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Proteinuria and events beyond the slit
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Abstract The origin of proteinuria is found in either the
glomerular filtration device or the proximal tubular reabsorp-
tion machinery. During equilibrium, small amounts of
predominantly low molecular weight proteins are filtered
and reabsorbed by the receptor complex megalin/cubilin/
amnionless. This results in a protein-free filtrate passing
further down the tubule. During glomerular damage, the
reabsorption machinery in the proximal tubule is challenged
due to elevated amounts of proteins passing the glomerular
filtration slits. Even though it is considered to be a high-
capacity system, several conditions result in proteinuria, thus
exposing the cells in the rest of the nephron to a protein-rich
environment. The impact on cells in the more distal part of the
nephron is uncertain, but studies support an involvement in
fibrosis development. Protein accumulation in lysosomes of
the proximal tubule, due to increased protein internalization, is
thought to mediate inflammation and fibrosis, eventually
leading to renal failure. In contrast, low molecular weight
proteinuria develops when the endocytic machinery is
malfunctioning either by direct or indirect causes such as in
Imerslund-Gräsbeck syndrome (IGS) or Dent’s disease,
respectively. This review discusses the origin of proteinuria
and describes the structural fundament for protein reabsorp-
tion in the proximal tubule as well as conditions resulting in
low molecular weight proteinuria.
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Abbreviations
IGS Imerslund-Gräsbeck syndrome
DB/FOAR Donnai-Barrow/facio-oculo-acoustico-renal
AMN Amnionless
LDL Low-density lipoprotein
RAP Receptor-associated protein
RBP Retinol-binding protein
DBP Vitamin-D-binding protein

Introduction

Proteinuria is the presence of nonphysiological levels of a
mixture of proteins in the urine (>200 mg/l). It is a
characteristic of many renal diseases, and proteinuria
correlates with disease progression ending in nephrotic
syndrome with an excretion of >2.3 g/l. The etiology of this
type of proteinuria is a condition that directly or indirectly
affects the glomerular filtration barrier. This view has
recently been questioned by an alternative hypothesis (the
albumin retrieval hypothesis), which, together with the facts
pointing against it, are discussed later in this review.

In contrast, several renal syndromes are characterized by
a tubular or low molecular weight proteinuria. These
syndromes include Imerslund-Gräsbeck syndrome (IGS),
Dent’s disease, Lowe syndrome, Donnai-Barrow syndrome
(DB/FOAR syndrome), and cystinosis. At the outset, the
glomerular filtration process works normally and the defect
is due to modified reabsorption in the proximal tubule. The
urinary protein composition mirrors more or less the
composition in the primary ultrafiltrate. These proteins are
normally reabsorbed very efficiently by the two receptors
megalin and cubilin and the cooperating protein amnionless
(AMN) [1, 2], resulting in an almost protein-devoid urine
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(<20 mg/l). The receptors are thus involved in clearing the
ultrafiltrate, which not only rescues essential molecules
such as vitamins [2], but probably also provides a nontoxic
protein-free milieu for cells further down the tubule.
Together, the receptors act as a high-capacity, dynamic
uptake system, reabsorbing a large amount of a variety of
compounds. The reabsorbed constituents are directed to the
lysosomes, where proteins are degraded and constituents
such as vitamins are exported to the circulation for reuse.

In IGS and DB/FOAR syndrome, proteinuria is caused
by mutations in the receptor complex: cubilin-AMN and
megalin, respectively. In cystinosis and Dent’s disease, the
defective proteins have been identified as a lysosomal
cystine transporter (cystinosin) and an endosomal CL−/H+

exchanger (CLC-5), respectively, but the mechanism
underlying decreased protein reabsorption by the receptor
complex has not been fully resolved. In Lowe syndrome,
mutations have been found in the OCRL1 gene encoding an
inositol polyphosphate 5-phosphatase, but the molecular
mechanisms underlying the phenotype of Lowe syndrome
have not been resolved. This paper reviews the structure
and function of the receptors as well as our present
understanding of the mechanisms responsible for protein-
uria in the above-mentioned syndromes.

