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Abstract Malformations of the kidney and lower urinary
tract are the most frequent cause of end-stage renal disease
in children. Mutations in HNF1Β and PAX2 commonly
cause syndromic urinary tract malformation. We searched
for mutations in HNF1Β and PAX2 in North American
children with renal aplasia and hypodysplasia (RHD)
enrolled in the Chronic Kidney Disease in Children Cohort
Study (CKiD). We identified seven mutations in this
multiethnic cohort (10% of patients). In HNF1Β, we
identified a nonsense (p.R181X), a missense (p.S148L),
and a frameshift (Y352fsX352) mutation, and one whole
gene deletion. In PAX2, we identified one splice site (IVS4-
1G>T), one missense (p.G24E), and one frameshift

(G24fsX28) mutation. All mutations occurred in Cauca-
sians, accounting for 14% of disease in this subgroup. The
absence of mutations in other ethnicities is likely due to the
limited sample size. There were no differences in clinical
parameters (age, baseline eGFR, blood pressure, body mass
index, progression) between patients with or without
HNF1B and PAX2 mutations. A significant proportion of
North American Caucasian patients with RHD carry
mutations in HNF1Β or PAX2 genes. These patients should
be evaluated for complications (e.g., diabetes for HNF1Β
mutations, colobomas for PAX2) and referred for genetic
counseling.
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Introduction

Renal hypodysplasia (RHD), encompassing the diagnosis of
renal aplasia, hypoplasia, and dysplasia, is the second leading
cause of chronic renal insufficiency (eCreatinine clearance ≤
75ml/min per 1.73 m2) in the pediatric population [1]. In the
North American Pediatric Renal Trials and Collaborative
Studies (NAPRTCS) database, RHD was the primary
diagnosis in 17.3% of the children with chronic kidney
disease (CKD), 14% of children on dialysis, and 15.9% of
children with renal transplants (https://web.emmes.com/
study/ped/annlrept/Annual%20Report%20-2008.pdf).

The incidence of renal aplasia is 1 in 1,300 [2].
Unilateral dysplastic kidneys occur in 1 in 1,000, and
bilateral dysplasia in 1 in 5,000 of the general population
[3]. Infants with severe bilateral kidney disease often die in
the neonatal period secondary to Potter’s sequence (i.e.,
pulmonary hypoplasia secondary to inadequate renal
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function and amniotic fluid during pregnancy [4]). The
likelihood of chronic renal failure developing in patients
with bilateral dysplasia has been correlated with a calculat-
ed GFR of <15 ml/min per 1.73 m2 at 6 months of age;
children with calculated GFR >15 ml/min per 1.73 m2 at
that age tend to show improvement in renal function at
follow-up [5].

Hereditary factors are partly responsible for RHD, as
evidenced by familial aggregation of disease. For example,
Roodhooft et al. found a 9% incidence rate of asymptom-
atic renal malformations in parents and siblings of patients
with RHD [6]. Moreover, RHD is a feature of at least 73
syndromic disorders, such as renal cysts and diabetes
syndrome (RCAD), due to HNF1Β mutations (OMIM
137920) or renal coloboma syndrome (RCS), due to PAX2
mutations (OMIM 120330 [7]). Although most cases of
RHD are attributed to sporadic, nonsyndromic disease,
studies have discovered mutations in HNF1Β and PAX2 in
up to 19.9% of European children diagnosed with RHD [8–
11]. These data suggest that compared with clinical
diagnosis, genetic screening can more accurately identify
these syndromes and permit counseling of patients and
family members regarding specific renal and extra-renal
complications, such as diabetes in HNF1B and eye
abnormalities in PAX2. The prevalence of PAX2 and
HNF1Β mutations has, however, not been determined in
North American populations.

