Pediatr Nephrol (2010) 25:61-74
DOI 10.1007/s00467-008-1020-x

EDUCATIONAL REVIEW

Mechanism of cellular rejection in transplantation

Elizabeth Ingulli

Received: 20 February 2008 /Revised: 31 August 2008 /Accepted: 9 September 2008 /Published online: 24 October 2008

© IPNA 2008

Abstract The explosion of new discoveries in the field of
immunology has provided new insights into mechanisms that
promote an immune response directed against a transplanted
organ. Central to the allograft response are T lymphocytes.
This review summarizes the current literature on allorecogni-
tion, costimulation, memory T cells, T cell migration, and their
role in both acute and chronic graft destruction. An in depth
understanding of the cellular mechanisms that result in both
acute and chronic allograft rejection will provide new
strategies and targeted therapeutics capable of inducing
long-lasting, allograft-specific tolerance.
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Learning objectives:

1. To review recent advances in understanding the
mechanisms of allograft rejection

2. To outline the current data on allorecognition and its
role in allograft rejection

3. To discuss current therapeutics targeting costimulatory
pathways

4. To briefly discuss recent data on the role T regulatory
and memory T cells play in alloimmune responses
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Introduction

Transplantation of solid organs has emerged as a viable
therapeutic modality for the treatment of a variety of
ailments, such as end stage renal disease. Acute allograft
rejection is understood as an impediment to long-term
allograft survival, increasing the risk of developing chronic
rejection and decreasing allograft half-life by 34% [1]. With
the widespread use of potent immunosuppressive drugs,
early graft loss due to acute rejection has decreased
dramatically; however, current immunosuppressive proto-
cols have not reduced the rates of graft loss due to chronic
rejection and have increased the risk of serious complica-
tions, such as life-threatening infections and cancers [2].

Rejection of solid organ allografts is the result of a complex
series of interactions involving coordination between both the
innate and adaptive immune system with T cells central to this
process. The ability of recipient T cells to recognize donor-
derived antigens, called allorecognition, initiates allograft
rejection. Once recipient T cells become activated, they
undergo clonal expansion, differentiate into effector cells,
and migrate into the graft where they promote tissue
destruction. In addition, CD4 T cells help B cells produce
alloantibodies. Here, we will review the components of an
anti-allograft adaptive immune response.

Allorecognition

Antigens that activate the immune system against the
allograft, i.e. alloantigens, are both major and minor
histocompatibility antigens. The major histocompatibility
complex (MHC), located on chromosome 6 in humans,
encodes the human leukocyte antigens (HLA), which are
polymorphic molecules responsible for eliciting the stron-
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gest of responses to allogeneic tissues. The genes in this
region encode for class I (HLA-A, -B, -C) and class II
(HLA-DR, -DP, -DQ) molecules. The function of MHC
molecules is to present foreign antigens to T cells. It has
been known for more than 30 years that the T cell receptor
(TCR) present on the surface of the T cell interacts with a
peptide bound in the groove of the MHC molecule present
on the surface of the antigen presenting cell. CD8 T cells
recognize peptide/MHC class I complexes. MHC class 1
molecules are constitutively expressed on the surface of
virtually all nucleated cells. CD4 T cells recognize peptide/
MHC class II complexes. MHC class II molecules are
constitutively expressed on the surface of professional
antigen presenting cells, but expression can be induced on
many cell types with activation.

Minor histocompatibility antigens are proteins that are
expressed in some individuals in the population but not others,
thereby creating potential antigenic differences between
donors and recipients. This occurs, for example, when
proteins encoded on the Y chromosome (H-Y) from male
grafts induce an anti-Y response in females [3]. In theory, a
polymorphism of any protein between donor and recipient,
as is the case for certain enzymes and surface receptors that
can be processed and presented on self-MHC, can potentially
elicit an anti-graft response. Any non-MHC gene that
encodes epitopes capable of binding to both MHC class I
and class II molecules and inducing both CD4 and CD8 T
cell responses can be considered a minor histocompatibility
gene. CD8 T cells [4, 5] and, more recently, CD4 T cells [6]
specific for minor antigens have been isolated from humans
and rodents and have been shown to play an important role
in the rejection of solid organs and corneal transplants as
well as causing graft-versus-host disease after bone marrow
transplantation [3, 7].

