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Abstract Cardiac hypertrophy is frequently encountered in
patients with renal failure and represents an independent risk
factor for cardiovascular morbidity and mortality. The
pathogenesis of cardiac hypertrophy is related to multiple
factors, including excess adrenergic activity. This study
investigated how renal injury in the early stages of life affects
the adrenergic system and thereby potentially influences
cardiac growth. Biomarkers of cardiac hypertrophy were used
to assess adrenergic function. Newborn male Sprague-Dawley
rats were allocated to three groups of five rats each: 5/6
nephrectomy (Nx), pair-fed controls (PF), and sham-operated
(SH). Nx animals had significantly higher plasma urea
nitrogen, serum creatinine, and mean arterial blood pressure.
The heart-weight/body-weight ratio of the Nx cohort was
higher than SH and PF (p<0.001) groups. Plasma norepi-
nephrine (NE) of Nx animals was almost twofold higher than
SH and PF (p<0.01) animals. Compared with SH and PF,
Nx animals had higher α1A-receptor protein expression,
lower cardiac β1- and β2-receptor protein expression (p<
0.05), but higher G-protein-coupled receptor kinase-2
(GRK2) expression (p<0.05). Norepinephrine transporter
protein (NET) and renalase protein expression in cardiac

tissue from Nx pups were significantly lower than SH and
PF. Our data suggest that early age Nx animals have
increased circulating catecholamines due to decreased NE
metabolism. Enhancement of cardiac GRK2 and NE can
contribute to cardiac hypertrophy seen in Nx animals.
Furthermore, AKT (activated via α1A receptors), as well
as increased α1A receptors and their agonist NE, might
contribute to the observed hypertrophy.

Keywords Remnant kidney . Renalase . Signaling

Introduction

Cardiovascular (CV) complications of renal failure are not
infrequent in pediatric patients with end-stage renal disease
(ESRD) [1, 2]. It has been reported that left ventricular
hypertrophy arises and progresses in children during early
stages of CKD [3]. Sympathetic tone is consistently raised in
patients with ESRD, and CV mortality of these patients is
dependent on the level of sympathetic nerve system (SNS)
overactivity [4]. Studies in adult uremic rats have revealed
that increased SNS activity can either decrease or have
no effect on adrenergic receptors [5–7]. In the adult,
β-adrenergic receptor blockade or the destruction of neuro-
nal inputs to β-adrenergic receptors results in compensatory
suprasensitivity of receptor signaling and eventually to
upregulation of cell-surface receptors [8]. When these events
are triggered in the developing organism, however, there is
little or no increase in sensitivity or receptor numbers [9, 10].
Therefore, compared with augmented sympathetic activity in
adults, increased sympathetic activity in postnatal organisms
can produce markedly different qualitative and quantitative
response. Furthermore, during the fetal and early postnatal
periods, cardiomyocytes are actively proliferative. In rats,
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cardiomyocytes exit the cell cycle after the fourth to fifth day
of life. The growth of cardiomyocytes then shifts from a
predominant pattern of hyperplasia to one of hypertrophy
[11]. However, sympathetic cardiac innervation becomes
tonically active and responsive to reflex sympathetic
stimulation during the second postnatal week [12]. The
maturation of cardiac innervation plays several roles in the
development of the heart. First, the final adjustments of β-
receptor sensitivity are linked to the onset of tonic neuronal
input [13]. Second, ontogeny of the myocardium itself is
subject to autonomic influence [13]. Therefore, although
myocyte proliferation ceases after a week, the autonomic
influence on the heart continues for 2–3 weeks after birth.
The proliferation of adult cardiomyocytes is limited and has
only been reported in diseased hearts and under pathological
conditions [14]. These facts underscore the observation that
the mechanism(s) of adult cardiac hypertrophy versus those
of the developing organism might be different but also that
adrenergic receptor signaling may be altered (due to
pathologic situations such as renal injury in early life), and
this can affect cardiac growth. Most studies investigating the
role of uremia on the adrenergic nervous system and cardiac
hypertrophy have been conducted in adult rats [5, 6]. There
is very little information exploring neonatal kidney injury
and its effect on SNS and cardiac hypertrophy. Recognizing
the pattern of these mechanistic changes will allow for better
comprehension of the pathology and possibly treatment of
cardiac hypertrophy in childhood uremia.

