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Abstract The cellular stress response decreases cellular
injury, either via primary induction of cytoresistance or
by secondary enhancement of cellular repair mechanisms.
The most frequently studied and best understood effectors
of the cellular stress response are the heat shock proteins
(HSP). HSP are among the oldest tools in the cellular
protein machinery, demonstrating extremely high con-
servation of the genetic code since bacteria. Molecular
chaperons, with the HSP-70 being the prototype, coop-
erate in transport and folding of proteins, preventing ag-
gregation, and even resolubilizing injured proteins. In-
creasing evidence supports a role for HSP during the re-
covery from renal ischemia, in particular in cellular sal-
vage from apoptotic cell death and cytoskeletal restora-
tion. Recent studies also report the potential for
biomolecular profiling of newborns for the risk of acute
renal failure. In peritoneal dialysis novel data suggest the
use of HSP expression for biocompatibility testing. More
importantly, HSP are prime therapeutic candidates for
clinical situations associated with predictable insults, such
as organ procurement in transplant medicine and repeti-
tive exposure to hyperosmolar and acidotic peritoneal
dialysis fluids. The next challenge will be to define the
regulatory pathways of the cellular stress response in
these models to introduce novel therapeutic interventions,
such as new pharmaceutics enhancing the HSP expres-
sion.
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Introduction

Although considerable progress has been made in un-
derstanding the pathogenesis of many chronic diseases

such as chronic renal failure, the progression of tissue
damage frequently occurs even when the primary disease
process has been adequately treated and appears to have
become inactive. The development of new therapeutic
strategies to counteract this self-perpetuating organ
damage is still of vital importance. At the cellular level
the cellular response to stress may offer a therapeutic
target to induce cytoprotection.

The cellular stress response produces a “switch” of the
cellular machinery from housekeeping activities towards
reaction against stressors [1]. This corresponds to a ho-
meostatic reaction initiated upon recognition of a
“stressful” condition. The result is a decrease in cellular
injury, either by primary induction of cytoresistance that
prevents injury or by secondary enhancement of cellular
repair, counteracting ongoing damage. By these means
the cellular stress response increases the cell’s chance of
survival. The most frequently studied and best understood
effectors of the cellular stress response are heat shock
proteins (HSP) [2]. This review first provides a historical
overview, then focuses on HSP-70 in renal ischemia in-
cluding clinical data, and finally reviews experimental
research on HSP in peritoneal dialysis. The reader should
always keep in mind that production and activation of
HSP are not the only cellular response to stressful stimuli.

Historical overview

Modern stress research began 40 years ago with Ritossa’s
[3] description of specific heat-induced alterations in
Drosophila melanogaster. In these fruit flies the con-
nection of several thousand DNA strands to a polytene
chromosome made it possible to identify sites of active
transcription (“puffs”) by simple light microscopy. Hy-
perthermic stress resulted in loss of puffs that were usu-
ally present under control conditions, whereas new puffs
appeared reproducibly at specific sites. Ritossa’s work
was the first description of the reprogramming of the
cellular gene expression machinery from “routine” to the
“cellular stress response.”
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Ten years later these observations were extended to the
protein level [4]. When cells were exposed for a given
period to radioactively labeled amino acids, proteins
could be identified that were synthesized at the time of
interest. During such an autoradiography the protein dis-
tribution pattern under control conditions showed a wide
range. Under stressful conditions, however, there was
decreased marking of the routinely expressed proteins but
the appearance of “stress induced” protein bands. This
technique impressively demonstrated the reduction in
overall protein synthesis in favor of massive induction of
a special class of proteins, which were called “heat-shock
proteins” based on the classical experimental stress, heat-
shock, and grouped according to their molecular weight.
This review focuses on the best described HSP family in
the human system, the 70-kDa HSP (HSP-70).