Unique to transplant immunobiology is the idea that
alloantigen recognition can occur via two distinct pathways,
both of which focus on the source of the antigen presenting
cells (donor versus recipient). The direct pathway of allorecog-
nition describes the ability of T cells to “directly” recognize
intact non-self MHC molecules present on the surface of donor
cells (Fig. la). The indirect pathway of allorecognition
describes the ability of T cells to recognize donor MHC
molecules that are processed and presented as peptides by
self-MHC molecules (Fig. 1b). The recognition of intact donor
MHC molecule(s) elicits a potent anti-graft immune response
while processed MHC peptides and minor histocompatibility
antigens elicit a slower tempo, less intense immune response.

Direct pathway of allorecognition

T cells will respond vigorously when mixed in culture with
MHC-disparate stimulator cells, i.e. the mixed lymphocyte
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Fig. 1 Two distinct pathways of allorecognition. a Direct pathway of
allorecognition. Dendritic cells migrate from the graft to secondary
lymphoid tissues to activate T cells. b Indirect pathway of allorecog-
nition. Graft proteins are processed by recipient dendritic cells and
presented to T cells. APC Antigen-presenting cell, TCR T cell receptor,
MHC major histocompatibility complex

)

DONOR APC RECIPIENT APC

reaction [8]. This in vitro response is thought to reflect the
propensity for acute rejection [9], and the ability to detect an
alloresponse with the mixed lymphocyte culture is generally
believed to be due to the high precursor frequency of
alloreactive T cells within the periphery. Mature, naive T
cells in circulation survive a selection process in the thymus
that ensures that their TCR has a low but significant affinity
for a self-peptide/MHC molecule but a high affinity for
foreign peptides associated with self-MHC molecules [10,
11]. Recent studies have shown that the weak interaction
between self-MHC and the TCR is required for the survival
of naive T cells in the periphery [12]. The inherent affinity of
the TCR on mature T cells for self peptide-MHC complexes
probably explains the high frequency of T cells within any
individual that cross react with high affinity to a closely
related allo-MHC molecule [13, 14].

Direct recognition does not conform to the classic rules
of self-MHC restriction. Mounting evidence suggests that
the structural similarity between certain MHC molecules is
‘close enough’ to allow T cell receptor ligation and to
trigger TCR signaling and subsequent activation [13, 15].
Alloreactive T cells are thought to recognize polymorphic
residues on allogeneic MHC regardless of the peptide
bound to it [16-18]. However, evidence also exists to
support the notion that peptide binding facilitates a diverse
T cell response [19, 20]. It is possible that, in the setting
where the donor MHC is structurally very different from
the recipient MHC, recognition may occur regardless of the
peptide bound. Alternatively, if the donor MHC is
structurally similar to the recipient MHC, recognition may
occur through the peptide/MHC complex [21-23].

In order for recipient T cells to directly respond to intact
allo-MHC molecules, cells from within the graft must
migrate out of the graft [24] to make direct contact with
recipient T cells within secondary lymphoid tissue. The first
evidence that graft-derived cells participate in the alloim-
mune response was reported by Lafferty and colleagues
[25] and was termed the passenger leukocyte theory. In
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their studies, the culture of thyroid cells prior to transplant
prolonged graft survival, an effect that was thought to be
due to the removal of the donor-derived passenger
leukocytes from the graft [25-28]. Follow-up studies in
rat renal allografts confirmed prolonged survival upon
removal of passenger leukocytes but provided evidence
that acute rejection could be induced with the injection of
donor dendritic cells (DC) [29, 30].

Dendritic cells are professional antigen-presenting cells
(APC) [31] that have been implicated as the passenger
leukocyte responsible for inducing an acute anti-allograft
response [32]. In their immature state, DC are abundant
within peripheral tissues and organs where they are ideally
positioned to capture antigens. Upon receiving inflammatory
signals, such as interleukin (IL)-1(3 [33], tumor necrosis
factor (TNF)-« [34], and CD40 [35-37], these cells undergo
a maturation process and migrate via afferent lymphatics to
the paracortex of lymph nodes [38, 39] where naive and
central memory T cells primarily reside [40, 41]. Dendritic
cells, unlike macrophages and B cells, are potent stimulators
of naive T cells due in part to their high levels of class I and
class I MHC and costimulatory molecules. Once activated,
graft-specific T cells infiltrate the graft where they are
capable of recognizing the alloantigens directly on the graft
parenchyma. Over time, however, donor APC are depleted
from the graft, and the response is predominated by recipient
DC that migrate into the graft and continuously pick up
antigens from the graft and present processed peptides to T
cells through the indirect pathway [42, 43].

