
REVIEW

MicroRNAs in renal development

Jacqueline Ho & Jordan A. Kreidberg

Received: 16 March 2012 /Revised: 2 May 2012 /Accepted: 3 May 2012 /Published online: 2 June 2012
# IPNA 2012

Abstract The discovery of microRNAs (miRNAs) as novel
regulators of gene expression has led to a marked change in
how gene regulation is viewed, with important implications
for development and disease. MiRNAs are endogenous,
small, noncoding RNAs that largely repress their target
mRNAs post-transcriptionally. The regulation of gene ex-
pression by miRNAs represents an evolutionarily conserved
mechanism that is broadly applicable to most biological
processes. Recent studies have begun to define the role of
miRNAs in different cell lineages during kidney develop-
ment, and to implicate specific miRNAs in developmental
and pathophysiological processes in the kidney. This review
will focus on novel insights into the role(s) of miRNAs in
kidney development, and discuss the implications for
pediatric renal disease.
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Introduction

The initial discovery that a small regulatory RNA could
specifically silence the function of a gene in the nematode,
Caenorhabditis elegans [1], has subsequently led to revolu-
tionary changes in how we view gene regulation, advances
in the ‘toolbox’ of scientists for gene silencing, and perhaps
more importantly, potential novel therapeutic approaches for
disease. microRNAs (miRNAs) comprise a class of endog-
enous, non-coding RNA molecules that generally cause
their mRNA targets to undergo post-transcriptional repres-
sion. Over the past two decades, it has become clear that
miRNA-mediated regulation of gene expression represents
an evolutionarily conserved mechanism that is broadly ap-
plicable to most biological processes. There are over 21,000
miRNAs reported in 168 species to date, from plants to
animals (miRBase version 18 [2]), and it has been estimated
that up to ½ of all transcripts are regulated by miRNAs [3].
There are several recent, comprehensive reviews of miR-
NAs in the kidney [4–10]. This review will focus on novel
insights into the role(s) of miRNAs in kidney development,
and discuss the implications for pediatric renal disease.

miRNA biogenesis and function

Much like other genes, miRNA genes are transcribed by
RNA polymerase II into primary miRNA transcripts (Fig. 1)
[11]. This primary transcript is processed by the Micropro-
cessor complex in the nucleus to produce stem-loop precur-
sor miRNAs, which are then exported into the cytoplasm via
Exportin-5. These precursor miRNAs are subsequently
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cleaved by Dicer to form mature miRNAs. The mature
miRNA recognizes and binds to its respective target
mRNAs, recruiting the RNA-induced silencing complex
(RISC) (Fig. 1) [11]. Following the recruitment of RISC,
miRNAs decrease expression of their mRNA targets
through translational repression, deadenylation and/or en-
hanced mRNA decay [12]. Thus, miRNAs generally func-
tion as negative regulators of gene expression.

How do miRNAs recognize their targets? With a few
exceptions, the key feature of miRNA target recognition is
mRNA sequence complementarity to the 8-nucleotide (nt)
‘seed’ miRNA sequence, and most miRNA target sites
occur in the 3’-untranslated region [13]. A number of bio-
informatic algorithms have been developed based on this
observation, in addition to incorporating other sequence
features that are thought to confer increased specificity to
miRNA target prediction [14]. Based on the experimental
datasets from which these algorithms were derived, it has
been suggested that mammalian miRNAs have on average
several hundred mRNA targets per conserved miRNA
family [15].

The production of miRNAs is regulated at multiple lev-
els. For example, transcription of miRNA genes is largely
transcription factor-dependent, and recent studies have sys-
tematically identified candidate miRNA promoters using
chromatin immunoprecipitation (ChIP)-sequencing for
chromatin marks specific to transcriptional initiation sites
[16]. These experiments are revealing insights into how
miRNAs and transcription factors are linked in global gene

regulatory networks [17]. Some miRNAs are transcribed in
clusters from a single primary miRNA transcript, in which
the individual miRNAs are processed from a common pre-
cursor transcript, allowing for coordinated expression and
the potential for cooperative function. A large number of
miRNAs are also subject to post-transcriptional regulation,
at the level of processing of primary miRNA transcripts and
precursor miRNAs, as well as RNA editing [18–21]. Finally,
although most miRNAs repress their respective target
mRNAs, some miRNAs have been shown to activate targets
depending on the cellular context [22].

