
Abstract Nutrition has been believed to be an important
therapeutic instrument in children with chronic renal
failure (i) for improving growth, and (ii) for slowing
down the deterioration of renal function. The therapeutic
strategies for both targets may be conflicting, at least in
part, since a high calorie intake is needed for optimal
growth, whereas a low protein diet, which was believed
to protect renal function, places patients at risk of low
calorie intake. Dietary manipulations for optimal growth
are mainly effective in infants with chronic renal failure.
However, growth remains suboptimal even with an ener-
gy intake above 80% of RDA. Although a low protein
diet is able to slow down the rate of deterioration in renal
function in rodent studies, the results of prospective clin-
ical studies were disappointing at least for an observa-
tion period up to three years. The conclusions out of me-
ta-analyses of these clinical studies in adults are contra-
dictory. The progression rate was not significantly influ-
enced by protein restriction, whereas renal replacement
therapy could be postponed. However, the latter seems to
be the effect of weakening uremic symptoms during the
phase of end-stage renal failure. According to our pres-
ent knowledge it is not justified to prescribe special diets
to children early in the course of chronic renal failure,
but the composition of their nutrition should follow the
general concept of an optimal mixed diet.
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Introduction

Dietary interventions have been widely used in patients
with preterminal renal failure to minimize the progres-
sion of chronic renal failure (CRF). Though there is good
theoretical and experimental evidence that a modifica-
tion of nutrition is effective in patients even with modest
renal failure, results of recent prospective clinical studies
are less convincing.

The prescription of a low protein diet to reduce the
progression rate of CRF may interfere with another tar-
get of nutrition in children with CRF, e.g. optimal sup-
port for growth. There is good evidence that malnutrition
is one important factor for impairment of growth in CRF.

This article will review the most important dietary in-
tervention studies and critically illuminate to what extent
present dietary guidelines are evidence based.

Recommendations for macronutrient intake

The first generally accepted recommendations for nutri-
ent intakes for all age groups had been published by the
World Health Organization (WHO). While in these pub-
lications a clear differentiation was made between “rec-
ommendations”, e.g. for calories, and “safe levels”, e.g.
for protein [1, 2], the national nutritional authorities, e.g.
Food and Drug Administration (FDA) [3] (Table 1) or
German Society for Nutrition (Deutsche Gesellschaft für
Ernährung (DGE) [4] accepted safe levels as “recom-
mended daily allowances” (RDA). By this, a consider-
able deviation from RDA to actual nationally analysed
intakes became evident.

A recent nutritional survey among healthy German
children demonstrated that, as in most western countries
energy intakes in all age groups are 10–20% lower than
RDA, with carbohydrates providing 48% of energy only,
while fat with 39% and protein with 13% of energy were
higher than recommended [5].

The younger the child, the higher is the need for ener-
gy and protein (kcal or g/kg per day) (Table 1). But if
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children meet their high energy needs with the same
food composition as adults, e.g. with 13% of energy pro-
vided by protein, their protein intake is up to 63% higher
than recommended (Fig. 1). Practical application of this
concept in accordance to RDA would result in a need for
totally different food composition for different age
groups, i.e. different meal preparation for each family
member sitting around the same table. To stick to RDA
for protein in western countries, special low protein die-
tary products would have to be prescribed even in heal-
thy young children.

New nutritional concepts no longer provide exact
amounts in g/day for each macronutrient. They only give
figures for the age-related energy requirements and rec-
ommend an optimal mix of nutrients (optimal mixed 
diet) [6, 7]. These recommendations even accept a pro-
tein intake up to 14% of total energy with only 50% pro-
vided from animal origin, 32% fat and 54% carbohy-
drates [6].

Modification of nutrition

Nutrition provides the fuel for the body to function, but,
equally important nutrition plays a central role in social
life and induces good feelings like satisfaction, delight
and well-being. Therefore, the medical advice to modify
nutrition must be based on adequate considerations. A
large amount of skill and time of specialised dietitians
must be invested into qualified dietary counseling [8],
which provides the patient with positive information of
preferable nutrients respecting the patient’s eating habits,
instead of providing lists of forbidden things. Otherwise,
feeding problems and malnutrition will be aggravated.

All randomised studies modifying nutrition in patients
with renal failure compare the outcome according to the
intended intervention. Only a few studies supervised
compliance and few correlated outcome to compliance
[9, 10, 11]. Only in the Modification of Diet in Renal
Disease (MDRD) trial patients had been asked about sat-
isfaction with the dietary treatment. Satisfaction signifi-
cantly decreased with dietary restrictions [12].