Indirect pathway of allorecognition

In contrast to the direct pathway, the indirect pathway of
allorecognition describes recipient APC presenting foreign
MHC molecules in the form of peptides associated with
self-MHC molecules [29]. This is the means by which most
exogenous antigens enter the immune system and are
recognized by T cells. Therefore, all proteins in donor
grafts that differ from the recipient are potential antigens
capable of inducing an anti-graft response. Three mecha-
nisms of antigen delivery can be postulated to occur via this
allorecognition pathway. First, antigens from the graft can
be shed into the circulation and engulfed by recipient DC
that reside within secondary lymphoid tissue. Second,
donor cells can migrate to secondary lymphoid tissue
where they are engulfed by recipient DC. Third, recipient
APC can migrate into the graft, pick up antigens, and then
migrate to secondary lymphoid tissue.

Evidence to support the indirect pathway as a viable means
by which rejection is initiated comes from studies in which
peptides derived from donor MHC molecules have been
eluted from the binding grooves of recipient MHC molecules

[44]. Furthermore, in vitro detection of an indirect response
has been found to correlate with clinical rejection episodes in
solid organ recipients [45, 46]. In addition, Auchincloss and
colleagues [42] showed that in a situation where APC from a
skin graft were incapable of activating CD4 T cells, rejection
involving recipient CD4 T cells still occurred. In these
studies, it was presumed that recipient MHC class I+ cells
activated the recipient CD4 T cells. Immature DC have the
unique ability to produce not only peptide/MHC class 1II
complexes from exogenous antigens, but also peptide/MHC
class I complexes [44, 47—49]. It is therefore conceivable that
both kinds of peptide/MHC complexes derived from donor
antigens could be presented to both CD4 and CDS recipient
T cells via this pathway.

There are two distinct differences between the direct and
indirect pathway that merit clarification: first, the precursor
frequency for T cells activated through the indirect pathway
is significantly lower; second, the effector arm of the
immune response within the graft differs from the direct
pathway. When the donor and recipient differ, for example,
at the MHC class I level, cytotoxic CDS8 T cells specific for
donor peptides bound to recipient MHC class I molecules
(indirect pathway) would be unable to kill parenchymal
cells of the graft because the graft cells express donor and
not recipient MHC class T molecules. Therefore, recipient
APC would have to migrate into the graft and take up
residence, or the graft would have to share MHC identity
with the recipient [50]. T cells specific for donor peptides
bound to recipient MHC molecules could damage the graft
indirectly by producing cytokines that through a bystander
effect would damage graft cells [S1].

In the setting of MHC-identical transplantation, the
expression of the same MHC molecules by the donor and
recipient blurs the distinction between direct and indirect
donor antigen presentation. The stimulus for rejection in this
situation is donor minor antigen peptide MHC class I and class
IT complexes. These complexes can theoretically be produced
by donor cells themselves or by recipient phagocytes after
engulfing donor cells or debris. The magnitude of the T cell
response would be small at first because the frequency of T
cell clones reactive to processed peptides from donor MHC
proteins presented by recipient DC is orders of magnitude
lower than the frequency of T cells specific for allogeneic
MHC molecules [52]. However, a recent study demonstrated
that the frequency of graft-specific T cells activated via the
indirect pathway influences the ability of the costimulatory
blockade to be effective in promoting graft survival [53].

Innate alloimmunity

Every renal allograft undergoes a degree of ischemic
reperfusion injury during transplantation and, as a result
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of this injury, the innate immune system is activated.
Activation of the innate immune response can initiate acute
rejection and contribute to the development of chronic
allograft nephropathy. The mechanism by which ischemia
reperfusion injury promotes rejection is likely to be
multifactorial. Studies have shown that reperfusion injury
activates both a cellular response and humoral factors of the
innate immune system.

Central to the ischemia injury are reactive oxygen
species (ROS) [54]. Reactive oxygen species are directly
toxic to cells inducing apoptosis and/or necrosis. The
greater the ischemic insult, the more ROS generated and,
consequently, the greater the toxic effect to the graft. The
ROS trigger activation of caspases, such as caspase 3,
resulting in apoptosis [55]. In addition, ROS induce
activation of chaperoning proteins, which are ligands to
toll-like receptors (TLRs). These proteins can be secreted
from stressed or damaged cells (i.e. heat shock protein 72
and high-mobility group box 1), or they can be altered
matrix proteins (i.e. hyaluronan fragments) [56, 57]. By
binding to TLR4 or TLR2, these ligands activate immature
TLR-expressing DCs and/or vascular endothelium [58—60].
Toll-like receptor-mediated DC activation induces DC to
migrate from grafts to secondary lymphoid tissues to
initiate an adaptive alloimmune response [61].

