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Abstract Autosomal dominant polycystic kidney disease
(ADPKD) is the most common genetic cause of end-stage
renal disease, affecting approximately 1 in 1,000 people. The
disease is characterized by the development of numerous large
fluid-filled renal cysts over the course of decades. These cysts
compress the surrounding renal parenchyma and impair its
function. Mutations in two genes are responsible for ADPKD.
The protein products of both of these genes, polycystin-1 and
polycystin-2, localize to the primary cilium and participate in
a wide variety of signaling pathways. Polycystin-1 undergoes
several proteolytic cleavages that produce fragments which
manifest biological activities. Recent results suggest that the
production of polycystin-1 cleavage fragments is necessary
and sufficient to account for at least some, although certainly
not all, of the physiological functions of the parent protein.
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Molecular pathogenesis of autosomal dominant
polycystic kidney disease

Autosomal dominant polycystic kidney disease (ADPKD) af-
fects approximately 1 in 1,000 people and is the most common
potentially lethal genetic disease [1–3]. ADPKD is marked by
massive enlargement of the kidneys that is attributable to an
abundance of large fluid-filled cysts. These cysts develop over
the span of decades, and their expansion destroys adjacent

renal parenchyma, leading to end-stage renal disease in ap-
proximately 50 % of cases. ADPKD is also associated with
cardiovascular, musculoskeletal, and gastrointestinal abnor-
malities [4]. This condition is caused by mutations in the
PKD1 and PKD2 genes that encode polycystin-1 (PC1) and
polycystin-2 (PC2), respectively. Most ADPKD cases (approx.
85%) are due to mutations in PKD1, while mutations in PKD2
account for almost all of the remaining cases.

A great deal of effort has focused on elucidating the mech-
anisms responsible for the autosomal pattern of inheritance in
ADPKD. Elegant studies of the genetic material associated with
individual cysts suggest that loss of heterozygosity may account
for a substantial fraction of cyst development [5]. According to
this scenario, cysts arise when “second hit” somatic mutations
occur in individual renal epithelial cells that carry one germline
mutant PKD1 or PKD2 allele. Cells that lose their wild-type
copies of PKD1 or PKD2 go on to manifest the hyper-
proliferative and secretory phenotypes that characterize the
cyst-lining epithelial cells. In this case, each cyst can be thought
of as essentially a benign tumor, and thePKD1 andPKD2 genes
can be seen to function as benign tumor suppressors. A second
model posits that individual cysts may arise as a consequence of
stressful stimuli in the context of PKD1 or PKD2
haploinsufficiency. The reduced levels of PC1 or PC2 expres-
sion associated with heterozygosity might predispose renal ep-
ithelial cells to respond to conditions of stress, such as those
associatedwith renal injury, bymanifesting the cystic phenotype
[6, 7]. These models are not mutually exclusive, and both of
them can account for the slow acquisition of cysts over the space
of many years that characterizes the natural history of ADPKD.

Structure, function, and localization of PC1 and PC2

Polycystin 1 is an extremely large protein, with a mass ex-
ceeding 460 kDa and 11 predicted transmembrane spans [8,
9]. It is predicted to possess a large (approx. 3,000 amino acid)
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extracellular N terminal domain and a short (approx. 200 amino
acid) C terminal domain that faces the cytoplasm. The massive
PC1 extracellular N terminal domain includes 16 copies of an
immunoglobulin (Ig)-like sequence known as the polycystin
repeat. It also embodies a number of interesting molecular
motifs [10–12] that can participate in protein–protein interac-
tions, supporting the suggestion that PC1 may participate in
cell–cell or cell–matrix associations [12–16]. The extracellular
domains of PC1 and PC2 may also sense fluid flow and
pressure in the kidney [17]. Relatives of PC1 and PC2
(PC1L3 and PC2L1) respond to acidic pH and may contribute
to sour taste detection by the tongue [18–20], suggesting that
PC1 and PC2 may similarly possess chemosensory properties.
PC1 is implicated in a variety of pathways tied to proliferation,
including G-protein signaling and the Wnt, AP-1, NFAT [21],
and JAK-STAT cascades [22–28]. Moreover, depletion of PC1
increases the rate of cell growth, while its overexpression slows
this process, indicating that PC1 may negatively regulate pro-
liferation [29, 30].