Mechanisms of HSP cytoprotection

HSP have subsequently been shown to be rapidly induced
by a variety of cellular stressors, such as heat, UV light,
and cytotoxic agents [5]. All these inducers of HSP have
in common that they are proteotoxic or proteochaotic,
resulting in increased cellular levels of denatured proteins
[6]. The most widely accepted hypothesis regarding the
regulation of HSP is currently that heat shock factor
(HSF), a constitutive transcription factor, is inhibited by
constitutive HSP-70 under control conditions. Increased
levels of disrupted and denatured proteins compete for the
binding of HSP and thereby initiate the activation of HSF,
resulting in increased transcription of HSP genes [7, 8, 9].

Whereas the role of HSP-70 during cellular repair
processes remains to be fully elucidated, constitutively
expressed HSP-70 is known to bind to newly translated
immature proteins and prevent premature and improper
binding and folding [10]. The amino acid sequence of the
nascent polypeptide chain provides all of the information
needed to generate the final product, and physicochemical
forces result in folding of a well formed three-dimen-
sional protein. For many years it was thought that these
processes were passive and spontaneous. The detection of
HSP changed that concept. This has been particularly well
demonstrated in Escherichia coli, where HSP are neces-
sary to allow the assembly of the complex protein struc-
ture of a bacteriophage [11]. In the human system similar
“protective transport” has been observed in mitochondria,
where HSP-70 molecules were shown to associate with
immature polypeptide chains, preventing inadequate
binding and folding of that structure. This function of
HSP is called “molecular chaperoning.”

Today we know that there is a continuous balance
between counteracting cellular proteotoxic and proteo-
protective conditions (Fig. 1). Following this concept it is
only logical that conditions that result in protein dena-
turation, and thus in loss of protein structure integrity,
will also result in increased production of “renaturing
tools” within the cell protein machinery, such as HSP [12,
13]. Molecular chaperons, with HSP-70 being the proto-

type, cooperate in transport and folding of proteins,
without alteration in their own structure, by binding to
hydrophobic, normally hidden domains of disrupted or
immature proteins. They may prevent aggregation or even
resolubilize injured proteins. In addition, the HSP-70
family, as well as the other HSP families, are involved in
multiple cellular functions, such as protein degradation
and cellular signaling mechanisms. Thus a major function
of HSP is “homoeostasis” of cellular functions, a task that
positively affects the survival of each cell—and of the
whole organism under stressful conditions.

Taken together, HSP are among the oldest tools in the
cellular protein machinery. HSP-70 has been extremely
well conserved since bacteria, which leads to two im-
portant conclusions. First, HSP-70 is critical for cellular
survival, a hypothesis that has been repeatedly verified by
the finding that HSP-70 knockout animals are not viable.
Second, it is unlikely that HSP-70 will ever prove to be a
magic “silver bullet” in any given specific pathogenetic
mechanism since the more than 80% of the genetic code
of HSP-70 is much older than any of the complex mo-
lecular mechanisms that have evolved in eucaryotic and
multicellular organisms since bacteria. High levels of
HSP rather represent a setting of a “positive environment”
during and, following stressful conditions, providing im-
proved chances for effective recovery.

HSP in renal ischemia

Renal ischemia is a particularly well studied, clinically
relevant stressor. There is increasing evidence for the
importance of HSP during the recovery from ischemia
[14, 15, 16, 17, 18, 19, 20]. Renal ischemia at the cellular
basis results in remarkably heterogeneous injury ranging

Fig. 1 There is a continuous balance between decreases and in-
creases in protein structure complexity. Under proteotoxic or pro-
teochaotic stressful conditions a “perfect protein” (upper right) is
disrupted and may either aggregate and be discarded (lower left) or
be preserved by HSP-70 as a molecular chaperon (lower right).
Upon activation of HSP-70 function (e.g., by ATP-hydrolysis) such
reversibly disrupted and intermediate proteins again improve their
structural and functional integrity
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from cellular dysfunction in nonlethally injured cells to
frank cell death [21]. Whereas necrosis is generally a
rapidly occurring “catastrophic” form of cell death, ap-
optosis (=programmed cell death) is a carefully regulated
active process [22, 23]. In both experimental and clinical
acute renal injury apoptosis is the major form of cell death
[21, 24, 25]. With regards to therapeutic approaches the
nonlethally injured cells are the most important targets for
interventions. Depending on the balance between cellular
injury, repair, and death pathways, each renal epithelial
cell may either recover (and survive) or undergo apoptosis
(and die) (Fig. 2).