Oxidative injury also facilitates signaling through adap-
tor molecules. Adaptive molecules, such as MyD88 and
TRIF, have been shown to play a role in the development of
acute rejection [62, 63]. Signaling through these adaptor
molecules has been reported to promote chemokine
expression within grafts, such as IP-10. IP-10 is a central
chemokine that promotes T cell recruitment into allografts
[64]. Studies using MyD88- and/or TRIF-deficient allog-
rafts demonstrate impaired donor-derived DC migration and
less graft cell damage [65]. Redundancy within the innate
immune response exists. Dendritic cells can also be
activated upon reperfusion by activated natural killer (NK)
cells, NK T cells, and Tyd cells. Blocking any of these
signaling pathways during reperfusion of a transplanted
allograft could blunt activation of the adaptive immune
response and prevent graft rejection.

Costimulation

T cell activation is central to graft rejection. Tissue
destruction occurs due to direct T cell-mediated lysis of
graft cells, T cell activation of accessory cells, alloantibody
production, and/or complement activation. Some studies
have implicated CD4 T cells as sufficient on their own to
result in complete graft destruction [66], while other studies
have suggested that CD8 T cell activation alone results in
acute rejection [67]. It is now understood that T cells
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require at least two signals to become optimally activated
and develop effector function [68—70]. Alloantigen-specific
signals are delivered through the T cell receptor (Signal 1),
and antigen-nonspecific signals are delivered through
accessory or costimulatory molecules (Signal 2). Although
not graft specific, these costimulatory signals are essential
for the development of potent anti-graft responses. Block-
ing costimulatory pathways at the time of T cell activation
with the intention of prolonging graft survival and inducing
tolerance has been an area of intense research over the past
two decades. Lack of costimulation at the time of antigen
presentation has been shown to induce T cell deletion,
unresponsiveness (anergy), suppression, regulation, and/or
immune deviation.

One of the most intensely studied costimulatory path-
ways involved in allo-T cell activation is the CD28/B7
pathway. CD28 is expressed on resting T cells, and its
ligands B7.1 (CD80) and B7.2 (CD86) are expressed on
APC. Signaling through CD28 lowers the threshold of TCR
signaling to promote T cell proliferation, cytokine produc-
tion, and differentiation. Several groups have shown in
animal models that blocking CD28 signaling on T cells
prevents both acute [71-73] and chronic [74] allograft
rejection and can induce anergy [75, 76]. Cytotoxic T
lymphocyte-associated antigen 4 (CTLA4), a homolog to
CD28, is up-regulated on activated T cells and binds to
CD80 and CD86 with greater affinity than CD28 [77]. This
molecule is antagonistic to CD28 and transmits an in-
hibitory signal turning off T cell activation [78, 79].
However, blocking the CD28 pathway alone has been less
effective in promoting tolerance in certain situations [80,
81]. This may be explained by recent data suggesting that
Signal 1 and Signal 2 can be sufficient to stimulate CD8 T
cell proliferation and clonal expansion, but that a third
signal delivered early in the response is essential for naive
CD8 T cells to develop optimal effector function [82, 83]—
especially if the T cells are activated through the indirect
pathway [84].

For the rejection of grafts mismatched for minor
histocompatibility antigens, cooperation between CD4 and
CDS8 T cells is thought to be required for maximal graft
rejection. CD4 T cells have been shown to facilitate CD8 T
cell differentiation by direct cell-to-cell contact or by
producing effector cytokines, such as IL-2 and IFN-y, that
directly support CD8 T cell differentiation and killing [85].
Alternatively, it is possible that CD4 T cells act indirectly
through a dendritic cell to be a more potent stimulator [35—
37] or suppressor of CD8 T cell responses [86]. This
indirect effect could be mediated through CD154 expres-
sion on CD4 T cells and CD40 expression on dendritic cells
[36, 84].

The CD154/CD40 costimulatory pathway has been
widely studied in animal models of transplantation.
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CD154 is expressed on activated T cells, while CD40 is
constitutively expressed on APC. CD154/CD40 interaction
was initially shown to be important for humoral immune
responses, but it has also been shown to enhance T cell
responses [87]. Blocking CD154 alone has been shown to
inhibit both acute and chronic rejection in animal models
[88-94], but when used in combination with CD28/B7
blockade, the effect on prolonging graft survival can be
synergistic [90, 95].