There are distinct features associated with miRNA-
mediated gene regulation [17]. miRNA knockdown studies
show that the degree of miRNA repression is relatively
modest for individual proteins, and that a miRNA can mod-
ulate the expression of hundreds to thousands of proteins
[23, 24]. Although the effect of individual miRNA-mRNA
target interactions may be modest, since many miRNAs
target multiple members of a signaling pathway, the combi-
natorial effect is likely to be more robust [25]. Another
distinguishing feature is the potential speed of miRNA
repression, since miRNAs act following transcription [26].
Furthermore, miRNAs can distribute to different subcellular
compartments, based on their association with the site of
protein translation [27, 28]. Broadly speaking, miRNAs are
thought to “fine-tune” existing transcriptional programs, and
it may thus be more informative to describe miRNA activity
in the context of modulating signaling pathways at multiple
levels, as part of larger regulatory networks [25].

Fig. 1 Schematic diagram of microRNA biogenesis. miRNA genes
are transcribed by RNA polymerase II into primary miRNA (pri-
miRNA) transcripts. Pri-miRNAs are processed into precursor stem-
loop miRNAs (pre-miRNAs) by the Microprocessor complex
(DGCR8/Drosha), which are then exported into the cytoplasm by
Exportin-5. Pre-miRNAs are cleaved by Dicer to produce mature

miRNAs. Mature miRNAs recognize their respective target mRNAs,
recruit the RNA-induced silencing complex (RISC) complex, and
mediate post-transcriptional repression of their targets through transla-
tional repression, deadenylation and/or enhanced mRNA decay
(reprinted from Fig. 1 in reference #11 with permission from the
Journal of the American Society for Nephrology [11])
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miRNAs in early kidney development

The concept that miRNAs are crucial regulators of develop-
mental processes has its roots in the original description of
the first miRNA, lin-4, in controlling developmental timing
in C. elegans [1]. Since then, it has become clear that
miRNAs are necessary for the development of multiple
tissues, and are critical in the regulation of immunity, onco-
genesis and cardiac disease. Interestingly, miRNAs are im-
plicated as key regulators of embryonic stem cells, and
specific miRNA families have recently been shown to have
the ability to reprogram somatic cells into induced pluripo-
tent cells [29, 30]. Given their importance in numerous
developmental processes, it is not surprising that miRNAs
play an important role during kidney development.

To briefly review, kidney development begins when a
small group of mesodermal cells are induced to form neph-
ron progenitors by the ureteric bud (reviewed in [31]). In
response to signals from the ureteric bud and surrounding
stromal cells, nephron progenitors are capable of undergo-
ing both self-renewal and differentiation into the multiple
cell types of the mature nephron. The ureteric bud branches
in response to reciprocal signals from nephron progenitors,
and goes on to form the collecting system of the kidneys.
This process continues in an iterative fashion during kidney
development, such that new nephrons are continually being
induced in the nephrogenic zone just below the renal cap-
sule. Thus, there is a corticomedullary gradient of differen-
tiating nephrons, with the most immature cells present in the
renal cortex.

Given the growing interest in miRNAs, large-scale
efforts to profile and document gene expression during
embryonic kidney development have expanded to include
small RNA expression [32–34]. Using several different
technological platforms (miRNA microarrays, small RNA
cloning or deep RNA-sequencing), these studies have now
made available a number of datasets that describe miRNA
expression in the developing kidney. Recently, the observa-
tion that modified locked nucleic acid nucleotides can be
used to detect miRNAs by in situ hybridization has led to
further information regarding the cellular localization of
specific miRNAs [33, 35, 36]. Together these studies pro-
vide an emerging, though still incomplete, picture of the
spatial and temporal expression patterns of miRNAs during
kidney development.

miRNAs in kidney progenitor cells

The first functional studies addressing roles for miRNAs in
specific cell lineages in the kidney have used a conditional
approach to knock down Dicer, which is required for the
production of mature miRNAs (Fig. 1) [11]. Conditional