The endocytic complex in the proximal tubule

Megalin

In the light of the close association of proteinuria and renal
disease, it is not surprising that the molecular mechanism
underlying protein reabsorption in the proximal tubule has
been studied intensively. Megalin was the first receptor to
be identified, in 1982, by Kerjaschki and Farquhar [3, 4]. It
is a giant protein (600 kDa after glycosylation) belonging to
the low-density lipoprotein (LDL) receptor family [5–7]. It
turned out to be a multispecific receptor, with four binding
clusters in its extracellular domain, which is build by three
components: (1) 36 cysteine-rich complement-type motifs
organized in four binding domains [8, 9]; (2) 16 growth
factor repeats separated by eight YWTD spacer regions,
which are involved in pH-dependent release of ligands [10];
and (3) one epidermal growth-factor-like repeat (Fig. 1).
The receptor has one membrane-spanning region and a
short intracellular tail (209 amino acids). It contains two
endocytic motifs (NPXY) necessary for clustering into
coated pits and an NPXY-like motif (NQNY) involved in
apical sorting of the receptor [11]. The tail of megalin
differs from the other members of the LDL receptor family
by further harboring several phosphorylation, signaling, and
protein interaction motifs [7], giving rise to the assumption
that megalin has signaling roles [2, 12]. It is intriguing to

speculate that the state of these interaction/phosphorylation
sites might be changed in syndromes associated with low
molecular proteinuria, as for example, the phosphorylation
of a PPSP motif involved in recycling and surface
expression of megalin [13], or Dab2 interaction with the
second NPXY motif [14–16].

Cubilin

The cooperating extracellular receptor cubilin is also a huge
protein (glycosylated 460 kDa), which shares no homology
with other known receptors. It binds intrinsic-factor B12
and was originally identified and named (intrinsic factor

Fig. 1 Megalin, cubilin, and amnionless (AMN) presenting known
domains and motifs. The three receptors colocalize in the renal
proximal tubule (PT), where they cooperate in ultrafiltrate clearance.
Megalin binds a variety of filtered molecules (>50 ligands have been
identified) through its complement type repeats and is able to mediate
endocytosis via NPXY motifs in the cytoplasmic tail. Cubilin, on the
other hand, includes multiple binding domains (CUB domains), but
only around 15 ligands have been identified. Cubilin is a peripheral
membrane protein and is thereby dependent on megalin and/or AMN
to assure internalization of its ligands. AMN contains an NPXY and
probably assists cubilin in endocytosis as well as in transport during
synthesis
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receptor) based on this ability [17, 18]. Its membrane
association is mediated by a putative amphipathic helix and
a palmitoylation site [19]. Cubilin consists of three
domains: (1) a 110 amino acid N-terminal stretch, (2) eight
epidermal growth-factor-like repeats, and (3) 27 CUB
domains [complement c1r/C1s, Uegf (epidermal growth-
factor-related sea urchin protein) and bone morphogenic
protein 1 (BMP1)] [20, 21] (Fig. 1). The 27 CUB domains
of cubilin are ligand-binding determinants, and numerous
ligands are expected to exist. However, only a few have
been identified. CUB domains 12−17 and 22−27, as well as
the N-terminus of cubilin (including CUB domains 1 and 2),
are further involved in indirect membrane anchorage, as they
associate cubilin to megalin [22, 23].

Amnionless

Besides megalin, cubilin also interacts on the apical
membrane as well as during the biosynthetic pathway with
AMN [24, 25]. AMN exists in at least five different sizes
ranging from 38−50 kDa [26]. It is build up by a 70 amino-
acid N-terminal domain containing a cysteine-rich region, a
transmembrane domain, and a cytoplasmic tail, which
contains an NPXY motif [27] (Fig. 1). The association to
cubilin occurs through the epidermal growth-factor-like
repeats in cubilin [24].