Costimulatory blockade

Building upon the knowledge learned from animal studies,
researchers have been able to develop novel therapeutics
currently in clinical trials for transplantation. Costimulatory
blockade offers selective but long-lasting, graft-specific
immunosuppression without nephrotoxicity and the possi-
bility of inducing tolerance. The first pathway targeted was
the CD28 pathway. In an attempt to block CD28 signaling,
a soluble fusion protein was developed that consists of the
extracellular binding domain of CTLA4 fused with the Fc
domain of human immunoglobulin (Ig)G1, creating abata-
cept (CTLA4Ig) [96]. Abatacept binds to both CD80 and
CDS86, blocking CD28 engagement and T cell activation
[73]. However, although transplantation studies in rodents
demonstrated efficacy, studies in nonhuman primates did
not live up to the expectation of inducing tolerance [97].
The failure of abatacept was thought to be secondary to a
fast off-rate from CD86; consequently, a second generation
agent, LEA29Y or belatacept, was created by codon-based
mutagenesis, and it did demonstrate superior binding to
CD80 and CD86 than abatacept [98]. In nonhuman primate
renal transplant studies, belatacept was better at preventing
acute rejection episodes than abatacept [99]. Belatacept is
currently in phase III human clinical trials to determine if
blocking this pathway in humans can promote graft survival
and allow reduced exposure to calcinurin inhibitors [100].
Preliminary data suggests it may also prevent the develop-
ment of chronic rejection [101]. Other agents, such as
agonists to CD28, TGN 1412, have been developed to target
this pathway with the intention of expanding a regulatory T
cell population. These studies have been abandoned at
present due to the resultant cytokine storm and shock-like
symptoms [102].

Targeting other costimulatory pathways, such as the
CD154/CDA40 pathway, are very appealing because of the
potent ability to block T cell activation as well as antibody
production that has been demonstrated in small animal
models. Initial studies in nonhuman primates demonstrated
long-term kidney allograft survival using anti-CD154 [93].
However, anti-CD154 (hu5C8) treatment in humans and
nonhuman primates resulted in thromboembolic complica-

tions not observed rodent studies. This has been attributed
to the expression of CD154 on human but not mouse
platelets [103]. Current areas of intense investigation are
focused on alternative costimulatory and inhibitory mole-
cules that would target T cell adhesion and T cell memory
[104, 105].

Regulatory T cells

Regulatory T cells are considered to be essential mediators
of peripheral tolerance by maintaining immune homeosta-
sis, preventing autoimmunity, and regulating inflammation.
Studies have shown a positive correlation between regula-
tory T cell function and allograft survival [106-108]. T
regulatory cells suppress immune responses by a number of
mechanisms: production of suppressor cytokines, direct
suppression of effector cells, and modulation of DC
maturation and function. Harnessing the power of T
regulatory cells is appealing as a potential tolerizing
strategy in transplant recipients; however, markers that
consistently identify and isolate regulatory T cells in vivo
have been elusive.

Although both CD4 and CDS8 T cells have been shown to
demonstrate suppressive function, much attention has
focused on a subpopulation of CD4 T cells that express
high levels of CD25, the a subunit of the IL-2 receptor.
CD4+CD25+ T regulatory cells have been identified in
peripheral blood samples of tolerant liver allograft recipi-
ents [109] and within tolerated allografts [110]. Adoptive
transfer of CD4+CD25+ T regulatory cells has been shown
to prevent graft rejection and graft-versus-host-disease
(GVHD) in animal models [111]. There are difficulties,
however, in using CD25 as a marker for regulation. For
example, because CD25 is up-regulated on activated T
cells, its sustained expression on regulatory T cells could be
confused with recently activated T cells. A transcription
factor known as forkhead box P3 (FoxP3) was recently
identified in regulatory T cells. This transcription factor is
required for the development, maintenance, and function of
T regulatory cells [112, 113]. It has proven to be a
consistent marker to identify T regulatory cells in murine
models but has not been as consistent in humans. In
humans, transient expression of FoxP3 has been observed
during T cell activation [114], and FoxP3 has recently been
identified in inflamed and rejecting allografts [115, 116].
The expression of FoxP3 on graft infiltrating cells has also
been associated with donor-specific hyporesponsiveness
and less chronic changes on biopsy [117]. This conundrum
emphasizes the continued need for further characterization
of T regulatory cells to identify an exclusive marker of
regulatory cells in humans. Despite this difficulty, CD4+
CD25+FoxP3+ T cells with suppressive function can be

@ Springer



66

Pediatr Nephrol (2010) 25:61-74

generated de novo with costimulatory blockade, such as
CTLAA4Ig, anti-CD154, and non-depleting anti-CD4 [118—
120], and in vitro with rapamycin [121, 122]. It has been
recently shown that donor-derived T regulatory cells can
inhibit CD4 T cells responses as well as recipient-derived T
regulatory cells [123]. These data entertain the possibility
of cell therapy using regulatory T cells generated in vitro.