PC2 has a molecular weight of approximately 110 kDa
and six putative membrane spanning regions [31, 32]. It is a
Ca2+ permeable cation channel belonging to the transient
receptor potential (TRP) family [33, 34]. PC2 mediates the
release of Ca2+ from intracellular stores and transduces
mechanostimulatory signals from the primary cilium [35].
The C terminal cytoplasmic tail of PC1 contains a coiled coil
domain that mediates its interaction with PC2 [36, 37]. PC1
and PC2 associate with one another in renal epithelial cells,
but little is known about what regulates that association [38].
PC2 may be involved in several signaling pathways [39, 40],
including some of the same growth-suppression pathways
that have been attributed to PC1 [27]. The PC1 and PC2
proteins interact physically with one another and with
numerous other proteins that may modulate their traf-
ficking properties or their involvement in signal trans-
duction [41].

Subsets of the populations of the PC1 and PC2 proteins
are associated with the primary cilium [42, 43], where they
appear to participate in mechanosensory or chemosensory
processes. PC1 and PC2 may also be shed in exosome-like
vesicles that can interact with the primary cilium [44].
ADPKD is the most prevalent member of the “ciliopathies”,
which is a recently defined class of genetic disorders that
result from mutations in genes that encode proteins associ-
ated with cilium or the basal body [45]. While these
disorders are characterized by a variety of pathologies,
many of them are notable for the presence of renal
cysts [46]. To elucidate the pathogenesis of ADPKD,
as well as to understand the function of PC1 and PC2,
it will be necessary to develop a thorough insight into
the roles of these proteins in the primary cilium and of
the mechanisms that control their association with this
intriguing organelle.

PC1 cleavage

Polycystin 1 is cleaved at sites in both its – and C-terminal
domains [47]. The N-terminal cleavage takes place at the G
protein-coupled receptor proteolytic site (GPS), close to the
beginning of the first transmembrane domain [48]. This cis-
autoproteolytic cleavage occurs as PC1 traverses the secre-
tory pathway [48] and is stimulated by PC2 [49]. The
cleaved N-terminus appears to remain non-covalently at-
tached to the membrane-bound C-terminal fragment [50].
Mutant forms of PC1 that cannot undergo GPS cleavage
are not able to rescue the PKD phenotype in PKD1−/− mice
[51]. More importantly, a comparable missense mutation is
sufficient to cause human ADPKD [48, 51, 52]. A PC1
mutant that cannot undergo GPS cleavage does not reach
the cell surface [49].

At least three other cleavages liberate portions of the cyto-
plasmic C-terminal tail (CTT) of PC1 (Fig. 1). One of these
cleavages releases an approximately 35-kDa soluble portion of
the tail that accumulates in the nucleus in response to decreased
fluid flow in the murine kidney [53, 54]. Low et al. [28, 55]
found a more distal cleavage that releases a 17-kDa fragment
that interacts with the transcriptional activators STAT3 and
STAT6 and the co-activator p100. Flow cessation increased this

Fig. 1 Schematic diagram of polycystin-1 (PC1) structure and cleav-
ages. PC1 is a massive polypeptide that is predicted to possess a large N
terminal extracellular domain (N), 11 transmembrane segments (blue),
and a short cytoplasmic C terminal tail (C). The N terminal domain
includes 16 copies of the immunologulin (Ig)-like polycystin repeat
(brown). PC1 undergoes several proteolytic cleavages (yellow arrows),
including an autocatalytic cleavage at the G protein-coupled receptor
proteolytic site (GPS) (green) that releases the N terminal domain,
which remains non-covalently attached to the transmembrane domains.
A cleavage in a cytosolic loop segment produces a fragment of approx-
imately 100 kDa [47], and at least two cleavages release portions of the
C terminus that enter the nucleus and influence transcriptional pathways
[53, 55]. NLS Nuclear localization signal/sequence
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cleavage as well as the nuclear translocation of both the PC1 tail
[53] and STAT6 [28, 55]. A fragment with six transmembrane
domains that regulates store-operated calcium entry [47] has
also been identified. Although the sizes of these three fragments
have been determined and their production is apparently regu-
lated, the amino acid sequences of their cleavage sites and the
enzymes and signals that selectively activate each cleavage
process have yet to be determined. The C-terminal tail of PC1
contains a PEST sequence, which may facilitate its ubiquitin-
mediated degradation [55, 56].

These observations suggest the existence of novel signaling
pathways in which CTT fragments of PC1 carry messages
from the cell surface to the nucleus. Nuclear translocation of
PC1 CTT fragments raises a series of obvious, but nonetheless
fascinating questions, namely: “What are the PC1 CTT frag-
ments doing there? Whom do they talk to and what do they
say?”. Recent studies indicate that nuclear CTT interacts with
transcription factors and proteins that modulate gene expres-
sion. These studies illuminate a new pathway through which
the PC1 CTT influences the activities of several transcription
factors whose targets have been linked with PC1 function [57].
It is important to stress, however, that cleavage is one of many
physiological processes in which PC1 appears to participate.
Cleavage certainly does not account for all of PC1’s
functional properties, and cleavage-independent PC1 ac-
tivities are without doubt critically important aspects of
the PC1 protein’s biology.

