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Abstract Thrombotic microangiopathies (TMA) represent a
spectrum of related disorders associated with newly formed
thrombi that block perfusion and thus affect the function of
either renal or neurological organs and tissue. Recent years
have seen a dramatic development in the field of TMA and for
the two major forms hemolytic uremic syndrome (HUS) and
thrombocytopenic purpura (TTP), new genetic causes and
also autoimmune forms have been identified. This develop-
ment indicates a similar pathophysiology and suggests that the
two acute disorders are based on common principles. HUS is
primarily a kidney disease and TTP also develops in the
kidney and at neurological sites. In HUS thrombi formation is
likely due to a deregulated complement activation and
inappropriate platelet activity. In TTP thrombi formation
occurs because of inappropriate processing of released multi-
mers of von Willebrand Factor (vWF). Defining both the

similarities and the unique features of each disorder will open
up new ways and concepts that are relevant for diagnosis, for
therapy, and for the prognostic outcome of kidney trans-
plantations. Here we summarize the most relevant topics and
timely issues that were presented and discussed at the 4th
International Workshop on Thrombotic Microangiopathies
held in Weimar in October 2009 (www.hus-ttp.de).
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Abbreviations
ADAMTS13 A disintegrin and metalloprotease with

thrombospondin motifs
aHUS Atypical form of HUS
AMD Age-related macular degeneration
CFHR1 Complement factor H-related protein 1
CRP C reactive protein
D+−HUS Diarrhea-associated form of HUS
DEAP-HUS (Deficient for CFHR proteins and auto-

antibodies positive for the complement
inhibitor factor H)

HUS Hemolytic uremic syndrome
PNH Paroxysmal nocturnal hemoglobinuria
SLE Systemic lupus erythematosus
TMA Thrombotic microangiopathies
TTP Thrombotic thrombocytopenic purpura ()
vWF Von Willebrand factor

Introduction

Thrombotic microangiopathies (TMA) represent a spectrum
of related disorders with thrombi formation in the micro-
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capillaries that are caused by genetic as well as by acquired
factors in the form of autoantibodies. The major two
subtypes that present as hemolytic uremic syndrome
(HUS) and thrombotic thrombocytic purpura (TTP) are
caused by mutations of different genes and also by
autoantibodies that target distinct plasma proteins (Fig. 1)
[1]. Therefore, it remains a challenge to elucidate the
unique features of each disorder as well as the common
pathophysiological principles [2].

Hemolytic uremic syndrome

Hemolytic uremic syndrome (HUS) is a disease that is
associated with thrombocytopenia, microangiopathic hemo-
lytic anemia, and with acute renal failure. This disease,
which was initially described by Gasser and Steck [3] is
currently divided into three major sub-forms: typical HUS,
atypical HUS (aHUS), and the autoimmune form DEAP-
HUS (Fig. 1) [1, 4].

Typical hemolytic uremic syndrome

The typical form, also termed classical HUS, is frequent in
children and is often associated with diarrhea and is
therefore also termed D+HUS. Typical HUS is in most
cases associated with bacterial infections, in particular
Shigatoxin-producing enterohemorrhagic bacteria, with the
most frequent pathogen being E. coli 0175:H7 [4].
However, additional infectious agents like Shigellae dysen-
tentericae and Streptococcus pneumoniae are also associat-
ed with typical HUS [5]. Enterohemorrhagic E. coli
(EHEC) release Shigatoxin or Shiga-like toxins that are
linked to pathology and similarly pneumococci secrete
neuraminidase [5, 6].