Memory T cells

Memory T cells can be divided into central memory and
effector memory subsets based on their circulation pattern
and functional responsiveness. Memory T cells have been
shown to be more sensitive to antigen, function more
rapidly, produce effector cytokines, survive longer, and
show less dependence on CD28 costimulation than their
naive counterparts [124—129].

Memory T cells specific for alloantigens can be
generated after exposure to blood transfusions, pregnancy,
rejection of a previous transplant, homeostatic proliferation,
and heterologous immunity. Homeostatic proliferation
refers to the division of peripheral T cells in a lymphopenic
environment in the absence of antigenic stimulus. This
occurs after a situation where T cells are depleted, i.e. after
viral infection or immunotherapies, and has been shown to
be dependent upon recognition of self antigens [130] and
the presence of factors such as IL-7 [131]. After undergoing
homeostatic proliferation, naive T cells will change their
phenotype to that of a memory cell and display some of the
functional properties of memory cells [132—134]. Heterol-
ogous immunity refers to the generation of memory cells to
infectious antigens that cross react with alloantigens [135,
136]. This would result in allo-specific memory in the
absence of specific exposure. In transplant studies, it is
clearly understood that memory T cells, however they are
generated, pose a significant barrier to inducing tolerance to
allografts [129, 137-140]. As humans age, the proportion
of memory phenotype T cells increases. Thus, a better
understanding of how to target this cell population and the
designing novel of therapies that inhibit these cells would
be beneficial.

T cell migration

Naive T cells and central memory cells circulate between
blood and secondary lymphoid tissue and are excluded
from non-lymphoid tissues, such as the skin, gut, and lung.
This migration pattern is guided mainly by the cell surface
expression of specific homing molecules, such as selectins,
integrins, and chemokine receptors. Activation of naive
lymphocytes occurs within secondary lymphoid tissue [40,
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87, 141, 142]. Upon activation and differentiation, marked
changes in the homing behavior of lymphocytes are
observed as a direct result of changes in the cell surface
expression of homing molecules. The interactions between
these molecules and their ligands or receptors triggers a
sequential and coordinated series of events; leukocyte
rolling, stopping, and transmigration enable T cells to move
from the blood across endothelial cells into peripheral
tissues.

The new combination of cell surface molecules
expressed on differentiated T cells enables access to tissues
that were previously ‘off limits’. For example, activated T
cells lose the expression of CD62L and CCR7, which
prevents cells from re-entering peripheral lymph nodes. At
the same time, they express increased levels of VLA-4 and
LFA-1, which facilitates binding to endothelial cells at sites
of inflammation. Different sites of inflammation express
different adhesion molecules to select for different cell
populations. This is evident from studies in which blocking
CD62E and CD62P inhibited T cell infiltration into the skin
[143-149]. In addition, much work has been done to
characterize the chemokines expressed in the rejection of
heart allografts [150]. They have been divided into early
events, related to the ischemia and reperfusion injury of
grafts, and late events, which are related to the immune
response [151]. The specific chemokines found to be
important for lymphocyte trafficking in rejecting heart
grafts are CXCL9 (MIG), CXCL10 (IP-10), and CXCLI11
(I-TAC) [150]. Neutralizing chemokines or blocking their
receptors has been shown to prolong graft survival and
prevent graft infiltration in animal models [152, 153].

The change in homing phenotypes appears to be
determined during the transition from a naive to memory
T cell [154]. In fact, recent data suggest that it occurs
during the initial activation and differentiation in secondary
lymphoid tissue and that the unique microenvironment of
the secondary lymphoid tissue draining various tissue sites
directs the homing phenotype imprinted on T cells activated
at that site [154—156]. Further studies have linked this
education to the resident DC within Ilymphoid tissue [156].
Thus, the difference in T cell responses between vascular-
ized and nonvascularized grafts could be explained, in part,
by differences in the migratory capacity and thus the ability
of cells to infiltrate grafts.

Chronic rejection

Chronic rejection is now the leading cause of graft failure in
pediatric renal transplant recipients. Organs undergoing
chronic rejection display many of the features of healing
wounds, including fibroblast, endothelial cell, or epithelial
cell proliferation and collagen deposition within the graft
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parenchyma and blood vessels; all of these processes result
in interstitial fibrosis, ischemia, and the loss of graft
function [157, 158]. Although risk factors can be identified,
the pathophysiology of chronic rejection remains poorly
understood. Both immunologic and nonimmunologic inju-
ries have been shown to play a role in the development of
chronic rejection.

