohort have not been described before based on
literature and database searches: i.e. contain identical
breakpoint boundaries and represent the sameCNV state (gain
or loss). Some of these regions, however, contained genes that
have been previously associated with CAKUT or kidney
disease but in the context of being deleted or mutated rather
than being duplicated, as was the case in patients in our study.
For example, duplications were identified in our study that
contained EYA1, NEPH1, SLC2A9 and AKR1B1 genes. These
findings suggest that if these candidates are the causal genes,
then overexpression (triplosensitivity) of these genes can also
perturb normal kidney and lower urinary tract development,
leading to CAKUT. Comparison of CNVs identified in our
cohort with those described by Sanna-Cherchi et al. identified
the region associated with RCAD (involving HNF1B) and
velocardiofacial syndrome (VCFS) in both cohorts [18].
Two additional overlapping genomic regions were identified
between the two studies involving 4p16.1 and 16p13.11.
However, in our patients, CNV status of these regions was
opposite to those described by Sanna-Cherchi et al. [18]. This
further supports the idea that either a loss or gain of function of
the most likely pathogenic genes within these regions may
play a role in contributing to CAKUT.

To identify CAKUT-causing gene candidates within the
altered chromosomal regions, literature and expression
(GUDMAP www.gudmap.org) databases were searched to
identify genes known to play a role in kidney and ureter
development and/or disease and/or are spatially expressed in
cell types that have been implicated in causing CAKUT if
disrupted. For example, previous studies in mice and humans
have demonstrated that disruption in ureter smooth muscle
cell development and function can lead to VUR [25, 26]. Two
of the four CNV patients (CP138 and CP75) who presented
with VUR had very good candidate genes within the deleted
regions that are expressed in smooth muscle cells in the ureter
and bladder. CP138, a male patient who presented with bilat-
eral grade V VUR, hydronephroureterosis and megacystis
harboured a deletion of 7q31.1, resulting in deletion of the
first two FOXP2 exons, which included one of the ATG start
sites. Microarray expression and whole-mount RNA in situ
hybridisation data demonstrate that Foxp2 is expressed spe-
cifically in smoothmuscle cells of the ureter and bladder in the
mouse (www.gudmap.org). Heterozygous mutations and
deletions in FOXP2 have been associated with speech and
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language disorders (OMIM 602081) in humans and mice
[27–30]. CP138 also presented with speech delay, as did his
father who carries the same deletion. Loss of Foxp2 in mice
also causes lung defects, leading to postnatal lethality. In
addition, oesophageal smooth and skeletal muscle defects are
seen in Foxp2−/−;Foxp1+/− embryos [31]. There were no signs
of these anomalies in our patient. There are no published reports
of kidney defects in these mice or in patients with speech and
language disorders associated with mutations in FOXP2.
However, patients with congenital anomalies and an abnormal
karyotype were excluded from these studies, and it is therefore
possible that patients with renal anomalies and a possible
FOXP2 mutation were excluded [28]. Although deletion
within FOXP2 was also identified in the patient’s father, he
has not been diagnosed as having a renal condition. However,
we cannot rule out whether he or other family members have
asymptomatic renal conditions. Given that the patient and his
father have experienced speech delay suggests that FOXP2
function has been altered; however, it is equally possible that
a separate genetic mechanism undetected by an SNP
microarray is actually responsible for the urinary tract anomaly.

CP75, a male patient who also presented with bilateral
high-grade VUR and a right scarred kidney had a 1.3-Mb
deletion of region 16p13.11 containing MYH11, which is
expressed in smooth muscle cells of the bladder and ureter
(www.gudmap.org). A duplication of 16p13.11 spanning the
15.03–15.80 Mb region, which is within the de novo deleted
region in CP75 (14.96–16.21 Mb), has recently been reported
in a patient with renal hypodysplasia. Those authors also
identified MYH11 as a likely candidate ([18] (Table 2). This
region is a susceptibility locus for neurodevelopmental
disorders, congenital anomalies and seizures [32] and shows
incomplete penetrance and variable expressivity. There are
also several reports of patients with renal anomalies with
CNVs that span MYH11 (see Supplementary Table 1). It
should be noted that this region has also been found at low
frequency in healthy control individuals [18].

The aetiology of PUV is poorly understood. The condition is
caused by remnant flaps of tissue (valves), located at the poste-
rior urethra proximal to the verumontanum, that block bladder
voiding. This results in dilation of the posterior urethra and a
thick-walled trabeculated bladder [33]. Secondary to these con-
ditions are VUR, hydronephrosis and chronic renal disease.
Among the seven PUV patients with CNVs in our study, ~60
genes were contained in the altered genomic regions (Supple-
mentary Table 1). Identifying causal genes within this subset of
genes will aid in our understanding of how PUV develops.

Of the patients with PUV, patient 184 had only two genes
in the affected genomic region (9p24.2p24.1 (4,390,991–
4,606,385)). SLC1A1 is the major epithelial transporter of
glutamate and aspartate in the kidney, and mutations in
SLC1A1 result in human aminoacidurias [34]. In contrast, little
is known about the role or expression of SPATA6L

(spermatogenesis-associated 6-like), but either of these two
genes could be considered a candidate for PUV. CP18 had a
duplication in 8q13.2q13.3, which contains EYA1. As de-
scribed above, mutations and deletions of EYA1 have been
associated with branchio-oto-renal syndrome. However, there
have been no reports of patients with a duplication spanning
EYA1 resulting in renal anomalies. In addition, the codeletion of
SULF1 and SLCO5A1, which are present in the 8q13.2q13.3
region duplicated in CP18, has been associated with
mesomelia-syntostoses syndrome (MSS, OMIM 600383).
MSS patients can also present with congenital hydronephrosis
[35]. The genomic region deleted in these MSS patients does
not include EYA1 (Supplementary Table 1). Mice deficient for
Sulf1 and Sulf2 present with smaller kidneys [36]. In light of
these findings SULF1, SLCO5A1 and EYA1 should be consid-
ered as possible CAKUT-causing candidates in CP18.