Cardiac hypertrophy is an adaptive condition frequently
associatedwith contractility impairment, often leading to heart
failure (HF) [15]. An increase in plasma catecholamines due
to disturbances in biosynthesis or metabolism has been
observed in uremic patients and animals [16], and sympa-
thomimetics and norepinephrine (NE) infusion have been
shown to cause cardiac hypertrophy [16, 17]. The mutation
of norepinephrine transporter protein (NET) in humans is
known to increase arterial NE concentrations as a function of
decreased catecholamine clearance [18]. Catecholamines
acting on α1-adrenergic receptors activate G alpha q (Gaq)
signaling, promoting calcium (Ca2+) entry into intracellular
compartments with cardiac hypertrophy and an increase in
the levels of α1-adrenergic receptors during HF [19].
Elevated catecholamines cause cardiac hypertrophy via the
β-adrenergic receptor signaling. However, sustained stimu-
lation of β-adrenergic receptors leads to reduced cardiac
function and development of HF [20]. In addition, catechol-
amine-induced cardiac hypertrophy is associated with re-
duced contractile responses to adrenergic agonists, an effect
attributed to downregulation of myocardial β adrenorecep-
tors and desensitization by G-protein-coupled receptor
kinase-2 (GRK2) [21, 22]. GRK2 is a member of the
serine/threonine kinase family that phosphorylates β1- and β2-
adrenergic receptor. GRK2 increase is associated with pressure-

overload cardiac hypertrophy [23]. Moreover, GRK2 may be a
key factor in the transition from hypertension-induced
compensatory cardiac hypertrophy to HF [22]. Catechol-
amines are strong stimuli to activate GRK2 [24], and
increased plasma NE seen in uremic patients and animals
can promote GRK2 activity [5]. Finally, regulation of myocyte
cell growth by G-protein-coupled receptors such as α- and
β-receptor agonists involves a complex network of interacting
pathways that activates key effector molecules found in
the mitogen-activated protein (MAP) kinase pathway,
phosphatidylinositol-3-OH kinase (PI3 kinase/AKT path-
way)-dependent, protein kinase C (PKC)-dependant, protein
kinase A (PKA)-dependent, and calcineurin-dependent path-
ways. Cardiac growth or hypertrophy can be physiological
(as seen in athletes) or pathological as is seen disease state. In
mice expressing dominant-negative PI3-kinase (PI-3 kinase/
AKT pathway) in the heart [25], exercise-induced (physio-
logical) but not overload-induced (pathological) hypertrophy
was impaired, suggesting that latter is mediated by other
pathways such as extracellular signal-regulated kinase (ERK)
[26].

We hypothesized that renal injury in early life can lead to
high BP and elevated circulating catecholamines. Increased
levels of catecholamines, such as NE, can act on cardiac
adrenergic receptors to cause cardiac hypertrophy which
may lead to HF. To investigate this matter we looked at
biomarkers (NET and renalase) responsible for regulating
the plasma concentration of catecholamines by affecting its
metabolism. We also looked at the changes in adrenergic
receptors (α and β) and GRK2 which not only can
modulate β-adrenergic receptors but by itself can affect
hypertrophy. Finally, we measured signaling markers AKT,
implicated in physiologic cardiac growth and ERK,
implicated in pathologic cardiac growth.

Materials and methods

Antirenalase polyclonal sera were generated by Proteintech
Group, Inc. All other antibodies were obtained from Santa
Cruz Biotechnology (Santa Cruz, CA, USA.).