Major histocompatibility complex-mismatched grafts,
which undergo acute rejection in the absence of immuno-
suppression, undergo chronic rejection in rodents even if
acute rejection is prevented [159, 160]. Allografts that are
depleted of passenger leukocytes survive acute rejection
only to succumb to chronic rejection [42]. It is postulated
that chronic rejection occurs after donor DC are replaced
by recipient DC within the allograft. Thus, chronic
rejection of vascularized organs is thought to occur via
the indirect pathway [45, 46]. As mentioned above, this
type of T cell stimulation cannot damage parenchymal
cells of graft origin directly because these cells express
donor MHC molecules. Recipient T cells responding to
allopeptide/self-MHC complexes on recipient APC that
enter the graft can only cause bystander damage by
producing cytokines or other soluble mediators. Several
studies implicate the Th2 cytokines (IL-4, IL-5, IL-6, IL-
10, and IL-13) as having a role in chronic rejection or
fibrosis [161, 162]. Injection of Th2 cells induces chronic
allograft rejection in immunodeficient recipients [163].
Dermal fibrosis in skin grafts undergoing chronic rejection
has been shown to be blocked by treatment with anti-I1L-4
antibodies [164]. Similarly, fibrosis induced by chemical
injury is dependent on IL-4 [165]. These effects could be
explained by the findings that IL-4 stimulates the
production of extracellular matrix proteins by fibroblasts
and that IL-4 and IL-10 inhibit macrophage production of
metalloproteinases that digest extracellular matrix proteins
[166, 167]. Type 2 cytokine-producing T cells would also
be expected to promote antibody production by B cells
[168]. Results from several studies indicate that chronic
rejection-related fibrosis is dependent on anti-graft anti-
bodies, which may cross-link surface antigens on endo-
thelial cells and thereby cause the production of growth
factors and complement activation [169, 170]. Although
these studies suggest that Th2 cytokines enhance fibrosis,
another study found that chronic heart graft rejection was
inhibited in Stat4-deficient mice that are impaired with
respect to the generation of Thl cells [171]. Given the
therapeutic implications, it is essential to resolve the
nature of the relationships between graft antigen-reactive
T cells, their products, and fibroblast proliferation and
collagen production. One aspect of chronic rejection that
is currently under intense investigation is the role of
alloantibodies in the development and progression of
chronic rejection.

B cells and alloantibodies

B cells and anti-HLA antibodies have recently been shown
to play an important role in both acute and chronic allograft
rejection. The presence of CD20+ B cells and plasma cells
infiltrating allografts has been found to correlate with
irreversible acute rejection episodes [172, 173]. The ability
to detect circulating anti-HLA antibodies in patients and the
association of tissue deposition of C4d, a complement split
product, has revitalized the study of alloantibodies. Acute
antibody-mediated rejection was added to the Banff criteria
in 2003 [174] and has been recently updated [175]. The
diagnosis of acute (or chronic) antibody-mediated rejection
depends upon the presence of three criteria: (1) serologic
evidence for circulating anti-donor antibodies, (2) C4d+
staining in peritubular capillaries, and (3) morphological
evidence of acute (or chronic) tissue injury. Intense (>1+),
widespread (>50%) C4d staining of peritubular capillaries
is both a sensitive and specific marker of acute antibody-
mediated rejection. In rodent models, C4d deposition
within kidney allografts is alloantibody dependent and
begins as a focal process progressing to diffuse peritubular
capillary staining. In nonhuman primate studies, circulating
donor-specific alloantibodies and deposition of C4d in
peritubular capillaries lead, in most cases, to chronic
transplant glomerulopathy and arteriopathy [176].

Rituximab, a chimeric anti-CD20 monoclonal antibody
therapy, has been shown to be effective in some but not all
cases of acute humoral rejection [177, 178]. This may be due
in part to the elimination of CD20-expressing B cells but not
plasma cells, which do not express CD20 [179]. In chronic
inflammatory situations, ectopic lymphoid structures can form
within grafts and are not responsive to rituximab therapy even
though circulating alloantibodies are reduced [180].

B cells not only damage grafts by producing anti-graft
antibodies, but they have recently been shown to infiltrate
grafts and present graft-derived antigens to alloreactive T
cells via the indirect pathway of allorecognition [181].
Stimulation of B cells by antigen in the presence of T cells
helps drive naive B cell proliferation and differentiation
into memory B cells and plasma cells [182]. Memory B
cells survive in lymphoid tissue in the absence of antigen
and, upon challenge with antigen, they respond rapidly
with robust proliferation and antibody production. Plasma
cells, in contrast, home to the spleen and bone marrow, are
terminally differentiated, and are thought to be responsible
for the circulating levels of antibodies. It is debated
whether human plasma cells last a lifetime or, alternative-
ly, need to be replenished from the B cell pool [183]. In
contrast to plasma cells, memory B cells require reactiva-
tion to produce antibodies. Thus, the lack of circulating
alloantibodies may not reflect lack of sensitization but
rather may reflect the lack of active antibody-producing
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plasma cells. New therapies aimed at targeting alloanti-
gen-specific memory B cell activation and alloantibody
production would be advantageous.