To characterize fully the proteolytic events that release PC1
CTT fragments, it will be necessary to ascertain whether and
how these cleavages are predicated upon one another [47, 48,
50, 55], to determine which enzymes are responsible, and to
establish the sites of action of these enzymes within the PC1
protein. Recent data indicate that γ-secretase plays an obligate
role in releasing the 35-kDa PC1 CTT and that the phenotype
of wild-type cultured renal epithelial cells subjected to γ-
secretase inhibition resembles that of PKD1−/− cells [57].

PC1 cleavage and the regulation of the Wnt pathway

Proliferation and apoptosis are prominent among the many
cellular processes that are perturbed when expression of the
polycystin proteins is disrupted [2, 41]. Cyst-lining epithelial
cells appear to be hyper-proliferative [1] and, at least in some
models, to manifest high rates of apoptosis [58]. A number of
pro-proliferative pathways appear to be activated in the cells
that line ADPKD cysts. A gene expression analysis
performed on human ADPKD cyst epithelial cells revealed
that a number of targets of the Wnt signaling pathway are
upregulated in this tissue [59].

TheWnt signaling cascade controls the quantity and activity
of β-catenin [60], which is a soluble cytoplasmic polypeptide
which interacts with adhesion molecules at sites of cell–cell

contact and helps to nucleate the assembly of the sub-
membranous cytoskeleton. When β-catenin is released from
cell adhesion complexes it can enter the nucleus, where it binds
to and activates the T-cell factor (TCF) transcription factor,
which in turn directs the expression of genes whose products
drive proliferation. Prior to reaching the nucleus, β-catenin can
be recognized by a “destruction complex” that phosphorylates
it and targets it for degradation in the proteasome. The binding
of extracellular Wnt proteins to the plasma membrane receptor
ofβ-catenin leads to the inactivation of the destruction complex
and allows β-catenin to co-activate pro-proliferative pathways.
Like many transcription factors, TCF depends upon an interac-
tion with the transcriptional co-activator p300 in order to me-
diate the transcription of its target genes [61]. The approximate-
ly 35-kDa PC1-CTT fragment binds to TCF and prevents it
from interacting with p300 [57]. Thus, this PC1 cleavage
product acts a profound inhibitor of TCF-mediated gene ex-
pression. At least some component of the anti-proliferative
influence of PC1 expression, therefore, may be attributable to
the ability of a PC1 C terminal tail fragment to suppress the
downstream effectors of the Wnt signaling pathway.

Fig. 2 γ-Secretase-mediated cleavage of PC1 produces fragments that
modulate the activity of the T-cell factor (TCF) and C/EBP homologous
protein (CHOP) transcription factors. Data from recent studies [57]
indicate that γ-secretase activity participates in generating PC1 cleav-
age fragments that influence the activity of the TCF and CHOP tran-
scription factors, which in turn modulate proliferation and apoptosis,
respectively. Both TCF and CHOP require an interaction with the p300
transcriptional co-activator in order to regulate transcription of their
target genes. The C terminal tail of PC1 can interact with TCF and
CHOP and prevent interactions between these transcription factors and
p300. Thus, γ-secretase-dependent cleavage of PC1 can generate a
fragment or fragments that reduce the activities of the TCF and CHOP
transcriptional pathways. Reproduced with permission from Merrick
et al. [57]
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PC1 cleavage and the regulation of the C/EBP
homologous protein pathway

A high-throughput screen has been performed to identify
additional transcription factors whose functions might be
modulated by PC1 CTT fragments [57]. This effort revealed
that activity of the C/EBP homologous protein (CHOP)
transcription factor is inhibited by the expression of a con-
struct whose sequence corresponds to the C terminal 200
amino acid residues of the PC1 protein. CHOP (also known
as Ddit3 and GADD153) is involved in the propagation of
apoptosis in response to endoplasmic reticulum (ER) stress
[62, 63] that occurs upon accumulation of unfolded or
mis-folded proteins [64]. The initial cellular responses
to ER stress involve efforts to reduce the incoming load
of proteins into the ER [65], to upregulate the expres-
sion of chaperones to assist in protein folding, and to
eject mis-folded proteins from the ER for destruction by
the ubiquitin–proteasome system [66, 67]. If these mea-
sures are not sufficient to clear unfolded proteins from
the ER, the cell commits to apoptosis [68]. Three signaling
pathways are employed in the initiation of apoptosis: tran-
scriptional activation of CHOP, activation of the JNK pathway
by the Ire1-TNF/ASK1 complex [68], and activation of ER-
associated caspace-12 [69].