Ligands

The ligand repertoire of megalin includes a variety of
compounds; many have been identified by studies of the
urinary profile in megalin knock-out mice. The milieu to
which megalin is exposed differs from tissue to tissue,
thereby making the relevance of each ligand dependent on
its location. Ligands include vitamin-binding proteins,
enzymes and enzyme inhibitors, hormones, drugs and
toxins, lipoproteins, calcium, albumin, hemoglobin, myo-
globin, and receptor-associated protein (RAP) [1, 2]. Some
ligands are shared with cubilin, as for example, vitamin-D-
binding protein (DBP), albumin, immunoglobulin light
chains, myoglobin, and hemoglobin. Transferrin, intrinsic-
factor B12, and apolipoprotein AI are examples of pure
cubilin ligands. In total, 14 ligands, including megalin,
AMN, and RAP, have been identified for cubilin, whereas
more than 50 have been identified for megalin [2].

Expression

Megalin is expressed in many absorptive epithelia, of
which the renal proximal tubule exhibits a very high level
[3, 28, 29]. For more information on megalin expression in
other epithelia, see Christensen et al. [2]. On the cellular
level, the receptor is present on microvilli, coated pits, and

subsequent compartments of the endocytic route [29, 30].
Megalin is also present in lysosomes in very small amounts,
but the majority of megalin is recycled to the apical
membrane from endosomes through dense apical tubules
[31]. Cubilin colocalizes closely with megalin in the renal
proximal tubule [17, 32, 33]. Both receptors are escorted to
the membrane by chaperone proteins. In the case of
megalin, RAP is essential for protecting megalin from
potential ligands during synthesis and probably also
important for receptor folding [34–36]. Cubilin is depen-
dent on AMN for its normal translocation from the
endoplasmic reticulum (ER) to the membrane as well as
for consequent endocytosis [24, 25]. As mentioned, mega-
lin and cubilin are also able to interact in vitro, and this
interaction was initially thought to be the motor for cubilin
internalization [21]. Other observations supported this
concept, as for example their colocalization and decreased
uptake of cubilin ligands, such as transferrin and apolipo-
protein A-I/high-density lipoprotein by antimegalin anti-
bodies [37, 38] as well as by megalin antisense
oligonucleotides [39]. Even if the cubilin/AMN complex
is able to work independently of megalin in uptake of
intrinsic-factor B12 in vitro [25], it does not seem to pertain
to the renal proximal tubule, as pure cubilin ligands are
found in urines of megalin knock-out mice, and pure
cubilin, and shared ligands are undetectable in proximal
tubule cells of these mice (unpublished observations). It
should be noted, however, that the endocytic apparatus is
less well-developed in megalin knock-out mice [40].
Whether this is due to megalin being a major endocytic
player in the proximal tubule or an indirect effect of
megalin deficiency on other endocytic systems is unknown.

Proteinuria

Traditionally, proteinuria has been subdivided in glomerular
and tubular proteinuria. In addition, in specific overload,
proteinurias such as, for example, hemoglobinuria, myo-
globinuria, or multiple myeloma with excess glomerular
filtration of immunoglobulin light chains, the disease cause
is located outside the kidney. Glomerular proteinuria is
usually caused by a defect in the glomerular filtration
barrier, i.e. the endothelium, the glomerular basement
membrane, or the podocyte filtration slit membrane. The
pathogenesis of glomerular proteinuria is highly variable,
but the most common disease is diabetes mellitus, which
results in a thickened basement membrane and proteinuria
progression. Notably, large plasma proteins that normally
are not filtered or only to a limited extent now appear in the
ultrafiltrate in large amounts and start to interfere with the
normal tubular reabsorption of low molecular weight
proteins, competing for the binding sites on megalin and
cubilin (Fig. 2). Examples of such proteins are plasma
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immunoglobulins, transferrin, and albumin. Albumin in
this respect is important for several reasons. It is the
protein with the highest plasma concentration: 5.5 g/
100 ml. It is an important carrier of a variety of substances
such as fatty acids, bilirubin, hormones, and vitamins [41].
It has a molecular weight of ~65 kDa, and its size, form,
and surface charge make it generally accepted that it is
filtered only in very small amounts. This makes it very
suitable as a marker for a beginning glomerular protein-
uria, which is typically seen as, for example, micro-
albuminuria in the early stages of the kidney disease in
diabetes mellitus [42, 43].