Three patients with CNVs presented with MCDK, and the
altered genomic regions all contained genes known to be
involved in either human or rodent models of kidney disease.
CP85 contained a deletion within 17q12 containing HNF1B,
which has been associated with RCAD (OMIM 137920). This
patient also had a duplication of 22q11.21. Rearrangements in
22q11.21 have been associated with DiGeorge, VCFS [37]
and vertebral defects, anal atresia, cardiac defects, tracheo-
oesophageal fistula, renal anomalies and limb abnormalities
(VACTERL) [38] syndrome, and patients with these syn-
dromes can present with renal anomalies. Either one of these
regions may have contributed to the renal phenotype in our
patient CP85; however, HNF1B is one of the most prevalent
CAKUT-causing genes [10, 11]. This patient was screened at
3 months of age and at that time did not present with any
extrarenal anomalies suggesting syndromic CAKUT.

CP15 had a novel duplication within 1q23.1 containing
NEPH1. Loss of function of Neph1 in mice leads to protein-
uria and renal lesions resembling congenital nephrotic syn-
drome in humans [21]. Neph1 binds to nephrin, and mutations
in NEPHRIN (NPHS1) are associated with nephrotic syn-
drome of the Finnish type [39]. However, to the best of our
knowledge, no mutations have yet been identified in NEPH1
in patients with congenital nephrotic syndrome. Neph1 is
expressed in podocytes and plays a critical role in maintaining
filtration function of the glomerulus [40]. Interestingly, CP93,
presenting with a dysplastic kidney, had a deletion in 8q24.13
containing Zhx1, which is also expressed in podocytes and is
involved in regulating podocyte gene expression during ne-
phrotic syndrome in the rat [24]. To the best of our knowledge,
there are no reports of patients with a mutation in ZHX1 or
loss-of-function mouse models. Although the roles of Neph1
and Zhx1 have been studied in podocytes, both genes are
expressed in other cell types within the kidney and lower
urinary tract (www.gudmap.org). Therefore, disruption of
NEPH1 and ZHX1 in these cell types may play a role in the
development of MCDK/DK.
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CP88 with MCDK had a novel duplication in 7q33. This
genomic region contains six genes, of which three belong to
the aldo-keto reductase superfamily: AKR1B1, AKR1B10 and
AKR1B15. An increase in AKR1B1 activity contributes to the
development and progression of diabetic nephropathy [23];
and recently AKR1B10 has been implicated in diabetic ne-
phropathy [41]. Given that this patient has an increased dose
of both these enzymes may indicate diabetes.

CP72 presented with hydronephroureterosis and a 1-Mb
duplication of 4p16.1 (9.35–9.68 Mb) containing three
RefSeq genes: DRD5, SLC2A9 and WDR1. The most likely
candidate gene in this region is SLC2A9. Loss-of-function
mutations in SLC2A9 have been implicated in renal
hypouricemia [42]. Sanna-Cherchi et al. identified two pa-
tients with renal hypodysplasia with a 17.23-Mb deletion
(0.06–17.29 Mb) in 4p16, which spans the region duplicated
in our patient [18]. The 17.23-Mb deletion is associated with
Wolf-Hirschhorn syndrome [43]; the authors nominated
FGFRL1, FGFR3 and SLC2A9 as likely candidates. These
patients had extrarenal phenotypes. The genomic region af-
fected in our patient excludes FGFRL1 and FGFR3. The
difference in phenotype in the two patients in the Sanna-
Cherchi et al. study compared with our patient, who has no
extrarenal phenotypes, may be due to a SLC2A9 gain of
function rather than loss of function or that FGFRL1 and
FGFR3 were not disrupted in our patient [18].

Seven patients harbouring CNVs displayed miRNAs with-
in the altered region. A literature search did not implicate any
of these as playing a role in the kidney or ureter. In addition, a
search of the target genes possibly regulated by these miRNAs
generated an extensive list of possible targets that could in turn
be involved in CAKUT. However, further analysis is required
to validate these possibilities.

In our cohort 32/195 (16.4 %) families indicated that renal
anomalies existed in their families. This self-reported infor-
mation is likely to represent an underestimate, as other family
members may have asymptomatic renal anomalies that would
only be detected by renal ultrasound. In fact, it has recently
been shown that there is a high frequency of CAKUT in
asymptomatic first-degree relatives of patients with CAKUT
[44]. For patients who presented with CNVs in our study, for
which the mode of inheritance was determined, only one case
(1/10) was sporadic and the remainder (9/10) inherited, dem-
onstrating that pathogenesis of CAKUT is influenced by
genetic factors.

Conclusion

In this study, we demonstrate that a significant proportion of
patients with a broad spectrum of CAKUT harbour a CNV
(10.1 %). This high frequency supports screening of future
patients in the clinic for CNVs as a first-tier screen prior to

sequencing approaches. Novel genomic regions were identi-
fied, providing a list of CAKUT-causing candidate genes.
Future studies involving mice harbouring loss- or gain-of-
function mutations in candidate CAKUT-causing genes and
screening patient cohorts and families for mutations will de-
termine genes that are pathogenic. Identifying these genes will
aid in understanding the aetiology behind the spectrum of
structural anomalies associated with CAKUT and aid in
preventing the progression of end-stage renal disease in such
patients.
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