Materials and methods

Subjects

The Chronic Kidney Disease in Children Cohort Study
(CKiD) is an NIH-sponsored prospective observational
cohort study of children with chronic kidney disease in
the United States [12]. Details of the CKiD study design
have been previously published. Briefly, eligible children
are aged 1 to 16 years and have a Schwartz-estimated GFR
between 30 and 90 mL/min/1.73 m2 [13]. Exclusion criteria
include: renal, other solid-organ, bone marrow, or stem cell
transplantation, dialysis treatment within the past 3 months,
cancer/leukemia diagnosis or HIV diagnosis/treatment
within the past 12 months, current pregnancy or pregnancy
within the past 12 months, history of structural heart
disease, genetic syndromes involving the central nervous
system, and a history of severe to profound mental
retardation. Children were enrolled at 46 participating
tertiary care pediatric nephrology programs across the
USA and at 2 sites in Canada. Institutional Review Boards
for each participating site approved the study protocol. Of
the 586 CKiD participants, at the time of the analysis 87
children were categorized as having RHD. We examined

DNA samples from the 73 RHD patients who consented to
genetic studies. Data collected at the baseline visit include
demographic information including age and race, the
medical record-recorded diagnosis causing CKD, family
history of kidney and cardiovascular disease, blood chem-
istries, age at diagnosis with CKD, and the GFR via the
plasma disappearance of iohexol (iGFR). The CKiD
consent did not include permission to contact patients again
to obtain additional clinical data. The study was approved
by the CKiD Steering Committee and the Institutional
Review Boards (IRB) at Montefiore Medical Center and
Columbia University.

Age, eGFR, body mass index, and systolic and diastolic
blood pressure were compared between mutation carriers
and noncarriers using a two-sided t test with equal variance,
adjusted in R version 2.12.0 (http://www.r-project.org/).
P values less than 0.05 were considered significant.

Mutation screening

Using standard protocols, DNA was extracted from periph-
eral blood leukocytes. Reference sequences of HNF1Β and
PAX2 were downloaded from the National Center for
Biotechnology Information (NCBI) database (37.1 Build;
http://www.ncbi.nlm.nih.gov/ and an alternatively spliced
exon 9 of PAX2 from the Ensembl genome browser (http://
uswest.ensembl.org/index.html). Primers were designed for
the 9 exons of HNF1Β and 12 exons of PAX2 (including 1
alternate exon). Amplified PCR products were subjected to
Sanger sequencing (n=73). Sequence analysis was per-
formed using Sequencer 4.8 software. All putative variants
were confirmed by bidirectional sequencing.

On mutational screening of HNF1Β and PAX2, we found
a total SNP rate per base pair (bp) of 1 SNP in every 284
bases surveyed (1 SNP/376 bp in coding regions, and 1
SNP/247 bp in introns), which is comparable to the average
SNP distribution rate in the human genome.

Evaluation of rare variants

We evaluated all variants for potential pathogenicity using
four methodologies. First, we consulted public databases
(dbSNP, 1000 genomes [http://browser.1000genomes.org/
index.html]) to determine if the variants had previously
been detected in reference populations. Coding variants that
were not present in public databases were further cross-
referenced with prior publications and mutation databases,
such as the Human Gene Mutation Database (HGMD) [14].
Novel missense variants were evaluated for conservation
among species using TCoffee [15] and for pathogenic
potential using standard prediction programs (i.e., Polyphen
[16], SIFT [17], PhD-SNP [18]). Novel synonymous and
noncoding variants were evaluated for conservation among
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other mammalian species (bl2seq feature); novel synony-
mous variants were also evaluated for potential aberrant
splicing (Human Splice Finder and ESE Finder) [19–21].
Finally, the frequencies of selected new variants were
determined in healthy controls (195 Italian Caucasians,
100 North American Caucasians or 74 African Americans)
by Restriction Fragment Length Polymorphism (RFLP) or
direct sequencing.