The concept of a very low glomerular filtration of
albumin (filtration fraction 0.0005−0.0007) is based on
many years of research using a variety of techniques, as
well as physiological and pathological conditions. Recently,
however, a study using two-photon microscopy challenged
this concept, apparently demonstrating a much higher
glomerular filtration of albumin by a factor of 40 [44].
This observation was immediately seriously questioned by
several investigators [45–48], and very recently, a couple of
reports using similar or identical techniques concluded that
the findings by Russo et al. [44] were probably an artifact
[49, 50]. In order to account for all the filtered albumin not
appearing in the urine, Russo et al. [44] also suggested that
the bulk of filtered albumin was reabsorbed by non-

receptor-mediated endocytosis and transported across the
tubular wall by transcytosis. However, when we looked at
mosaic-pattern kidney-specific megalin-knock-out mice,
there was no uptake of albumin in cells not expressing
megalin and no signs of transcytosis in either megalin-
expressing or non-megalin-expressing cells [2]. By electron
microscope immunocytochemistry on rat renal tissue, there
were also no indications of transcellular transport of
endogenous albumin. Instead, albumin accumulated in the
lysosomes of the proximal tubule cells (Fig. 3).

The competition for binding sites in overload protein-
uria, whether the course is glomerular or outside the
kidney, also results in addition to proteinuria in increased
proximal tubular uptake of proteins such as albumin and
transferrin. These proteins are potentially harmful to cells
due to the amounts reabsorbed but probably more
reasonably due to potentially toxic substances carried by
the proteins. A discussion of the subsequent tubular
damage and interstitial fibrosis is outside the scope of
this review (for recent reviews, see Abbate et al. and Kriz
and LeHir [51, 52]). We emphasize normal physiological
tubular reabsorption of circulating lysosomal enzymes
used to renew the proximal tubular lysosomal enzyme
pool—a recent finding by us—may contribute to this
damage [53]. Thus, this process may also be impaired by
increased competition for uptake, resulting in increased

Fig. 2 Events in the proximal tubule after glomerular filtration under
normal physiological conditions and after glomerular damage. a
During normal physiological conditions, all filtered proteins are
efficiently internalized by the receptor complex megalin/cubilin/
amnionless (AMN), resulting in a virtually protein-devoid urine.
Proteins are degraded in lysosomes, and substances such as vitamins
are transported basally for reuse. b During glomerular damage,

filtration of low molecular weight proteins increases and larger
proteins start to penetrate the glomerular barrier. Cells in the proximal
tubule are thereby exposed to more, and new, proteins that compete
for receptor-binding sites, eventually resulting in proteinuria. Further,
in the cell, lysosomal degradation is unable to handle the increased
amount of internalized protein, resulting in protein-clotted lysosomes
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urinary excretion of lysosomal hydrolases and lysosomal
enzyme deficiency in the proximal tubule. This deficiency
may further accentuate the accumulation of protein in
proximal tubules, which was observed many years ago
and described as protein droplets [54]. Another conse-
quence of the increased competition is the urinary loss of
vital substances such as vitamins and different trace
elements such as iron. This can be exemplified by the
fact that many patients with proteinuria suffer from
vitamin D deficiency due to decreased reabsorption of
DBP; we have previously shown that the proximal tubular
conversion of 25-OH-Vitamin D3 to 1,25-(OH)2-vitamin
D3 is dependent on megalin/cubilin-mediated uptake of
DBP [55, 56]. Similarly, retinol and vitamin B12 will be
lost due to decreased reabsorption of retinol binding
protein (RBP) [57] and transcobalamin-B12 (TC-B12)
[58], respectively. When the capacity for protein reab-
sorption in the proximal tubule is exceeded, it also means
that protein is now found in the tubular fluid in more distal
parts of the nephron and in collecting ducts. Although
neither the distal tubule nor the collecting duct has specific
features for endocytosis, both segments have the capability for
protein endocytosis [59–61], probably by fluid-phase endo-
cytosis as part of normal membrane internalization in
connection with apical receptor/transporter/channel regula-
tion. Therefore, uptake, or maybe only nonspecific binding to
the apical plasma membrane, may be potentially harmful to