Animals

All animal procedures were approved by the Institutional
Animal Care and Use committees of Virginia Common-
wealth University. Rat pups were produced by timed-
pregnancy mother rats acquired from Hilltop Laboratories
(Scottdale, PA, USA). After birth, the pups from same
mother were divided into three groups, with five animals in
each group. The sham-surgery group (SH) was fed ad
libitum. The nephrectomized (Nx) group was also fed as
much food as they could consume. The amount of food
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consumed by each animal in these groups was quantitated
daily. The pair-fed (PF) group received only as much food
as its paired Nx rat consumed [1]. SH animals were
subjected to sham operation and after weaning were given
food and water ad libitum. After weaning PF animals were
given the same amount of food as the Nx animals. The Nx
animals underwent surgery, as described below.

Surgery

Chronic renal insufficiency was induced in rats by the
method published previously by Krieg et al., with slight
modification for neonatal animals [27]. Five-sixths (5/6)
nephrectomy of neonatal rats was performed on rat pups
24–48 h old. Using sterile techniques, a left flank incision
was made and the left kidney exposed. The upper and lower
thirds of the kidney were ligated and excised so that one
third of the mass of the left kidney remained. The muscle
and skin incisions were sutured with 6–0 polypropylene
suture. One week later, a right flank incision was made, and
the right kidney was excised. Colodian was applied to the
incisions, and the pups were placed on a heated pad to
recover. Colodian is a colloidal substance that covers the
incision site and surrounding area and protects it from being
detected as a wound by the mother rat. This is necessary to
protect the neonates from being rejected or destroyed by the
mother rat. At 21 days of age, all pups were weaned and
maintained for up to 9 weeks of age. At 8 weeks of age, the
BP of the animals was recorded, and on the ninth week, the
animals were sacrificed. Blood and tissue were collected for
analysis of biomarkers.

Blood pressure

BP was measured by CODA 2 system (Kent Scientific
Corporation, Torrington, CT, USA). CODA 2 utilizes
volume pressure recording sensor technology to measure
the rat tail BP. This is a computerized, noninvasive tail-cuff
acquisition system that can simultaneously measure systol-
ic, diastolic, and mean arterial BP without operator
intervention. Animals were trained for 3 days and were
kept in a restraining holder for 5–10 min. During this
period, 25 sequential readings were obtained. Readings
between 10 mmHg range were averaged. In this study, we
report the mean arterial pressure of each group.

Immunoblotting

The heart was cut transversely and immediately frozen. The
frozen heart was ground to a powder and then mixed in ice-
cold phosphate-buffered saline (PBS) (pH 7.4) containing
protease inhibitors and homogenized with a polytron homog-
enizer at 4°C. As low-speed spin employed in partial

purification of receptors can lead to loss of receptors [28],
we used total homogenates for receptor immunoanalysis.
Cardiac homogenates (50–100 μg total protein) were
separated on a 4–20% sodium dodecyl sulfate polyacryl-
amide gel electrophoresis (SDS-PAGE) gel, and proteins
were transferred to a polyvinylidene difluoride (PVDF)
membrane as described previously [29]. After being briefly
washed in PBS containing 1% Tween-20 (PBS-T) and
blocked in 5% nonfat dry milk, blots were incubated with
appropriate antibodies in 5% nonfat dry milk overnight at
4°C. After being washed three to five times in PBS-T, blots
were subsequently incubated with secondary antibody
appropriately diluted in 5% nonfat dry milk for 1 h at room
temperature. After being washed three to five times in Tris-
buffered saline (TBS), blots were developed using Lightning
Chemiluminescence Reagent Plus and exposed to X-ray
film.