C/EBP homologous protein is a 29-kDa protein con-
taining an N-terminal transcriptional activation domain
and a C-terminal basic-leucine zipper (bZIP) domain,
which is essential for CHOP-induced apoptosis [63, 70].
Under normal physiological conditions, CHOP is ubiquitous-
ly expressed at very low levels, but its expression is
highly upregulated upon induction of ER stress [71].
While much progress has been made in elucidating the
signaling pathways that regulate CHOP activation, rela-
tively little is known about the downstream targets of
CHOP. Overexpression of CHOP leads to cell cycle arrest
and apoptosis [63, 72], whereas CHOP−/− mice demonstrate
reduced cellular apoptosis in response to ER stress [73].

Like TCF, CHOP requires an interaction with the p300
transcriptional co-activator in order to function [61, 74]. The
approximately 35-kDa fragment of PC1 binds to CHOP and
prevents it from assembling with p300 [57]. In keeping with
this behavior, overexpression of a construct that corresponds
to the approximately 35-kDa C terminal tail fragment of PC1
reduces CHOP activity, as measured by transcriptional re-
porter assays. More significantly, overexpression of this PC1-
CTT fragment also dramatically reduces the high rate of apo-
ptosis that is observed in Pkd1−/− cells grown in culture. Thus,
PC1 fragments produced as a consequence of PC1 cleavage
appear to interact with and suppress the activities of pro-
proliferative and pro-apoptotic transcription factors through
very similar mechanisms (see Fig. 2).

Signaling by PC1 cleavage fragments in vivo

The in vitro experiments discussed in the preceding sections
suggest that C terminal tail fragments of the PC1 protein possess
biological activity and that they are able to influence transcrip-
tional pathways that are relevant to aspects of the ADPKD
phenotype. Confirmation of the relevance of PC1 C terminal
cleavage to the prevention or development of ADPKD, howev-
er, will require demonstrations that these processes are neces-
sary and sufficient to account for at least some of the functions
of the PC1 protein in vivo.

Zebrafish express two Pkd1 orthologs, Pkd1a and Pkd1b.
The simultaneous morpholino-induced knockdown of Pkd1a
and Pkd1b expression in zebrafish embryos produces a num-
ber of phenotypes, including pronephric duct cysts, hydro-
cephalus, and skeletal abnormalities [75]. One of the most
robust and readily quantifiable of these phenotypes is the
development of upward-facing tail curvature. It is interesting
to note that a similar tail curvature is also observed in
zebrafish embryos that have been treated with inhibitors of
γ-secretase [76]. While the γ-secretase-dependent path-
way that is responsible for this effect has not been fully
elucidated, its similarity to the Pkd1a and Pkd1b morphant
phenotype suggests that these two interventionsmay influence
the same process. Support for this hypothesis derives from the
observation that transgenic expression of a construct encoding
the C terminal 200 amino acid residues of PC1 is sufficient to
at least partially rescue the tail curvature phenotypes that are
produced by both Pkd1a and Pkd1b knockdown and by γ-
secretase inhibition [57]. These data lend in vivo support to
the concept that PC1 C terminal tail cleavage is required for
this protein to fulfill its biological functions and that a released
fragment of the PC1 C terminal tail is sufficient to recapitulate
at least some of those functions.

Conclusions

Autosomal dominant polycystic kidney disease is a complex
disease. Its pathogenesis is attributable to mutations in two
genes whose products localize to a number of cellular struc-
tures and participate in a number of cellular signaling path-
ways. Both PC1 and PC2 localize to the primary cilium, and
this fascinating organelle clearly plays a critical role in
governing processes that, when perturbed, participate in the
development of renal cysts. Much remains to be learned about
the nature of these processes and about the cellular machinery
through which they are actuated. PC1 protein undergoes sev-
eral proteolytic cleavages, and the products of these cleavages
possess important biological activities. The production of at
least some of these fragments appears to be a prerequisite in
order for PC1 to fulfill its complete range of physiological
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functions. Furthermore, these fragments appear to be capable
of mediating some of these functions even when expression of
the full-length parent protein is suppressed or absent. Future
research will be required to understand how and where PC1is
cleaved and to determine whether and how these cleavages are
obligate aspects of the biology of the polycystins and poly-
cystic kidney disease.
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