In contrast to receptor mediated apoptosis, the signal
that leads to stress-induced apoptosis somehow “detects”
that the damage can no longer be contained by the cellular
repair mechanisms [26]. In renal tubular cells energy
depletion induces apoptosis through specific molecular
pathways that regulate this balance between recovery and
apoptosis, based on protein-protein interactions [25, 26,
27]. HSPs, which can influence the assembly, transport,
and folding of other proteins, are therefore prime candi-
dates to affect the execution or inhibition of apoptotic
signaling pathways [28, 29]. New experimental data in-
deed show that HSP confer cytoprotection against apop-
tosis [30, 31]. In energy-depleted renal epithelial cells
both heat pretreatment and the selective overexpression of
HSP-70 have been shown to decrease apoptosis in vitro
[32]. HSP-70 inhibit stress-induced release of cytochrome
c from mitochondria as well as the release and nuclear
translocation of apoptosis-inducing factor, resulting in
attenuated triggering of the caspase cascade [33, 34]. At
present there are no studies extending these findings into
the in vivo system.

With regard to nonlethal cellular injury following renal
ischemia there is an increasing amount of both in vitro
and in vivo data on the HSP-70 mediated mechanisms
involved in cytoskeletal reorganization. Upon renal isch-
emia or energy depletion, disruption, and aggregation of
the actin cytoskeleton is rapidly induced in renal tubule
cells [35, 36]. Microvilli are fragmented, cell-cell and
cell-substratum junctions disassociate, and cellular po-
larity is impaired. Cellular polarity, however, is of utmost
importance for tubule cell function, such as vectorial
substrate transport. Ischemia induces the rapid, duration-
dependent translocation of apical and basolateral mem-
brane-specific proteins and lipids into the alternate
membrane domain. For example, upon energy depletion
Na,K-ATPase transiently shifts from the basolateral into
the apical membrane domain of proximal tubule cells
where it remains functional but uses ATP to pump sodium
back into the tubule lumen. Several clinical sequelae,
such as renal sodium loss and reduced glomerular filtra-
tion due to tubuloglomerular feedback, can be explained
by this loss of cellular polarity.

There is broad experimental evidence that HSP are
involved in the restoration of the cytoskeletal integrity
and cellular polarity. First, it was shown that following
renal ischemia or energy depletion the cellular stress re-
sponse and HSP are strongly induced, whereas expression
of other proteins, such as Na,K-ATPase is downregulated,
suggesting that dislocated cytoskeletal proteins are recy-
cled [15, 37, 38, 39, 40]. The HSP also show a distinct
temporal pattern of intracellular distribution that coin-
cides with the restoration of disrupted proteins during
recovery of the proximal tubule cell from ischemia. Based
on observations that HSP may reactivate injured and
disrupted proteins, it was then demonstrated that HSP-70
is released and Na, K-ATPase stabilized within the cy-
toskeletal fraction of ischemic rat renal cortex [41, 42].
Based on these findings a new subcellular in vitro assay
was designed based on effects of recombinant HSP or
anti-HSP antibodies [43, 44]. Findings in this system were
also consistent with “repair” of disrupted proteins in-
volved in the cytoskeletal organization of the proximal
tubule cell, mediated by the molecular chaperoning
mechanisms of HSPs.

Pretreatment with a nonlethal dose of cellular stress
has been shown to result in survival of a subsequent,
usually lethal dose of the same or other injury [1, 2, 45].
Organisms and tissues overexpressing HSP are more re-
sistant to cellular stress than those whose HSP expression
is suppressed [46, 47]. This increased resistance to repeat
cellular injury is called cytoprotection; the treatment re-
sulting in this cytoprotection is termed conditioning [48].
Based on this approach it was shown that in vivo pre-
treatment with renal ischemia (ischemic conditioning) not
only induces HSP but also prevents cytoskeletal disrup-
tion in rat renal cortex after repeat ischemia [49, 50]. This
stabilization was abolished by blocking antibodies against
HSP ex vivo. In another novel approach using gene si-
lencing techniques the detachment of Na, K-ATPase from
its cytoskeletal anchorage was markedly increased, with