Dicer models have been reported for nephron progenitors,
ureteric epithelium, podocytes, proximal tubules and juxta-
glomerular cells [35, 37–42]. The loss of miRNAs in neph-
ron progenitors and their cellular descendants results in a
premature depletion of progenitors notable by embryonic
day 15 in the mouse, and a marked decrease in nephron
number [35, 39]. This appears to be mediated by increased
apoptosis in the progenitor population, and up-regulation of
the pro-apoptotic protein Bim in the absence of miRNAs
[35]. Although disruption of Dicer activity did not grossly
affect nephron patterning, there is evidence to suggest that
apoptosis is also elevated in proximal segments of the de-
veloping nephron [35, 39]. These findings raise the intrigu-
ing question of whether miRNAs serve to regulate
congenital nephron endowment by modulating the balance
between apoptosis and survival in nephron progenitors.

miRNAs in the ureteric bud lineage

Loss of miRNAs in the ureteric lineage results in hypoplas-
tic, cystic kidneys with varying degrees of hydronephrosis,
depending on the efficiency of conditional deletion of Dicer
[39, 43]. The hypoplasia is thought to be secondary to early
termination of branching morphogenesis, and is associated
with decreased expression of Wnt11 and c-ret, two critical
regulators of normal ureteric bud branching [39]. The ap-
pearance of cysts in the ureteric epithelium is evident by
embryonic day 15, and is accompanied by ciliary changes,
increased proliferation, and elevated apoptosis [39].

miRNA function in the mature nephron

Podocyte-specific loss of Dicer activity results in marked
proteinuria by two weeks of age, followed by rapid progres-
sion to renal failure in mice [37, 38, 41]. The severe pro-
teinuria is coupled with histological and ultrastructural
abnormalities including crescent formation, glomeruloscle-
rosis, foot process effacement, tubular simplification, and
atrophy [37, 38, 41]. While the initial specification of podo-
cytes occurs normally in these mice, the maintenance of
podocyte structure requires miRNAs. The mutant podocytes
demonstrate decreased expression of several cytoskeletal
proteins, including synaptopodin, ezrin and podocalyxin,
as well as the slit-diaphragm associated proteins, nephrin
and podocin [37, 38, 41]. Unlike in nephron progenitors or
the ureteric epithelium, there are minimal changes in apo-
ptosis or proliferation in the mutant podocytes. In initial
attempts to identify miRNAs that are responsible for the
disruption of podocyte structure, bioinformatic analysis of
upregulated mRNA transcripts in mutant glomeruli sug-
gested the miR-30 family members as possible candidates
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[41]. Interestingly, the inducible deletion of another miRNA
processing enzyme Drosha in podocytes in 2 to 3-month-old
mice also results in a similar phenotype, demonstrating an
ongoing need for miRNA function in the structure and
function of mature podocytes [44].

Mice with a Dicer deletion in renin-secreting cells in the
juxtaglomerular apparatus demonstrate loss of juxtaglomer-
ular cells, decreased circulating renin, reduced blood pres-
sure, striped interstitial fibrosis and vascular abnormalities
[40]. Within the areas of fibrotic bands, there are vascular
alterations ranging from near replacement of arterioles by
interstitial cells to distorted arterioles with fibroplasia. In the
absence of increased cell death, the decrease in juxtaglomer-
ular cells is thought to result from alterations in the deter-
mination of the renin lineage. Recent work implicates two
specific miRNAs, miR-330, and miR-125b-5p, in modulat-
ing the renin lineage [45].

Unlike the other conditional Dicer models in the kidney,
there is no developmental or functional renal defect seen in
mice with disruption of Dicer in the proximal tubule [42]. In
fact, these mice possess a resistance to ischemia-reperfusion
injury, with decreased histological evidence of tubular inju-
ry, smaller increases in serum creatinine, and decreased
apoptosis. This report further described miRNAs that were
up- or down-regulated in response to renal ischemia-
perfusion injury, as a means to begin evaluating the mech-
anisms by which miRNAs might be mediating this response
to injury.