Quantitative real-time reverse transcriptase polymerase
chain reaction (RT-PCR) analysis

Powdered heart was used to isolate the total ribonucleic
acid (RNA), as described previously [30], except Trizol was
used instead of guanidine isothiocyanate. Two micrograms
of total RNA were reverse transcribed with a high-capacity
complementary deoxyribonucleic acid (cDNA) reverse
transcription kit (Applied Biosystems Inc., Foster City,
CA, USA), and first-strand cDNAwas used to perform real-
time polymerase chain reaction (PCR) using Stratagene
Mx3000p real-time PCR using TaqMan® universal PCR
master mix, according to the manufacturer’s specifications
(Applied Biosystems). The TaqMan probes and primers for
β1-adrenergic receptor (assay identification number
Rn00824536_s1), β2-adrenergic receptor (assay identifica-
tion number Rn00560650_s1), α receptor 1A (assay iden-
tification number Rn 00567876_m1), α receptor 1B (assay
identification number Rn01471343_m1), α receptor 1D
(assay identification number Rn00577931_m1), GRK2
(assay identification number Rn00562822_m1), and β-actin
(assay identification number Rn00667869_m1) were assay-
on-demand gene-expression products (Applied Biosys-
tems). The amount of messenger RNA (mRNA) was
calculated by ΔΔCT method and normalized to β-actin.

Plasma catecholamines

At the time of death, trunk blood was obtained from the
aorta and placed in prechilled tubes containing 10 mmol/L
disodium ethylenediaminetetraacetic acid (EDTA). Plasma
was processed for radioimmunoassay according to the
published procedure of American Laboratory Products
Company (ALPCO). In brief, the samples were extracted
on a phenylsilylsilica column with methanol, and the eluant
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was dried and processed for radioimmunoassay using a
specific antibody to NE and epinephrine (ALPCO).

Plasma urea nitrogen (PUN) and creatinine

Creatinine was measured by a NOVA16 autoanalyzer
(NOVA Biomedical, Waltham, MA, USA). Plasma urea
nitrogen (PUN) was determined using the enzymatic
colorimetric method (Stanbio Lab, Boerne, TX, USA).

Statistical analysis

Statistical comparisons among groups were performed
using analysis of variance (ANOVA) followed by Tukey’s
multiple comparison test. Groups were considered to be
significantly different with a p value ≤0.05.

Results

General characteristics, heart weight, blood pressure,
and biochemical parameters

Table 1 describes general characteristics of BP and
biochemical changes. The body weight of the SH group
was significantly higher than the PF (p<0.05) and Nx (p<
0.01) group. PF animals weighed significantly more than
the Nx cohort (p<0.01). The average total wet heart weight
in rats from the SH, PF, and Nx groups are shown in

Table 1. The heart weight of the PF animals was
significantly lower than the SH (p<0.01) and Nx (p<
0.05) animals. Total heart-weight to body-weight ratio was
used as a marker for relative cardiac hypertrophy, and when
the heart weight was corrected for the body weight, the
heart-weight/body-weight ratio of the Nx cohort was 30%
and 34% higher than the SH and PF (p<0.001) groups,
respectively, suggesting that Nx animals had hypertrophied
hearts.

The mean arterial BP of the SH and PF groups was not
significantly different, but the Nx animals had significantly
higher BP (p<0.001). Data in Table 1 shows that the Nx
animals were uremic. PUN of Nx animals was more than
tenfold higher than in SH and PF animals (p<0.005), and
plasma creatinine of the Nx group was four times higher
than in SH and PF (p<0.005) animals. Plasma NE
concentrations of the Nx group were twofold higher than
in the SH (p<0.001) and PF (p<0.01) groups, whereas
cardiac NE was significantly lower than in the PF and SH
(p<0.05) groups. We did not observe any significant
change in plasma epinephrine, but cardiac epinephrine
concentrations in the Nx group were significantly lower
than in the SH and PF (p<0.05) groups.