Typical routes of EHEC infections are contaminated
food, such as uncooked meat and vegetables as well as
unpasteurized milk. Additional infections are mediated by
direct person to person contact as it occurs, for example, in
nursing homes. Upon treatment classical HUS has a
relatively good prognosis. Over the years HUS therapy in
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Fig. 1 Different forms of thrombotic microangiopathies. Thrombotic
microangiopathies represent a spectrum of related disorders including
thrombocytopenia, microangiopathy, and acute renal failure. The
general features are subdivided into the two major forms HUS
(hemolytic uremic syndrome), where thrombus formation occurs
primarily in the kidney, and TTP (thrombotic thrombocytic purpura).
Both sub-forms are caused by genetic and also by acquired factors in
the form of autoantibodies. In particular for the typical form of HUS
that represents approximately 80% of the cases, infections are a
particularly inducing trigger. Infections with enterohemorrhagic E. coli
are frequent and also other pathogens including Bordetella, S.
pneumonia, and Varicella infections are reported. However, infections
relating to the other two HUS forms are frequently reported. The

atypical form of HUS has a genetic cause and seems more frequent in
adults. Genes associated with this form of HUS are Factor H, Factor I,
MCP/CD46, thrombomodulin, as well as C3 and Factor B, the two
components that form the alternative complement pathway C3
convertase. An additional autoimmune form termed DEAP-HUS
(deficient for CFHR genes and positive for autoantibodies to Factor
H) was characterized to be associated with a genetic factor. Similarly,
more recently, TTP that manifests in the kidney and in neurological
tissue has a genetic form, in which gene mutations spread along the
ADAMTS13 gene. ADAMTS13 is a metalloprotease that cleaves the
ultra-large multimers of the von Willebrand factor. For the acquired
form autoantibodies are identified that bind to the metalloprotease
ADAMTS13
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the form of plasma treatment as well as the better care in
intensive care units has reduced the mortality from 8.0 to
0.5% and thus significantly improved the situation of the
patients [7, 8]. Despite this progress even typical HUS is still
a severe disease and epidemiological follow-up studies show
a prevalence of renal damage; however, with an overall good
prognosis. Novel genetic data also report variations in
complement genes in patients with the typical form of HUS.

Severe defects 1 year after the initial insult are reported
in about one third of the patients in the form of arterial
hypertension, proteinuria, and a reduced glomerular filtra-
tion rate. Upon oral infection enterohemorrhagic E. coli
(EHEC) binds to the mucosa of the gut. Shigatoxin induces
chemokine expression, which results in transmigration of
neutrophils from the circulation into the gut. In the blood
the toxins bind to neutrophils and are then transported to
these target organ, the kidney. Shigatoxin has a modular
structure, one subunit of 33 kDa and five beta subunits,
each of approximately 7.7 kDa [9].

The b subunit of Shigatoxin binds to specific glycolipid
globotriaosylceramide receptors (Gb3), which are expressed
at the surface of glomerular, endothelial, mesangial, and
tubular cells. Specific damage of these target cells and
tissue is most likely due to upregulation of Gb3 receptor
expression. The subunit of Shigatoxin is modified by partial
proteolysis and inhibits protein synthesis at the level of
peptide translation and in addition Shigatoxin induces
apoptosis of target cells. Consequently, pathological
changes, like damage of the endothelium of the kidney,
can result in thrombus formation [10]. In addition, novel
regulatory effects of Shigatoxin as a complement mod-
ulator were recently reported. Shigatoxin binds the
complement inhibitor Factor H and modulates the
regulatory functions of this central human complement
inhibitor [11].

Atypical hemolytic uremic syndrome

About 10 % of HUS patients develop the atypical form
(aHUS), which is distinct and different from the typical
HUS form and which occurs both in families and
spontaneously [1, 2]. This atypical form of HUS (aHUS)
is frequent in adults (>20 years), has a poor prognosis, and
terminal renal insufficiency occurs in over 50% of the
patients with death rates close to 25%. Recent publications
also report infection to be a triggering factor for aHUS,
including Bordetella pertussis and Varicella infections [12,
13]. About 20% of cases of aHUS have a familial
background. This form of HUS is associated with genetic
defects in particular mutations of complement genes. In
1991 two brothers were reported who both developed
aHUS based on a congenital defect for complement Factor
H, the major regulator of the alternative complement