Fig. 2 Scheme of stress-induced outcome at the cellular level. Any
given cell may initially die in a necrotic way, remain unharmed, or
be sublethally injured, depending on the dose and duration of stress
exposure. Injured cells are stressed cells. With regards to thera-
peutic approaches these vital but stressed cells present the most
important targets. In contrast to the two extreme outcomes (“ne-
crotic” or “unharmed”) the outcome of these stressed cells (“re-
covery” vs. “apoptosis”) depends on active cellular mechanism and
is thus likely to be particularly amenable to specific cytoprotective
interventions
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decreased HSP-70 induction in energy depleted renal tu-
bule cells, demonstrating that inhibition of stress response
results in worsening injury [51]. Comparison of suscep-
tibility for acute renal failure between different strains of
rats also suggested that HSP expression affects the
severity of injury following ischemic insult [52]. These
data confirmed and extended those of several other
studies that also reported cytoprotection upon overex-
pression of HSP in models of renal ischemia [53, 54, 55].

In the immature kidney high levels of HSP-70 have
also been found to be correlated with protection from
hypoxic or ischemic injury. Under experimental condi-
tions HSF was more activated and HSP-70 expression
higher in immature than in mature tubule cells. This was
associated with tolerance of the immature tubules to an-
oxia [56]. More recently cytoprotection has also been
shown to result in enhanced cytoskeletal stabilization in
ischemic immature renal tubule cells [57]. This innate
renal overexpression of HSP-70 does not require pre-
conditioning and may explain the clinical observation that
immature neonates appear relatively resistant to acute
renal failure. Interestingly, this concept found strong
support in a recent clinical study demonstrating that
neonates with an HSP-70 polymorphism that is less in-
ducible have a greater risk of acute renal failure than age-
matched and clinically matched infants with a different
allelic variant of HSP-70 [58]. Biomolecular profiling of
patients may therefore allow identification of those pa-
tients who are more susceptible to injury.

HSP in renal transplantation

The setting of renal transplantation shares many features
of models of renal ischemia and is particularly attractive
to extend the basic principles of HSP-70 mediated cyto-
protection. There are only limited data on HSP in isch-
emic renal injury in the human system; however, upreg-
ulation of HSP-70 expression, mostly upon heat pre-
treatment, has been shown to confer resistance against
subsequent injury in experimental models of ischemia and
transplantation [48, 59, 60]. A recent clinical study
compared the renal tubular expression of HSP-70 in donor
kidneys to the subsequent clinical course [61]. Interest-
ingly, HSP-70 expression was low regardless of pre-
transplant insults and posttransplant outcome [61, 62].
After engraftment HSP-70 was detectable in the first urine
produced by renal grafts in the immediate postoperative
period [63]. As HSP-70 was expressed only basally, even
in biopsy specimens of the subset of donor kidneys that
subsequently developed complications, one may speculate
that therapeutic interventions based on HSP-70 upregu-
lation would at least be feasible. However, such nonspe-
cific conditioning treatment may also activate or induce
unwanted cellular processes, such as increasing immu-
nogenicity [64].

Taken together, HSP present prime candidates for
clinical situations associated with acute predictable in-
sults, such as organ procurement in transplant medicine,

protocol toxic drug exposure in oncology, and repetitive
exposure to hyperosmolar and acidotic peritoneal dialysis
fluids.

HSP in peritoneal dialysis

Although HSP have long been known for their cytopro-
tective role, the essential step from bench to bedside for
HSP-mediated cytoprotection has not yet been successful
[65, 66]. Obviously its clinical application is seriously
hampered because of the need for planned pretreatment
and subsequent acute (repeat) insult. Clinically relevant
injuries, however, are generally complex and occur rather
unpredictably with regard to both time course and dose.