Cardiac β-adrenergic receptors

Increased heart weight and increased plasma NE and BP
seen in Nx rats are known to affect adrenergic receptors. In
this study, we found that cardiac β1- and β2-adrenergic

Table 1 Changes in physiological and biochemical parameters after subtotal nephrectomy (Nx) versus sham-operated (SH) and pair-fed (PF)
neonatal rats

Sham (SH) Pair Fed (PF) Nephrectomized (Nx) Comments

Body weight (g) 382.2±8.8 326.7±10.5 270.0±13.2 SH vs. PF<0.05
SH vs. Nx<0.01
PF vs. Nx<0.01

Heart weight (g) 1.9±0.05 1.5±0.09 1.9±0.10 SH vs. PF<0.01
PF vs. Nx<0.05

Heart weight/body weight 0.0049±0.0001 0.0046±0.0002 0.007±0.0002 SH vs. Nx<0.001
PF vs. Nx<0.001

Mean arterial pressure (mmHg) 125.3±4.8 132.4±2.8 193.1±11.2 SH vs. Nx<0.001
PF vs. Nx<0.001

Plasma urea nitrogen (mg/dL) 15.5±1.3 11.0±1.8 170.0±21.9 SH vs. Nx<0.005
PF vs. Nx<0.005

Plasma creatinine (mg/dL) 0.3610±0.0410 0.3230±0.0400 1.4±0.2020 SH vs. Nx<0.005
PF vs. Nx<0.005

Plasma norepinephrine (pg/ml) 104.1±10.2 122.1±10.8 202.6±15.6 SH vs. Nx<0.001
PF vs. Nx<0.01

Cardiac norepinephrine (pg/ml) 112.7±9.6 107±9.9 69.2±8.1 SH vs. Nx<0.05
PF vs. Nx<0.05

Plasma epinephrine (pg/ml) 67.0±10.5 70.9±12.6 89.6±5.8
Cardiac epinephrine (pg/ml) 46.1±7.1 49.4±5.3 26.5±1.6 SH vs. Nx<0.05

PF vs. Nx<0.05
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receptor mRNA did not significantly differ between SH, PF,
and Nx rats (data not shown). However, as shown in the
immunoblot analysis (Fig. 1a), β1-adrenergic receptors of Nx
animals were 33% lower than in SH (p<0.01) and 23%
lower than in PF (p<0.05) animals. Figure 1b shows that
compared with the SH and PF groups, cardiac β2-adrenergic
receptor protein expression of the Nx group was decreased
by 25% and 22%, respectively (p<0.05).

G-protein-coupled receptor kinase 2 (GRK2)

Therefore we investigated the effect of nephrectomy on
GRK2 expression in the heart. As depicted in Fig. 2a, the
GRK2 mRNA of SH and PF were not significantly
different. The mRNA of the Nx group was more than 2
fold higher (p<0.001) than SH and PF cohort. GRK2
protein expression of Nx group (Fig. 2b) was almost 2 fold
higher than SH (p<0.01) and 1.6 fold higher than PF (P<
0.05). The average GRK2 protein expression of PF was not
significantly different than SH.

Cardiac α-adrenergic receptors

Compared with SH animals, Nx animals had fourfold
higher α1A- and α1B-adrenergic receptor mRNA (p<
0.001, Fig. 3a,b). α-1A mRNA of Nx animals was
threefold higher than in PF (p<0.01) animals. The average
of α1A and α1B mRNA of the PF group was not
significantly different from the SH cohort (Fig. 3a,b).
Immunoblot analysis of α receptor protein expression
(Fig. 4a) showed that the Nx animals had a small (17%)
but significantly higher (p<0.05) expression of α1A-

receptor protein. However, α1B-receptor protein expression
was not significantly different between the groups. Cardiac
α1D mRNA and protein expression of SH, PF, and Nx
animals were not significantly different (data not shown).