pathway [14]. In the meantime over 100 different aHUS-
associated mutations have been reported within the Factor
H gene [15]. Factor H is a human plasma protein composed
of 20 homologous domains (Fig. 2a). Factor H controls
complement activation on the level of the C3 convertase, by
competing with complement factor B for binding to C3b,
acting as a cofactor for the serine protease complement
Factor I to inactivate newly formed C3b molecules or
enhancing the dissociation of the C3 convertase [16]. The
major complement regulatory functions of Factor H are
mediated by the N-terminus of the protein by domains
SCRs 1–4. The C-terminal part, i.e., SCRs 18–20 of Factor
H, include the central surface attachment region and this C-
terminal region also binds to C3b, to endothelial cells, to
basement membranes, and to glycosaminoglycans [17].
Most of the aHUS-associated Factor H mutations that have
been identified, which in most cases present in a heterozy-
gous form, are located within the C-terminal region and
result in reduced surface binding of Factor H (Fig. 2a) [15].
In particular, during conditions of local complement
activation and immune stress, defective surface binding
results in deregulation of complement and in enhanced
complement activation. aHUS is a disease associated with
inappropriate or defective complement regulation. Besides
Factor H gene mutations, additional genes can be affected
in aHUS that code for the complement regulators Factor
I, MCP/CD46, and thrombomodulin, and for the two
major components that form the C3 convertase of the
alternative pathway, C3 and Factor B. This suggests that
an inappropriate activity of the C3 convertase, by gain of
function, mutations or by uncontrolled regulation, results
in pathophysiology (Fig. 3).

Recently, a novel link between the complement and the
coagulation system was identified in aHUS. Mutations in
the gene coding for thrombomodulin in patients and
families with aHUS were described [18]. Thrombomodulin
is a central regulator of blood coagulation that controls and
regulates thrombin activation and promotes inactivation of
C3a and C5a, two anaphylatoxins that are generated upon
complement activation, and which represent central inflam-
matory effector compounds. These results also define a role
of thrombomodulin in the alternative pathway of comple-
ment [19]. Thrombomodulin binds to the central alternative
pathway regulator Factor H and to the regulator of the
classical pathway C4BP. About 5% of aHUS cases are
caused by mutations in the thrombomodulin gene.

A detailed follow-up study on a large French cohort
of aHUS encompassing 217 patients allows conclusions
for the prognosis and progression of the disease. An
early disease onset correlates with less likelihood of
kidney failure and a lower mortality. Juvenile patients
had more relapses and benefit more from plasma therapy.
Genetic defects also correlate with disease onset and
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mutations in the membrane cofactor protein (MCP),
autoantibodies for Factor H, and combined defects are
more often observed in patients with early disease onset.
This analysis shows the relevance of screening for
genetic mutations and for autoantibodies for prognosis
and therapy of aHUS [20].

The autoimmune form of HUS: DEAP-HUS

A third form of HUS, termed DEAP-HUS (deficient for
CFHR genes and autoantibody positive), was recently
identified [4, 21]. This form is based on two conditions, the
presence of an acquired factor in the form of autoantibodies
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Fig. 2 Genetic and acquired factors in HUS and TTP. a Domain
structure of Factor H and binding site of the autoantibodies in DEAP-
HUS. Factor H is composed of 20 consecutive, individually folding
protein domains termed short consensus repeats. The two major
functional regions of Factor H are located at the opposite ends of the
protein. The N-terminal SCRS1-4 represents the regulatory region,
which mediates complement regulatory effects on the level of the C3
convertase, C3bBb. The C-terminal SCRs 18–20 form the surface
attachment region, which makes contact with cell surfaces, in
particular the surface of damaged cells, with C3b and C3d, and with
glycosaminoglycans. The aHUS-associated gene mutations cluster in
particular in the C-terminal surface attachment region of Factor H.
Similarly, the autoantibodies associated with DEAP-HUS bind to the