miRNAs and kidney disease

Over the past decade, there has been a rapid expansion in the
number of studies addressing potential role(s) for miRNAs
in kidney disease. This work can broadly be divided into
two main areas: the analysis of differential miRNA expres-
sion in renal disease, and the study of specific miRNAs that
regulate pathologic processes (see recent reviews for a sys-
tematic description [4, 5, 8, 10]). These studies implicate
transforming growth factor-β regulation of miRNA expres-
sion in diabetic nephropathy [46–49], p53 induction of miR-
34a in ischemic acute kidney injury [50], miR-15a regula-
tion of the cell cycle regulator Cdc25A in polycystic kidney
disease [51], and the oncomir miR-17~92 cluster in renal
cell carcinoma and Wilms’ tumor [52–54]. Differential
miRNA profiles have been described in rodent disease mod-
els as well as from patient samples (urine, blood, and renal
biopsies) for diseases including acute kidney injury [42, 55,
56], polycystic kidney disease [57, 58], acute rejection
[59–61], lupus nephritis [62] and IgA nephropathy [63].

A recent illustrative example is that of miR-21 and renal
fibrosis. miR-21 is up-regulated in response to transforming
growth factor-β signaling, and has been functionally

implicated in the fibrosis seen in mouse models of cardiac
hypertrophy and idiopathic pulmonary fibrosis [64, 65].
Several recent studies have gone on to demonstrate de-
creased renal fibrosis following unilateral ureteral obstruc-
tion after miR-21 knockdown in wild-type mice or miR-21
knockout mice [66–68].

Novel therapeutic applications that take advantage of
miRNA-mediated pathophysiological processes are becom-
ing more feasible. One possibility is the use of miRNAs as
novel biomarkers, particularly given their marked stability.
One recent study suggests that their average half-life may be
as long as ~5 days [69]. Furthermore, miRNAs are trans-
ported in the plasma [70] and can be isolated from urine [71,
72], increasing their potential utility.

There are several experimental approaches currently in
development to modulate miRNA activity in vivo. Modified
oligonucleotides, such as antagomirs or locked nucleic acid
oligonucleotides, have successfully been used to target en-
dogenous miRNAs in mammals, and can target miRNAs in
the kidney [10, 66, 73]. Other approaches include the use of
“miRNA sponges” to sequester endogenous miRNAs, or the
introduction of oligonucleotide “target maskers” that pro-
tect miRNA targets against miRNA-mediated repression
[10, 74].

Challenges in miRNA research

What are the challenges moving forward in understanding
the roles of miRNAs in kidney development? While the
Dicer models have provided crucial insights into functional
requirements for miRNAs in the kidney, the challenge now
is the identification of specific miRNAs that are responsible,
at least in part, for the observed phenotypes. One example is
the description of the role of the miR-30 family in regulating
pronephric development in Xenopus [75]. Knockdown of
miR-30a-5p was sufficient to phenocopy almost all of the
pronephric defects that are caused by global loss of miRNAs
using Dicer or Dgcr8 morpholino knockdown, suggesting
that the miR-30 family is essential in normal pronephric
development. Moreover, this study went on to demonstrate
that a transcription factor known to be essential for kidney
development in the mouse and frog, Xlim1/Lhx1, is a target
of miR-30.

From a scientific standpoint, defining biologically rele-
vant miRNA-mRNA target interactions continues to be a
difficult task. The bioinformatic target prediction algorithms
are hampered by a high false positive prediction rate, and
can fail to predict the most biologically important miRNA
targets [76]. Nevertheless, they remain an important tool,
and continue to be the basis behind which most miRNA-
mRNA target interactions have been verified experimental-
ly. A more recent approach involves high-throughput RNA
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sequencing of RISC-bound RNA fragments, which allows
for the identification of RISC-associated miRNAs and their
target mRNAs [77–79]. These newer experimental
approaches to miRNA target identification offer the possi-
bility of more robust target predictions, and the ability to
better refine bioinformatic algorithms that describe miRNA-
mRNA target interactions.

Despite the rapid growth of information regarding miR-
NAs, there remains much to be learned about miRNA-
mediated regulation of normal and abnormal kidney func-
tion. As we move towards defining the activity of specific
miRNAs and their target(s) of interest, this offers the possi-
bility of innovative approaches to the diagnosis and therapy
of renal diseases. Many challenges remain, from the devel-
opment of safe and effective drug delivery methods for
small RNAs, to understanding the role of miRNAs within
larger gene regulatory networks to minimizing off-target
effects. However, it is encouraging to see how much prog-
ress has been made since these small RNA molecules were
first described two decades ago.
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