Screening for genomic rearrangements in HNF1Β

We used Multiplex Ligation-Dependent Probe Amplifica-
tion (MLPA) assay to look for structural variants in HNF1Β
[22]; we used the SALSA® MLPA kit P241-B1 MODY
(MRC-Holland, Amsterdam, The Netherlands) designed to
evaluate genes implicated in maturity onset diabetes of the
young (MODY). Mutations in HNF1Β have been implicat-
ed in MODY-5, and as such primer pairs for the exons of
HNF1Β were present in this kit. We also used a second kit
(SALSA® MLPA kit P297-B1 Microdeletion-2), with
seven probes on chromosome 17q12 to verify findings.
Amplified samples were fractionated on a capillary se-
quencer (ABI Prism 3130X Genetic Analyzer, Applied
Biosystems). MLPA data were normalized to a normal
diploid control; a deletion and a duplication in HNF1Β,
previously characterized in the laboratory were incorporat-
ed into each run as positive controls. Finally, in the patient
found to have a whole gene deletion in HNF1Β, we verified
the 5’ and 3’ breakpoints of the 17q12 microdeletion region
using quantitative polymerase chain reaction (QPCR).
Primers were designed for the left and right flanks of the
1.4 Mb microdeletion region, encompassing HNF1Β among
19 other genes [23].

Results

We studied 73 CKiD patients with RHD, of whom 22 had
family history of kidney disease (Table 1), and discovered
pathogenic HNF1Β and PAX2 mutations in seven individ-
uals (10% of the cohort, Table 2)

HNF1Β mutations

We detected one novel frameshift mutation in exon 5
where an insertion of an A shifts the reading frame from
a tyrosine to a termination signal (c.1054_1055insA,
Y352fsX352, Fig. 1a). In a second patient, we found a
missense mutation in exon 2 where a C>T transition
results in a nonconservative amino acid change of a serine
to a leucine (c.444C > T, pS148L). Not only is this
mutation predicted to be pathogenic by multiple publicly
available prediction programs (SIFT, Polyphen, and PhD-

SNP; Supplementary Table 1), but it has also been previously
reported [16–18, 24]. A third patient had a nonsense
mutation in exon 2 where a C>T transition results in the
change of an arginine to a stop codon c.543 C>T, pR181X).
This mutation has also been previously reported [25].
Finally, one patient harbored a ∼1.4 Mb deletion at the
chromosome 17q12 locus, which includes the whole HNF1Β
gene detected by MLPA (Supplementary Fig. 1a) [22]. This
result was confirmed using QPCR of the flanking regions of
microdeletion on 17q12 (Supplementary Fig. 1b) [23].

PAX2 mutations

We discovered one patient with a novel missense mutation
in exon 2 where a G>A transition results in a nonconser-
vative amino acid change from glycine to a glutamic acid
(c.71G>A, G24E, Fig. 1b). This variant, which is located in
a highly conserved region encoding the DNA binding
domain of PAX2, is predicted to be pathogenic by SIFT,
Polyphen, and PhD-SNP (Supplementary Table 1, and
Supplementary Fig. 2a). Moreover, this sequence variant
was not found in 350 Caucasian control chromosomes.

We also detected a novel splice site variant at the
canonical acceptor splice site of exon 5 where a G>T

Table 1 Demographics of the Chronic Kidney Disease in Children
Cohort Study (CKiD) participants with diagnosis of aplasia, hypopla-
sia, and/or dysplasia, with DNA samples stored (n=73)

Characteristic Value

Age at entry into study (year, range) 9.3 (1.1–17.3)

Male (%) 54.8

Race (%)

Caucasian 71.2

African American 8.2

American Indian 2.7

Asian 1.4

Other 1.4

>1 race excluding AA 5.5

>1 race including AA 9.6

Estimated GFR (ml/min/1.73 m2, range)a 41.4 (18.7–131.7)

Systolic BP% (mmHg, range)b 59.2 (4.0–100.0)

Diastolic BP% (mmHg, range) b 61.4 (4.3–100.0)

Body mass index (kg/m2, range) 18.1 (11.8–28.1)

Family history (%)

Of kidney disease 30.1

Of dialysis 12.3

Of transplant 5.5

a eGFR based on a new estimating formula derived by CKiD using serum
creatinine, blood urea nitrogen and cystatin C measured at first visit
b Blood pressure as percentile based on age, gender and height

AA: African American
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transversion in the intron 4 at position −1 from exon 5
(IVS4-1G>T) is predicted to result in aberrant splicing
(Fig. 1c) [26].

Finally, we identified a frameshift mutation in a poly-
guanine tract where an insertion of a guanine results in a
shift in the reading frame to a termination signal
(c.69_70insG, G24fsX28). This 7-bp polyguanine tract, in
the DNA binding region of PAX2, has been reported
previously to be highly susceptible to mutations due to

contractions or expansions, likely due to slippage during
DNA replication [14, 23, 27–31].