C-terminus of Factor H and block surface attachment. Thus, autoanti-
bodies block and the C terminal gene mutations also affect surface
recognition activity of Factor H. b Domain structure of ADAMTS13
and preferred binding site of autoantibodies. ADAMTS13 (a
disintegrin-like and metalloprotease with thrombospondin type 1
repeats) has a modular composition, being formed of M: metal-
loprotease domain, D: disintegrin-like domain, T1: thrombospondin
type 1 repeat, C: Cys-rich region, S: spacer region, and CUB-like
domains 1 and 2. The position of the two major functional regions that
form the proteolytic (MDT1CS) and surface attachment region
(T6T7T8) are indicated. The binding sites for the autoantibody are
also shown
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that in DEAP-HUS develop on a genetic defect in the form
of a deletion of a large chromosomal fragment in the CFHR
gene cluster, encompassing the CFHR1 and CFHR3 genes
[22–24]. As most of the DEAP-HUS patients are aged
approximately 6–16 years, this group is considered a new
entity distinct from aHUS, where genetic alterations are
predominantly observed in adult individuals (>20 years).

This autoimmune form is identified in about 10% of
HUS patients. Most of the disease-associated autoanti-
bodies bind to the C-terminus of Factor H and reduce
Factor H binding to C3b and to cell surfaces. Thus, the
autoantibodies in DEAP-HUS and the C-terminal muta-
tions in the Factor H gene described in aHUS have very
similar and related effects. In both cases the C terminal
Factor H functions and recognition is impaired [22]. The
consequence of the blocking autoantibodies or Factor H C-
terminal mutations is uncontrolled local complement
activation that leads to inflammation, cell damage, and
platelet activation.

The genetic analyses of the Jena DEAP-HUS cohort
showed that most patients lack a chromosomal 85-kbp
fragment that includes the CFHR1 and CFHR3 genes and
patients develop autoantibodies [23, 24]. This concept was
confirmed in other groups like the Spanish- and the
Newcastle cohorts [25]. Based on these conditions DEAP-
HUS patients require a novel form of diagnosis and therapy.
For most patients treatment with therapeutically B-cell
targeting antibodies or plasma exchange combined with
immunosuppressive treatment lowered autoantibody titers.
This kind of therapy improved the conditions of DEAP-
HUS patients and was also relevant for kidney transplan-
tation. A reduction of autoantibody titers prior to trans-
plantation lowered the risk of disease recurrence in the
transplant [26, 27]. Owing to the lack of a standardized
approved protocol for DEAP-HUS therapy novel
approaches are being followed that are mostly based on
clinical experience in the treatment of related autoimmune
disorders. Several DEAP-HUS patients responded to
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Fig. 3 A common link for the pathophysiology of HUS and TTP:
defective complement regulation vs inappropriate processing of vWF
multimers. An initial trigger in the micro vessels can cause local
activation of the complement and of the coagulation cascade. Left:
Complement activation and newly generated activation products may
attack and damage host endothelial cells, which leads to exposure of
the subendothelial matrix. Inappropriate complement control and/or
enhanced action of the C3 convertase can further amplify the cascade,
increasing local damage, which is further transferred to the surface of

the platelets. This can activate the platelets, leading to clotting and
thrombus formation. Right: A rather similar scenario can explain
thrombus formation in TTP. Multimers of von Willebrand factor
(vWF) are released, but processing is impaired by a defective
ADAMST13 or by an enzyme that is inactivated by autoantibodies.
As a consequence, the large vWF multimers accumulate, bind to the
surface of the platelets, activate the platelets, and induce thrombus
formation
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immunosuppressive therapy, plasma exchange, and steroids
[27]. However, a second group of patients did not respond
to this immunosuppressive treatment.

Genetics of HUS

Genetic analyses identified in about 50–65% of aHUS
patients mutations in complement genes, such as the
regulators Factor H, Factor I, MCP (CD46) as well as C3
and Factor B, which form the central complement con-
vertase of the alternative pathway C3bBb [28]. In addition,
deletion of the genes coding for CFHR1 and CFHR3, as
well as hybrid Factor H proteins, have been linked to HUS.