processes normally taking place in these segments (see e.g.
Kastner et al. [62]).

Tubular proteinuria involves diseases in which the
endocytic machinery suffers either by genetic defects that
directly affect the endocytic receptors megalin and cubilin,
or diseases in which endocytosis is more indirectly affected,
involving changes in endocytic or recycling processes. We
briefly describe five of these diseases:

1. Imerslund-Gräsbeck syndrome

IGS is a rare autosomal-recessive disease affecting either
the gene for AMN or for cubilin. The disease was first
described in the 1960s by Imerslund [63] and Gräsbeck
[64] as a megaloblastic anemia type 1 and proteinuria.
When the anemia is treated with vitamin B12, treatment
does not improve proteinuria. To date, about 300 patients
have been identified [65]. The disease is caused by reduced
absorption of intrinsic-factor B12 in the small intestine due
to mutation of either the gene for AMN or cubilin [26, 66].
Proteinuria varies greatly between patients [67] but is due
to reduced function of cubilin/AMN in the proximal tubule.
AMN and cubilin are colocalized [25], and AMN appears
to be necessary for apical localization of cubilin in the
proximal tubule [25]. Thus, in inbred dogs with megalo-
blastic anemia and “cubilin” proteinuria [38, 68, 69],
cubilin is found throughout the cytoplasm but not apically
[69] due to mutation of the AMN gene [70]. A mouse

Fig. 3 Electron microscope immunocytochemistry on cryosection
from rat renal proximal tubule cell. Endogenous albumin (18-nm gold
particles) is intensively accumulated in the lysosomes identified by

their content of cathepsin B (6-nm gold particles). There are no signs
of any transcellular transport activity. Bar =1 µm
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“kidney-specific” AMN knockout [71] also showed in-
creased urinary excretion of transferrin. Typically, the
proteins found in the urine of the dogs were, for example,
DBP [55, 56] and albumin [69] (both megalin and cubilin
ligands), transferrin [37], and apolipoprotein A1 (apoA1)
[38] (cubilin ligands) but not, for example, RBP [56]
(megalin ligand). A similar pattern was seen in some IGS
patients [67]. However, a thorough analysis of patients with
different mutations comparing proteinuria is lacking.