Rare HNF1B and PAX2 variants of unknown significance

We identified 22 single nucleotide polymorphisms
(SNPs). Of these, 12 have been previously annotated
(10 noncoding and 2 synonymous coding, Supplementary
Table 2) and 10 were novel (9 noncoding and 1

Table 2 Mutations discovered in CKiD patients

Gene Exon Base change Mutation AA change Sex Race Age
(years)

eGFR Family
history

Miscarriage
in mother

HNF1B 2 c.444C>T Missense S148L Male Caucasian 6.7 35 − +

HNF1B 2 c.543C>T Nonsense R181X Female Caucasian 4.2 50 − −
HNF1B 5 c.1054_1055insA Frameshift Y352fsX352 Female Caucasian 4.8 51.1 +M +

HNF1B All Chrom 17q12 Whole gene
deletion

NA Female Caucasian 15.4 36.6 − −

PAX2 2 c.71G>A Missense G24E Female Caucasian 15.4 38 +GP −
PAX2 2 c.69_70insG Frameshift G24fsX28 Male Caucasian 7.7 29.6 − −
PAX2 5 IVS4-1G>T Splice site NA Male Caucasian 13.7 42.5 +Cs +

M = mother; GP = grandparent; Cs = cousin (kidney disease unknown in 3)

Fig. 1 Chromatograms of novel
pathogenic mutations. The
corresponding amino-acid
sequences are indicated above
each tracing. Arrows indicate the
mutation. a Frameshift muta-
tion: HNF1B c.1054_1055insA.
b Missense mutation: PAX2
c.71G>A. c Splice site mutation:
PAX2 (IVS4-1G>T). For
sequencing in the forward
direction, Rev sequencing in the
reverse direction, WT wild type
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synonymous coding, Supplementary Table 3). We deter-
mined the frequency of two rare PAX2 SNPs (IVS1-
48G>C and c.889G>C, Leu>Leu) in healthy controls
because both produced substitutions at nucleotides that
were highly conserved in Pan troglodytes, Canis lupus
familiaris, Mus musculus, Rattus norvegicus, and Gallus
gallus (Supplementary Fig. 2b, c). Both SNPs were
confirmed to be absent or extremely rare in the general
population (frequency ≤0.003).

Clinical correlations

Of interest, all 7 patients with pathogenic mutations were
Caucasian (7 of 52), resulting in a 14% mutation rate in this
subset. (Fisher exact p value=0.08, for differences in
mutation prevalence between Caucasians and non-
Caucasians). We found no significant differences between
the RHD patients with mutations and those without
mutations, in relation to age, eGFR, systolic or diastolic
blood pressure, BMI or progression of these factors at
1 year (Supplementary Table 4).

Discussion

In this study, we identified pathogenic HNF1Β or PAX2
mutations in 14% of Caucasian individuals in a North
American cohort of children with RHD. The mutation
prevalence is consistent with previous studies of European
and Japanese children with RHD [8–10, 27, 32]. Interest-
ingly, we did not identify any mutations among non-
Caucasian children. These differences may be due to
variation in sampling and ascertainment methods, but may
also reflect true differences in the prevalence of HNF1Β and
PAX2 mutations among different populations.

Horikawa et al. first discovered HNF1Β mutations in
patients with maturity onset diabetes of the young
(MODY5), an autosomal dominant form of diabetes
mellitus frequently associated with renal cysts [33–36].
HNF1Β is expressed in the kidney, pancreas, liver, gonads,
gut, lung, and thymus. HNF1B mutations produce diabetes
at a mean age of 17–25.8 years (30–66%), genital
malformations (12.0–62.5%), RHD, pancreas atrophy,
hyperuricemia, and abnormal liver function tests [11, 24,
25, 37, 38]. In women, genital malformations include
bicornuate uterus, vaginal aplasia, or absent uterus [34,
39]. In men, asthenospermia, bilateral epididymal cysts, and
atresia of the vas deferens have been reported [25].