Factor H gene mutations have also been reported in
MPGN patients (membranoproliferative glomerulonephri-
tis, also termed dense deposit diseases). Based on this
similarity and despite substantial clinical differences, it was
hypothesized that related genetic scenarios may underlie the
two diseases [29]. Thus, mutated complement genes may
affect the complement activation and regulation on different
levels, which may progress either to HUS or MPGN [30].
However, the individual genetic background per se does not
allow a precise prediction for one or the other of the clinical
diseases. Thus, HUS and MPGN may represent different
spectral outcomes of a common disease principle. Based on
this hypothesis HUS, in particular during the first years of
life, may have a more severe and acute progression
compared with MPGN, which shows a more chronic
progression. About 50–65 % of HUS patients have a
known genetic defect in the form of mutations in central
complement regulatory proteins or components that form
the C3 convertase (C3bBb) of the alternative pathway of
complement. In contrast, in MPGN, the fraction of known
genetic defects is smaller and so far accounts for about 10–
15% of the cases. Also, most HUS-associated mutations are
heterozygous, in particular Factor H gene mutations.
MPGN-associated mutations in the Factor H gene mostly
affect both alleles and represent either homozygous or
compound heterozygous variations [30].

The complement network provides protection of renal
cells platelets and surfaces in particular of the glomerular
basement membrane. As defective complement action and
regulation lead to kidney diseases, detailed functional
characterization of each component, and also of the
interplay of these components, is of central relevance.
Several examples show how genetic and functional defects
of single complement components lead to defective
complement action and represent a source of autoimmune
diseases [31]. Examples are more frequent diseases such as
systemic lupus erythematosus (SLE), nephritis or vasculitis
[32]. One feature of these three disorders is reduced
clearance of apoptotic cells and of apoptotic particles [33].
Such a reduced clearance results in accumulation of

particles and their exposure to antigen-presenting immune
cells [34]. This may lead to the generation of autoantibodies
against self structures and ultimately in autoimmune
diseases. These examples underline the requirement of
knowledge about genetic deficiencies and functional
defects in the clearance mechanisms to diagnose and follow
a structured therapy for such autoimmune diseases.

Therapy for HUS

Therapy for typical HUS, atypical HUS, and DEAP-HUS
should follow the guidelines described by the various
European or British consortia. In addition, the different
genetic and other profiles are relevant for a prognosis for
the outcome of kidney transplantations and also for the risk
of disease recurrence after kidney transplantation or
combined liver and kidney transplantations.

In addition, novel therapeutic options are urgently
needed for treatment of HUS patients. Unrestricted and
uncontrolled complement activation leads to generation of
the inflammatory anaphylatoxin C5a and formation of the
terminal complement complex. Therefore, targeting and
inhibiting complement at the level of the C5 convertase
seems a very promising approach for therapy. Novel
therapeutic antibodies or fusion proteins have been estab-
lished over the last few years and are now used for HUS
therapy. For example, the C5 targeting humanized antibody,
eculizumab (Soliris®), is a promising candidate for con-
trolling complement in clinical settings [35]. Eculizumab
was initially licensed to treat patients suffering from
paroxysmal nocturnal hemoglobinuria (PNH) [36]. PNH is
caused by a genetic defect that causes defective membrane
integration of GPI-anchored proteins. PNH patients lack the
terminal complement inhibitors CD59 and CD46/MCP on
the membranes of erythrocytes and consequently in PNH
erythrocytes become susceptible to complement-mediated
damage. Eculizumab reduced the number of thrombolytic
insults, the need for transplantation, and improved the
quality of life of the patients. Eculizumab was also used to
treat HUS patients and the initial results are positive and
rather promising [37]. However, apparently single patients
did not respond to this complement inhibitor [38].

Targeting the complement cascade is a rather promising
concept and additional novel therapeutic compounds are
being developed. One of these new inhibitors for the
alternative complement pathway, termed TT30, is a fusion
protein of the C3 binding region of the complement
receptor 2 linked to the regulatory domains of Factor H,
to SCRs 1–4 [39, 40]. This fusion protein CR2-Factor H
has a relatively long biological half-life and is a rather
efficient inhibitor of the alternative complement pathway.