Norepinephrine transporter protein (NET) and renalase

NET plays a pivotal role in catecholamine clearance. As
shown in Fig. 5a, the Nx group had a 22% and 19% lower
NET protein expression than the SH and PF (p<0.05)
groups, respectively, although NET mRNA did not signif-
icantly differ between groups. Renalase is a recently
discovered enzyme shown to metabolize catecholamine
[31]. Renalase protein expression in the Nx group (Fig. 5b)
was almost 37% and 39% lower than in the SH (p<0.01)
and PF (p<0.01) groups, respectively, and renalase mRNA
of the Nx group was 25% and 21% lower than in the SH
and PF groups, respectively. The renalase protein expres-
sion and mRNA of the SH and PF groups was not
significantly different.

ERK and AKT

ERK and AKT play a central role in the signaling events
leading to cardiac hypertrophy. Increased phosphorylations
of these proteins are observed in cardiac hypertrophy. In this
study, we measured the ratio of phosphorylated ERK
(pERK)/total ERK and phosphorylated AKT (pAKT)/total
AKT in cardiac tissue by Western blot. We observed no
significant change of ERK and phosphorylated ERK proteins
between groups (Fig. 6a). Although we found no significant
change in AKT between groups, we saw an increase in AKT
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phosphorylation in Nx animals (Fig. 6b). As shown in
Fig. 6b, Nx animals had significantly higher pAKT/AKT
ratio compared with SH and PF groups (p<0.05).

Discussion

This study was designed to investigate the role of the
adrenergic nervous system on the heart during neonatal
uremia. Plasma creatinine and PUN were very high in Nx
animals, clearly demonstrating their uremic condition. The

Nx animals had decreased appetite, and both Nx animals
and their PF controls had significantly lower body weight
than SH controls. The heart weight of rat pups undergoing
nephrectomy were significantly heavier than SH and PF
rats. Increase in heart-weight to body-weight ratio is one of
several ways to measure cardiac hypertrophy [32, 33].
When the heart weight was corrected for body weight, the
heart-weight/body-weight ratios of SH and PF animals were
not significantly different. But the heart-weight/body-
weight ratios of Nx animals were significantly higher than
both SH and PF groups (see Table 1). This was accompa-
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nied by increased BP and plasma NE. There is accumulat-
ing evidence demonstrating that cardiac hypertrophy is
promoted by excess circulating catecholamine [34]. Indeed,
circulating NE levels of Nx animals were significantly
higher than the SH and PF controls. However, plasma tissue
epinephrine did not change. Lower tissue NE of the Nx
group observed in our study was similar to the observation
made by other investigators in adult Nx animals [5, 35, 36].
Plasma NE is generally taken as an indicator of sympathetic
activity [37, 38], and in humans, excess arterial NE can

cause an increase in left ventricular (LV) mass [34].
Chronic infusion of NE in dogs raised the plasma NE,
causing hypertrophy, although the ventricular NE was
significantly lower than the control. In mice chronic
infusion of α1 agonist (phenylephrine) caused increase in
BP and pressure overload, resulting in cardiac hypertrophy
[15]. Furthermore, activation of α1-adrenergic receptor in
rat cardiomyocytes results in hypertrophy [39]. These
studies suggest that an increase in circulating catechol-
amines or sympathomimetics can induce cardiac hypertro-
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phy, irrespective of the cardiac NE. Therefore, excess
circulating NE in conjunction with increased BP and
increased α1-adrenergic receptor possibly contributed to
the cardiac hypertrophy in this study.

In humans there is a profound decrease in cardiac
β-adrenergic responsiveness with aging. This occurs by
multiple mechanisms, including downregulation and de-
creased agonist binding of β1 receptors [40]. However, in
rats, cardiac β receptor density does not change with age
[41]. We observed significant downregulation of β1-
adrenergic receptor protein, but β2-adrenergic receptors
did not change. The decline in β receptors can be due to
many reasons but not due to reduced gene expression of the
protein, because mRNA expression was not altered between
the groups. Catecholamine-induced cardiac hypertrophy is
associated with reduced contractile responses to adrenergic
agonists, an effect attributed to downregulation of myocar-
dial β adrenoreceptors [21]. In subtotally Nx rats and
uremic patients, a marked increase in LV mass is seen very
early in the course of renal failure [42]. In adult Nx rats,
Leineweber et al. [5] observed downregulation of LV β
receptors but not right ventricular receptors. Downregulation
of β-adrenergic receptors seen in this study can partially
explain the β-adrenoceptor hypo-responsiveness seen in
uremic patients and rats [5, 43].