Peritoneal dialysis may offer a unique opportunity to
apply cytoprotection as an innovative therapeutic tool.
The clinical setting of peritoneal dialysis consists of re-
peated, timed predictable exposure of peritoneal meso-
thelial cells to acute and uniform cellular insults upon
peritoneal dialysis fluids (PDF) exposure; the final part of
this review is therefore dedicated to this topic (Fig. 3). In
vitro, several studies have demonstrated marked cytotoxic
effects on human mesothelial cells of acute PDF expo-
sure, due to their low pH, hyperosmolarity, and high
concentrations of lactate, glucose, and glucose degrada-
tion products [67]. Experimentally and clinically, pro-
longed treatment frequently results in severe chronic
damage to the integrity of the peritoneal membrane [68,
69]. Children appear particularly prone to the vicious
circle of high dependence on peritoneal membrane func-
tion (substantially higher need of ultrafiltration than
adults) and high risk of membrane failure (increased ex-
posure to glucose) [70].

Although new and improved formulations have re-
cently shown to be less toxic in several in vitro and in

Fig. 3 Scheme of the potential role of the cellular stress response in
peritoneal dialysis. Toxic physicochemical properties of PDF cause
injury in mesothelial cells. Although some cells die while some
proliferate, the majority of mesothelial cells are likely to be stressed
and undergo cellular repair. Therefore both decreased toxicity of
PDF and enhanced cellular repair result in intact mesothelial cells
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vivo experimental and clinical studies, the main working
principle of PDF requires use of a hypertonic solution for
mediation of solute and water removal [71]. PDF there-
fore is never likely to offer a physiologically inert or
completely biocompatible fluid, and thus repeated filling
and drainage of the abdominal cavity will always produce
some acute stress. Based on the experiences in the model
of renal ischemia one expects that stressors such as PDF
will result not only in mesothelial cell injury but also in
induction of HSP. Indeed, specific HSP isoforms are
upregulated in mesothelial cells upon exposure to PDF
with and without modification of its physicochemical
properties (such as pH and GDP content) in in vitro and in
vivo systems [72, 73, 74, 75, 76]. Whereas these first
studies focused on the upregulation of HSP expression as
a marker of biocompatibility of PDF, new in vitro results
confirm that nonlethal pretreatment also confers cyto-
protective effects in experimental peritoneal dialysis [77]
(Fig. 4). Human mesothelial cells respond to nonlethal
PDF exposure or heat stress with the development of
acquired resistance against PDF (a specific finding termed
“cross tolerance”). The specific role of HSP-70 was
confirmed by overexpression of HSP-70 using transient
gene transfection [77]. These studies showed effective
protection of mesothelial cells against exposure to PDF.

These data are in good agreement with those of other
recent studies that also demonstrate evidence for HSP-70
mediated cytoprotection, at conditions which are known
to result in similar ATP depletion as reported after PDF
exposure. These in vitro data are also well in accord with
the previously reported finding of increased staining for
HSP-70 in peritoneal biopsy specimens of patients on
complicated peritoneal dialysis [78].

Taken together, recent findings in experimental peri-
toneal dialysis demonstrate that mesothelial HSP ex-
pression not only promises a new biocompatibility test but
also confers marked cytoprotection against exposure to
PDF. The therapeutic use of cytoprotection may offer
attractive new alternatives to improve long-term outcome
on peritoneal dialysis. However, as pretreatment protocols
based on heat or transfection are not feasible in the
clinical setting, the next challenge will be to further de-
fine the regulatory pathways of the cellular stress re-
sponse in peritoneal dialysis. Manipulation of these
pathways may then allow introduction of alternate ther-
apeutic interventions, such as new pharmaceutics en-
hancing the HSP expression [79, 80].

Acknowledgements The author thanks Larry Greenbaum, Scott K.
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Fig. 4 Quantification of cytoprotection conferred by a conditioning
protocol in human mesothelial cells. Left Staining for HSP-70 is
shown for nonpretreated cultures (Con) and cultures pretreated by
PDF for 60 min (PT) and allowed to recover for 24hours. Right

Staining for Vital Dye (marker for mortality) is shown in cells
exposed to sham treatment or PDF pretreatment before (Con, PT)
and after usually lethal PDF exposure (LT, PT+LT). PDF pre-
treatment induced HSP-70 and protected cellular viability (see [77])
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