Immunological monitoring

Analysis of gene expression using genomic microarrays can
complement clinical research and may provide insights into
disease pathogenesis. A microarray is a high-throughput
technology that consists of a series of small nucleic acid
sequences or oligonucleotides (called probes) that are attached
to a solid surface (i.e. glass slide or a silicon chip). Millions of
probes can be contained in one array. DNA and RNA of
experimental and/or control samples can be extracted, labeled,
and hybridized to the probes under high-stringency conditions
(Fig. 2). Probe—target hybridization is usually detected and
quantified by fluorescence-based detection methods to deter-
mine relative abundance of DNA sequences in the target (ratio
of test to reference sample). DNA microarrays can be used to
measure changes in the levels of gene expression or to detect
single nucleotide polymorphisms. The technology is repro-
ducible across multiple samples and when large numbers of
genes are analyzed, it can be used to identify patterns of gene
expression within disease states that are believed to correlate
with functional changes at the protein level. This technology
can produce an overwhelming amount of data that must be
analyzed using sophisticated data analysis software. The
current cost and complexity of this technology precludes its
use as a screening tool in the clinical setting.

DNA microarrays have been applied to peripheral blood
and renal allograft biopsy samples of pediatric patients with
and without graft dysfunction in the posttransplant period
[184]. Several gene expression patterns are altered during

Experimental Sample

!

mRNA

!

cDNA
Red Fluorescent Probes

cDNA
Green Fluorescent Probes

I Combine Targets |

Hybridize to Microarray

Fig. 2 DNA microarray analysis DNA from experimental samples is
purified and fluorescently labeled and then hybridized to immobilized
probes on the array to determine alterations in gene expression
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acute rejection episodes, chronic allograft nephropathy,
and infection. Three molecular categories have been
identified during acute rejection episodes that appear to
correlate with graft function and survival. For example,
biopsy samples that demonstrate enhanced B cell-related
genes appear to have the worst outcomes. Since this
initial study, many studies have subsequently been
performed in both humans and mice investigating acute
rejection, chronic allograft nephropathy, operational toler-
ance, minimum immunosuppression, infections, and drug
toxicity [185]. In some cases, these have resulted in the
identification of molecular subtypes that can predict
outcome and response to treatment; in other cases, potential
novel therapeutic targets have been identified. The expec-
tation from these studies is to move from a ‘one-size fits all’
to a more personalized approach to posttransplant immu-
nosuppressive regimens.

Summary

The benefits learned at the bench and, in particular, in small
animal models are beginning to translate to the bedside. Novel
therapeutics currently in clinical trials in humans have
originated from basic studies investigating the requirements
of T cell activation. It is clear that costimulatory blockade
alone, while highly effective at blocking activation of naive T
cells, may be effective in blocking memory T cell responses,
and current T cell depletion-based therapies may, in fact,
promote memory T cell development. Recent studies have
suggested that memory T cells pose the next barrier to
overcome in the quest to induce allograft-specific tolerance.
Once again, we turn to the bench.

Questions
(Answers appear following question list)

1. Which of the following statements is true?

(a) A six-antigen matched kidney is at risk for chronic
rejection.

(b) Naive T cells are activated directly in the allografts
where they mediate acute rejection.

(¢) Memory T cells have increased susceptibility to
costimulatory blockade.

(d) Plasma cells are depleted with rituximab therapy.

2. Which statement is true of the indirect pathway of
allorecognition?

(a) Activation of T cells occurs by recognition of
intact donor MHC molecules.
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(b) The pathway thought to be involved in chronic
rejection.

(c) Passenger leukocytes migrate from the graft to
activate T cells in lymphoid tissue.

(d) The frequency of T cells specific for a given
alloantigen activated via this pathway is high.

Costimulation

(a) is the synergy between CD4 and CD8 T cells that
results in acute rejection.

(b) is the signaling that results in optimal T cell
activation.

(c) can easily be blocked in humans to result in tolerance.

(d) refers to induction therapy.

Memory T cells directed against an allograft can be
formed after

(a) pregnancy

(b) a viral infection

(c) depletional anti-T cell antibodies
(d) all of the above

(e) none of the above
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