Patients treated with complement inhibitors are at risk of
increased microbial infection, in particular meningococcal
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infections, and therefore it is recommended to vaccinate
patients prior to the treatment.

Thrombotic thrombocytopenic purpura

Thrombotic thrombocytopenic purpura (TTP) is a disease
that occurs in young and adult patients and is more frequent
in female than in male subjects. Thrombocytopenia and
purpura manifest together with microangiopathic hemolytic
anemia and fragmentocytes, i.e., damaged erythrocytes
[41]. The disease is associated with neurological symptoms
and also with defective kidney functions. TTP as a form of
TMAwas originally reported in 1924 by Moschcowitz [42].
About 20 years ago in 1990, Moake identified unusually
large multimers of a coagulation molecule, the von
Willebrand Factor (vWF), in sera of patients with idiopathic
TTP [43]. Immunohistological assays with microthrombi
from TTP patients showed deposits composed of platelets
and vWF and a low abundance of fibrin and fibrinogen
deposits [44]. vWF is normally produced and secreted as
large complexes, termed ultra-large von Willebrand
polymers, which are proteolytically processed in the
circulation to smaller subunits [45]. Under shear-stress
conditions these ultra-large von Willebrand multimers
show a higher affinity to platelets and they bind with high
affinity to the platelet glycoprotein 1Bα. In contrast, the
smaller, processed subunits do not bind to the platelet
surface. In 1998 Furlan and coworkers [45] and also Tsai
and Lian [46] independently reported that patients with
acute idiopathic, non-familial TTP have inhibitory anti-
bodies against the protease that cleaves and dissociates the
ultra-large von Willebrand multimers [46, 47]. In addition,
another group of patients was identified that showed a
genetic defect [48]. The 6 patients with familial TTP, who
lacked proteolytic processing by the von Willebrand
cleaving protease, had genetic defects in the gene coding
for ADAMTS13 [47]. ADAMTS13 is a metalloprotease that
cleaves these ultra-large multimers of the von Willebrand
factor by cleaving the peptid bound between tyrosine 842
und methionine 843 within the vWF protein (Fig. 2b)
[49, 50].

Patients with idiopathic TTP are positive for an IgG-
autoantibody, which binds to the active region of ADAMTS13,
mainly the Cys-rich region and the spacer domain (Fig. 2b).
Antibody titers differ during the acute phase of the disease
and during remission. Thus, the idiopathic form of TTP is an
autoimmune disease where autoantibodies are formed
against ADAMTS13 that block the proteolytic action of the
metalloprotease. This blockade of protein function results in
the accumulation of ultra-large multimers of vWF and
ultimately in the formation of microthrombi (Fig. 3). This
concept is translated into therapy as patients are treated with

rituximab, a therapeutic immunomodulatory and B cell-
blocking antibody [49]. Treatment with rituximab was
successful for several patients and resulted in a reduction
of plasma cells in the circulation and a reduction of
autoantibody titers [51, 52].

Novel therapeutic approaches and disease markers are
being developed for TMA. From a British registry, which
includes patients with acquired TTP and with typical
symptoms such as neurological insults, seizures, and renal
insufficiency, the effect of the B cell targeting mAB
rituximab was evaluated. At the time of admission more
than 50% of the patients showed elevated troponin T levels
that correlated with disease severity and mortality [53]. As
autoantibodies are associated with TTP the concept was to
use rituximab in order to suppress autoantibody-producing
B cells and to lower both frequency and severity of
relapses. Patients treated with rituximab in combination
with steroids required less frequent plasma exchanges.
During a period of 25 months all patients receiving
rituximab remained in remission, whereas 50% of the
control group suffered a relapse. Rituximab administered
upon the initial increase in ADAMTS13 autoantibody titers
in patients with known TTP prevented disease relapse, thus
demonstrating a preemptive effect and a good approach as
therapy.