2. Dent’s disease

Dent’s disease is a rare X-linked genetic disease
involving mutations in the gene encoding the CLC-5 CL−/
H+ exchanger [72, 73] located apically in the proximal
tubules and intercalated cells of collecting ducts and less
pronounced in the thick ascending limb [74–76]. Symptoms
of the disease include nephrolithiasis, hypercalciuria,
aminoaciduria, phosphaturia, glycosuria, low molecular
weight proteinuria (tubular proteinuria) and—in this respect
interesting, but seen less often—rickets [77]. In CLC-5
knock-out mice simulating the human disease, it was shown
that renal expression of megalin was reduced [78] and
cubilin levels were even more reduced [79], resulting in a
significant low molecular weight proteinuria [78, 79]. In
addition to generally reduced expression, localization of the
two receptors was also changed significantly in the knock-
out mice, that is, the brush border expression of the two
receptors had virtually disappeared, whereas the apical
endosomal expression appeared intact [79]. It was concluded
that this effect was due to a changed intracellular trafficking
resulting from the lack of CLC-5. How this is instituted, for
example, lack of endosomal acidification, remains to be
elucidated in detail. A change in megalin expression has also
been observed in patients with Dent’s disease [80]. It should
be noted that the tubular/low molecular weight proteinuria
observed in these patients and in mouse models include both
megalin and cubilin ligands, which is distinctly different
from IGS patients and corresponding dog models in which
proteinuria includes only cubilin ligands. It should also be
noted that the tubular proteinuria observed in patients and the
mouse models is mild compared with, for example, megalin
knock-out mouse models [81], as the uptake of proteins is
only partially disturbed [79].

3. DB/FOAR syndrome

Lack of functional megalin results in a multifaceted
phenotype comprising hypertelorism, large anterior fonta-
nelle, agenesis of corpus callosum, diaphragmatic hernia,
omphalocele/umbilical hernia, macrocephaly, ophthalmolog-
ical abnormalities, sensorineural hearing loss, developmental
delay, and proteinuria [82]. Many of these clinical features
were described in patients suffering from both Donnai-
Barrow and facio-oculo-acoustico-renal (FOAR) syndromes,

which were initially thought to be distinct syndromes.
Kantarci et al. [83, 84] showed the two syndromes to be
allelic, having their origin in the gene LDL-receptor-related
protein 2 (LRP2) encoding megalin. To date, reports on 27
patients from 15 families presenting with a number of the
above-mentioned features have been published [82]. Sixteen
patients have been analyzed for mutations in LRP2, and in
all patients, alterations were identified in the gene [83]. It has
not been possible to make positive genotype−phenotype
correlations, but hypertelorism, high myopia, hearing loss,
and proteinuria seem to be universal, as they have been
detected in all patients examined for these features. Large
anterior fontanelle, corpus callosum agenesis, developmental
delay, diaphragmatic hernia, and omphalocele/umbilical
hernia were detected in 95%, 94%, 86%, 56%, and 56%,
respectively of examined individuals [82]. Further analysis
of urine from eight patients showed a characteristic feature of
a “megalopathy”, namely, RBP (8/8) and DBP (6/8)
excretion [83]. It is not unexpected—with the role played
by megalin in endocytosis of an array of compounds in many
tissues—that malfunctioning results in diverse malforma-
tions, which was also described in megalin-deficient mice in
1996 [85]. The distinct mechanism underlying each pheno-
type is unknown and not directly explicable. However,
failure to absorb ligands at a specific time during develop-
ment that results in local deficiencies (of vitamins, etc.)
might be the basis for the abnormalities present in DB/
FOAR-affected patients.