G-protein-coupled receptors such as β-adrenergic recep-
tors are regulated to ensure that uncontrolled stimulation
will not occur, and in the heart, they are controlled by
GRK2 [44]. One of the strongest stimuli to activate GRK2
is increased sympathetic activity [45], and the increased
GRK2 found in this study can be attributed to increased

adrenergic activity. GRK2 plays an active role in the
downregulation of β-adrenergic receptor sensitivity [20].
Cardiac overexpression of the inhibitor of β-adrenergic
receptor kinase (β-ARKct) which results in GRK2 inhibi-
tion, prevented cardiac hypertrophy and progressive dete-
rioration in cardiac dysfunction [46]. Furthermore,
enhancement of cardiac GRK2 is known to contribute to
cardiac hypertrophy [20], and hypertrophied heart seen in
Nx animals might be due to increased GRK2 expression. It
is worthwhile to note that GRK2 also plays an important
role in hypertension. Transgenic mice overexpressing
GRK2 had significantly elevated BP [47]. It might be
conjectured that hypertension seen in Nx rats may be
associated with the elevated GRK2.

Unlike β-adrenergic receptors, α-adrenergic receptor
density in the heart declines with age [48]. Compared with
the SH and PF groups, α1A- and α1B-adrenergic receptor
mRNA of Nx animals went up fourfold, whereas α1A-
adrenergic protein increased by only 17% (p<0.05).
However, α1B-adrenergic protein expression did not
change. It is not clear why there was inconsistency between
α1A- and α1B-adrenergic messages and protein expres-
sion. Chalothorn et al. [49] using real-time imaging of
living cells observed differences in the agonist-mediated
internalization properties of the α1-adrenergic receptors. In
agreement with previous work [50, 51], they observed that
the α1B-adrenergic receptors underwent rapid agonist-
mediated internalization. However, internalization occurred
at a slower rate α1A-adrenergic receptors. We believe that
the discrepancy between mRNA and protein expression
might due to different degrees of receptor internalization.
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Fig. 6 Comparisons of immunodetectable phosphorylated extracellu-
lar signal-regulated kinase (ERK) (pERK)/total ERK (a) and phos-
phorylated AKT (pAKT)/total AKT (b) from rat heart. The upper
panels of a and b show the representative Western blot, and the bar
graph is the ratio of phosphorylated ERK (pERK)/total ERK and

phosphorylated AKT (pAKT)/total AKT. Nephrectomized (Nx) ani-
mals had significantly higher pAKT/AKT ratio compared with sham-
operated (SH) and pair-fed (PF) groups. Values are means± standard
error of mean(SEM) of five animals in each group
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Upregulation of α1-adrenergic receptors observed in our
study was also surprising, as plasma NE of Nx animals was
significantly higher than animals in the SH and PF groups,
and agonist mediated downregulation of adrenoreceptors is
a more commonly encountered situation than an upregula-
tion [52]. In addition, Meggs et al. [7] noted down-
regulation of α1-adrenoreceptors in adult uremic rats. It is
not clear whether the observed dissimilarity is because of
the difference in age group or due to cross-talk between β-
and α-adrenergic receptors [53]. Akhter et al. suggested
that downregulation of β-adrenergic receptors and upregu-
lated GRK2 expression can cause increase in α1A and α1B
receptors [53]. It is possible that the increase in receptor
density observed in this study is a compensatory mecha-
nism, especially as the β receptors were downregulated.
Additionally, studies with isolated myocytes and rats have
shown that α1A-adrenergic receptor is responsible for
cardiac hypertrophy [39], and it is possible that the increased
α1A-adrenergic receptor protein expression in association
with increased circulating NE and that BP contributes to the
cardiac hypertrophy observed in this study.