In addition, novel approaches based on aptamers or
nano-bodies are being evaluated for treating TTP. The
aptamer ARC1779, which specifically binds to the vWF
receptor on the platelet surface inhibits vWF-mediated
platelet adhesion [54]. Initial pharmacological results with
this aptamer sound promising and show an anti-coagulant
effect upon inhibition of vWF. This aptamer also antago-
nizes the increased platelet adhesion mediated by ultra-large
von Willebrand factor multimers that are released in TTP. In
a clinical study -this aptamer- was used for the treatment of
a patient with therapy refractory TTP with high titers of
ADAMTS13-antibodies and decreased platelet count. Ap-
plication of this antibody reversed the clinical situation. A
phase II clinical study in eight TTP patients showed no
severe side effects and no bleeding events. Exceptions were
hypersensitivity reactions. Five patients who finished the
treatment protocol are healthy. Thus, inhibition of platelet
reactivity against vWF is a promising candidate for the
treatment of TTP [54]. Also, at least in an animal model of
TTP, new approaches like cell-mediated gene therapy have
so far shown promising effects [55].

Common features and novel therapeutic approaches

Based on these novel data, new genetic causes, and
knowledge, common features of the disease mechanisms,
in particular, the effect on platelet function, are emerging.
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Platelets play a major role in thrombotic microangiopa-
thies and defective platelet function and deregulated clot
formation is central for the two major forms of TMA.
Microthrombi from D+HUS patients stain positive for
fibrinogen and thrombin and have low levels of vWF. This
is in contrast to thrombi of TTP patients, which exhibit
predominantly vWF [56]. Shigatoxin, the virulence factor
derived from enterohemorrhagic E. coli (EHEC) causes
complex formation of platelets and leukocytes. This
consequently induces the release of tissue factor-containing
micro-particles from activated human blood cells. In
addition, Shigatoxin induces C3 deposition on platelet-
monocyte, and platelet-neutrophil complexes, which results
in progression of complement activation leading further to
C9 deposition and TCC formation. This type of platelet
activation may contribute to the thrombotic event [56–58].

Autoantibodies are associated with TMA and with other
autoimmune diseases.

Although the exact mechanism that leads to the generation
of autoantibodies in TMA needs to be worked out, one open
issue is whether TMA-associated autoantibody formation is
based on the same/or related principles to that established for
the common autoimmune disease systemic lupus erythema-
tosus (SLE). In SLE autoantibodies are generated that react
with several “self-antigens,” such as DNA and immune
complexes. A detailed understanding of how defective B-
lymphocyte stimulation and activation result in the genera-
tion of autoantibodies is also central to therapy. Antibody-
producing B cells can be targeted by the therapeutic antibody
rituximab, which binds to the specific surface marker CD20
and causes depletion of the B cell pool. In the SLE patients,
therapy with rituximab was effective and reduced autoanti-
body titers. However, cases were reported in which rituximab
was not efficient.

Thrombotic microangiopathies also occur in other dis-
eases and recent studies have also shown evidence of
complement activation in the form of high plasma levels of
complement activation products and increased ADAMTS13
activity in patients with preeclampsia. A comparison of a
cohort of 60 pregnant preeclampsia patients with a control
group representing 57 healthy pregnant women in the third
trimester of pregnancy revealed higher levels of systemic
complement activation for women with preeclampsia
compared with members of the control group. Future
experiments are directed toward a more detailed character-
ization of complement activation and regulation of this
form of the disease [59]

Outlook

Diseases associated with thrombus formation due to dereg-
ulation of complement and coagulation represent a challeng-

ing field for both clinicians and basic researchers. This fast
development in this interesting area of translational medicine
defines on the one hand novel disease-associated genes as
well as new pathophysiological principles, and on the other
had it also identifies new links between immunological
networks, such as the crosstalk between the complement and
the coagulation cascades. The characterization of these
complex interactions defines new parameters for diagnosis
and therapy, and therefore provides a benefit for the patients
in the form of new diagnostic markers and new approaches
to therapy.
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