4. Cystinosis

Cystinosis is an autosomal recessive lysosomal storage
disorder in which lysosomal efflux of cystine from
degraded proteins is defective [86, 87]. The affected
protein, cystinosin, is a 367 amino acid H+-driven cystine
transporter located on the lysosomal membrane [88, 89]. It
is encoded by CTNS located at 17p13.3 [89]. The disease is
characterized by lysosomal accumulation of cystine, which
in many tissues forms crystals [86, 87, 90, 91]. Three
different variants of the disease exist: (1) infantile cysti-
nosis, which is the most severe form, presents with Fanconi
syndrome within the first year of life, inevitably culminat-
ing in renal failure. Approximately 5% of end-stage renal
disease in children is caused by cystinosis [90]. Renal
symptoms are the foremost clinical characteristic of the
disease. Other symptoms are growth retardation, diabetes
mellitus, hypothyroidism, photophobia, retinal blindness,
pulmonary dysfunction, myopathy, and neurological dys-
function (OMIN 219800). (2) Juvenile cystinosis, which
demonstrates the same symptoms but is less severe and
later in life (OMIN 219900). (3) Nonnephropathic cysti-
nosis manifests in adolescence, with photophobia due to
cystine crystals in the cornea (OMIN 219750) [91, 92]. The
renal phenotype includes Fanconi syndrome, narrowing of
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the proximal tubule due to tubular atrophy (swan neck),
followed by interstitial nephritis, glomerular endothelial
proliferation, glomerular thickening, and end-stage renal
disease. The development of swan neck seems to be
correlated temporarily with the presence of Fanconi
syndrome and to be proceeded by minute crystal formations
[93]. Different mechanisms underlying the pathological
manifestations in cystinosis have been presented, of which
many have been based on cystine loading by cystine
dimethyl ester. However, toxicity of the drug has now been
documented, and the results obtained by this method need
reevaluation [94, 95]. The proteinuric component of
Fanconi syndrome could be caused by decreased levels of
megalin and cubilin in the renal proximal tubule. This does
not seem to be the case, as neither immunohistological
staining of receptors nor endocytosed ligands are decreased
in a patient with cystinosis [96]. These findings indicate
that increased glomerular permeability contributes to the
development of proteinuria in cystinosis patients. Another
issue is the cytoplasmic depletion of cystine, which has
been shown to result in decreased levels of gluthathione,
giving rise to increased susceptibility to oxidative stress
[97]. Further, it has been reported that cystinotic cells are
more sensitive to apoptotic inducers through activation of
PKC δ, which could explain the swan neck phenotype of
the proximal tubule found in cystinosis patients [98].
However, the link between these findings and proteinuria
has not been resolved. Lysosomal cystine clearance by
treatment with cysteamine has been shown to relieve
systemic symptoms, including glomerular deterioration,
whereas the tubular component seems more unresponsive
to treatment [91, 99]. This unresponsiveness combined with
the very sparse crystal formation observed in the kidney
relates the renal tubular component of cystinosis to the lack
of functional cystinosin rather than crystal formation per se.

5. Lowe syndrome

The oculocerebrorenal syndrome of Lowe (OCRL1) is
an X-linked disease characterized by growth and mental
retardation, cataracts, and renal Fanconi syndrome, ending
with renal failure [100, 101]. The affected gene is OCRL 1,
which encodes a phosphatidylinositol 4,5-biphosphate
5-phosphatase [102, 103]. OCRL 1 preferentially hydro-
lyzes lipid-anchored substrates with highest activity toward
PI(4,5)P2 but also hydrolyzes soluble substrates such as Ins
(1,4,5) P3 [103, 104]. OCRL 1 is localized in transgolgi
network vesicles and early endosomes [101, 105–107].
Defective OCRL 1 seems to affect targeting of lysosomal
enzymes, as Lowe patients exhibit high plasma levels of
lysosomal enzymes [108]. It further interacts with AP-2 and
heavy-chain clathrin and seems to be incorporated into
clathrin cages during assembly [105, 107]. A link to the
renal phenotype of Lowe patients has been provided by

Erdmann et al. [106]. They show interaction of OCRL 1
with the adaptor/signaling protein APPL1, which is able to
regulate TrkA-receptor trafficking [109], and indirectly
with the adaptor protein GIPC. Mutations detected in
ORCL 1 of Lowe patients were shown to abolish binding
to APPL1 in GST pull-down assays. Furthermore, pull-
down experiments with megalin recovered both GIPC and
APPL1. Thus, focusing on the proteinuric state of Lowe
patients, disturbance of the ORCL1/APPL1/GIPC/megalin
axis probably underlies the decreased reabsorption ability
by affecting receptor recycling in the renal proximal tubule.

It should be noted that patients suffering from Dent 2
disease (having no mutations in ClC5) have been deter-
mined to harbor mutations in OCRL 1 [108]. Their
phenotype resembles the one found in Lowe patients,
except for the lack of cataracts and tubular acidosis.
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