Increased plasma NE observed in our investigation may
be due to increased sympathetic nerve activity, decreased
NE uptake, and decreased metabolism of NE. Under normal
conditions, approximately 80% of the NE released from
vesicles in the neurons is taken up by the NET, and
approximately 20% percent spills over into the circulation
[18]. If the sympathetic activity is high, the spillover of
catecholamine will be augmented. Although we did not
measure sympathetic activity, others have reported in-
creased sympathetic nerve activity in patients with renal
failure [54]. In addition, a point mutation in the NET gene
resulted in 98% loss in NET function and increased arterial
NE in one patient. The increase in NE in this patient was
due to decreased clearance of NE [18], which also reflects
that decreased NET can result in increased circulating
catecholamines. Cardiac NET expression of Nx rats was
significantly lower than that of SH and PF control animals,
which can explain the excess NE in the plasma of Nx rats.
A decrease in NET density has been observed in adult
uremic rats by other investigators [5]. Besides reduced
uptake, decreased metabolism might contribute to the
increase in plasma NE. Therefore, we looked into the
catecholamine-metabolizing enzyme, renalase. Renalase is
a relatively newly described enzyme shown to metabolize
catecholamines and modulate BP [31]. Cardiac renalase in
SH and PF rats was significantly higher than in Nx rats.
Although the reason for this decrease is not clear, it can
contribute to the reduced metabolism of catecholamines,
resulting in increased spillover of NE in plasma. Further-
more, decreased clearance of catecholamines due to
reduced uptake can lead to excess catecholamines in the
circulation [18]. This is probably due to increased spillover

of NE from tissue to the circulation. However, it does not
explain why plasma epinephrine concentrations (although
higher than in SH and PF animals) were not significantly
different.

Both AKT and ERK pathways have been shown to play
a significant role in cardiac hypertrophy [55]. Xiao et al.
[56] provided evidence that the MEK/ERK pathway
mediates hypertrophic effects of α1-adrenergic agonists in
adult cardiomyocytes. In our study, we saw no change in
total or phosphorylated ERK. However, the contribution of
the ERK cascade to the induction of cardiac hypertrophy
remains controversial [57, 58], with one study even
suggesting that ERK signaling prevents hypertrophy [59].
Numerous lines of evidence show that AKT enhances heart
size [60, 61]. Furthermore, in a recent study, it was shown
that AKT can be activated via α1A receptors [62]. The
increased α1A receptors and NE observed in our investi-
gation might contribute to AKT-mediated hypertrophy.

In conclusion, we found that high BP in conjunction
with circulating NE acting on α1A-adrenergic receptors is
the probable cause of cardiac hypertrophy following renal
injury in neonatal rats. The changes in β-adrenergic
receptors, NET, and GRK2 resemble the changes in adult
rats, but the changes in α1 receptors, especially α1A
receptors, are unique to neonatal animals. Numerous studies
have shown that downregulation of β receptors and
upregulation of GRK2 are harbingers of HF [20, 22].
Furthermore, recent studies have shown that α receptors,
especially α1A-adrenergic receptors, protect cardiac func-
tion [39, 63]. Additionally, AKT has been shown to play a
more important role in physiological rather than patholog-
ical hypertrophy [26]. However, cardiac hypertrophy may be
regarded as an adaptive response to increased work-load
ventricular hypertrophy, especially when accompanied by
prolonged periods of hypertension is associated with an
increased incidence of HF [23]. In light of these contexts, is
possible that the upregulation of α1A receptors seen in
neonatal uremic rats is a compensatory mechanism against
declining heart function rather than pathological occurrence.
Further investigation is needed to clarify this phenomenon.
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