HNF1B is a critical regulator of a genetic cascade that is
essential to controlling the proliferation and differentiation
of renal tubular epithelial cells. It also controls the
expression of the PKHD1 gene (the gene mutated in
recessive polycystic kidney disease), accounting for the

cystic renal phenotype in mutation carriers [40, 41]. The
1.4 Mb region of chromosome 17 containing HNF1B is
highly susceptible to copy number variation as it is flanked
by areas of segmental duplications, which are sites for
recurrent rearrangements [23, 42]. Accordingly, in the one
patient in this study who harbored a heterozygous whole
gene deletion in HNF1Β, we found that the entire 1.4 Mb
critical region was deleted [23].

PAX2, a member of the “paired box” transcription factor
gene family, is one of the earliest genes expressed during
fetal kidney development, and is mutated in renal coloboma
syndrome (OMIM 120330) [43, 44]. PAX2 is expressed in
the optic and otic vesicles, the mesonephros (which later
gives rise to the male and female genital tracts), kidney, and
parts of the central nervous system [45]. PAX2 mutations
lead to multiorgan defects including RHD (68%), ocular
abnormalities in nearly 100% of children, high-frequency
hearing loss (16%), which can be subtle and often missed,
and associated vesicoureteral reflux (26%) [27, 30]. The
typical ocular association with renal coloboma syndrome is
bilateral optic nerve coloboma; however, ocular manifes-
tations have also included optic nerve or disc dysplasia,
retinal coloboma, microphthalmia, morning glory anomaly,
optic nerve cysts, scleral staphyloma, myopia, nystagmus,
and cataracts [46, 47]. Visual acuity is variable, ranging
from near normal to severely impaired, with a reduction in
vision acuity of one or both eyes in 75% of affected
individuals [46, 47].

There are several important clinical implications from
our findings. Although HNF1B and PAX2 mutations
classically affect multiple organs, many organ defects may
be subtle or subclinical, complicating diagnosis by standard
clinical methods. As illustrated in this study, the patients
with PAX2 or HNF1B mutations were not readily distin-
guishable from the patients with no mutations. Mutation
screening can therefore provide the correct diagnosis, and
also motivate surveillance for extra-renal manifestations
and potential future complications. Detailed information
about extrarenal manifestations is now being collected in
the follow-up phase of the CKiD study to pursue these
findings. Our data, in combination with prior studies,
provide a strong rationale for mutation screening of all
children with RHD. Clinical genetic testing is available for
PAX2 or HNF1B (information available at Genetics Home
Reference, http://ghr.nlm.nih.gov/).

Mutation identification may aid in genetic counseling.
Previous reports have indicated that as many as half of the
mutations in HNF1B and PAX2 occur de novo [8, 9, 11].
Knowing whether the mutation was inherited or occurred
de novo would therefore have consequences for screening
siblings as well as for advising parents who would like to
conceive further [48]. In this cohort, only one child reported
a family history of RHD (in a cousin), but we did not find
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any pathogenic mutations in this patient. However, it is
noteworthy that there was a history of miscarriage in the
mothers of two patients with HNF1B mutations, suggesting
that these mothers might have uterine abnormalities and be
mutation carriers [39].

The majority of children (particularly non-Caucasians) in
the CKiD cohort did not havemutations inHNF1Β and PAX2;
mutations in other genes such as SALL1, SIX1, EYA1 are also
exceedingly rare in all reported studies [8–10, 27, 32]. These
data suggest that there are other, as yet undiscovered genes
that may cause RHD. In the past few years, the introduction
of high-density oligonucleotide arrays and Next-gen se-
quencing methods has enabled detection of rare mutations
associated with human disease, leading to the identification
of new clinical entities. These methods have been particu-
larly successful in studies of developmental disorders. For
example, studying patients with multiple complex malfor-
mations, Unger et al. found a mutation in the cyclin family
member FAM58A to be the cause of an X-linked dominant
disorder characterized by syndactyly, telecanthus, and
anogenital and renal malformations (“STAR syndrome”)
[49]. Similarly, exome sequencing has recently identified
mutations in MLL2 as a cause of Kabuki syndrome, a
multiorgan developmental disorder [50]. Our findings thus
support application of these methodologies to detect novel
genes producing RHD in the CKiD cohort.
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