Modification of one macronutrient modifies the com-
position of other macronutrients and the balance of mi-
cronutrients. For instance, low protein diets based on
vegetable, soy or mixed protein may provide the same
amount of protein, but a totally different composition of
amino acids, different amounts and compositions of lip-
ids and different amounts of minerals, trace elements and
vitamins [13, 14, 15, 16]. Low cholesterol diets may be
associated with a deficit of many minerals and vitamins
[17]. Therefore, a modification in the macronutient in-
take must be balanced and needs to be well controlled to
avoid unintended effects.

Nutrition and growth

Both healthy children and children with renal disease
need a high energy intake for adequate growth. Energy
needs decrease from 108 kcal/kg per day in infants to 
30 kcal/kg per day in adults (Table 1). However, energy
and protein recommendations by RDA and WHO are
10–20% higher than actual spontaneous energy intakes
in healthy infants either breast fed or bottle fed [18, 19,
20] and in well-nourished and well-growing children [5].

Adults and children with renal failure tend to develop
protein-caloric malnutrition because of lack of appetite
or vomiting [21, 22, 23, 24]. The spontaneous food in-
take varies from day to day and compliance and vomit-
ing cannot easily be monitored. It is characteristic that
most studies on nutritional intake indicate the prescribed
but not the true nutrient intake. The most exact studies
have been performed in infants with CRF and it has been
shown that the degree of growth failure is correlated
with the amount of calorie intake. However, a calorie in-
take above 80% of RDA did not further improve growth
[25, 26, 27] (Table 1). There was no need to increase the
protein intake above the amount calculated from sponta-
neous breast feeding in healthy infants [20].
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Table 1 Recommendations for energy and protein intake in males
given by the Committee on Dietary Allowances 1989 [3]

Age (years) Energy Protein 
(kcal/kg per day) (g/kg per day)

0–0.25 108 2.2
0.26–1.0 98 1.6
1.0–3 102 1.2
4–6 90 1.2
7–9 70 1.0

10–12 60 1.0
13–14 55 1.0
15–18 45 0.9
19–24 40 0.8
25–50 37 0.8
51+ 30 0.8

Fig. 1 Consumed protein intake of about 13% of calories in male
healthy German individuals in all age groups (–●●–) [5] compared
to recommended dietary allowances (Table 1) [3] (--■ --). (▼| % dif-
ference between consumed and recommended protein intake)



Whereas an adequate calorie intake can prevent a fall
of the growth curve of infants with CRF below the nor-
mal centiles or even induce catch-up growth, the latter
effect cannot be obtained in the majority of patients with
an age beyond 2 years. Furthermore, the reported success
of dietary intervention is grossly dependent on the
growth standards that are used for comparison. It is not
justified to use old standards like those of Tanner [28]
which originate from measurements performed more
than 50 years ago, because the enormous secular trend
for improving height and growth in Europe [29, 30, 31]
and other parts of the world [32, 33] during the last cen-
tury is missed and the results will look too optimistic.

Nutrition and progression of renal disease

If loss of renal function has reached a critical point, renal
failure usually progresses by self-perpetuating pathways,
irrespective of the primary renal disease (Fig. 2). The
therapeutic aim is to halt the progression of renal disease
by interruption of these pathways and elimination of
possible disease modifiers such as: proteinuria [34, 35,
36, 37], glomerular hyperfiltration and hypertension [38,
39], arterial hypertension [40, 41, 42], hyperlipidemia
[43, 44], acidosis [45, 46], uremic toxins [47, 48], hyper-
parathyroidism [49, 50] and hyperphosphatemia [51].

The complex interplay of all factors involved in the
progression of renal disease makes it almost impossible
to elaborate the contribution of a single player. In all hu-
man studies proteinuria and hypertension proved to be
the strongest independent predictors for progression of
renal failure [11, 36, 52, 53, 54]. But even these two
variables are not proven to be totally independent. A
lowering of blood pressure, which also resulted in reduc-
tion of proteinuria, most effectively conserved renal
function in patients with initially high proteinuria [55].

Therefore, proteinuria is believed to play the key role in
the progression of renal disease.

Among all therapeutic efforts, only therapy with an-
giotensin-II converting enzyme inhibitors and angioten-
sin-1 receptor antagonists has been proven to influence
progression of renal failure favorably in human and/or
animal studies [56, 57, 58]. These pharmaceutical agents
lower systemic and intraglomerular blood pressure and
reduce proteinuria. They directly interfere with inflam-
matory processes and fibrogenesis in the kidney [59, 60].
Additionally, recent experimental evidence points to a
direct action of angiotensin-II converting enzyme inhibi-
tors at the slit pore membrane [61]. Can similar effects
also be obtained by prescribing a modified diet to chil-
dren or adults with CRF?

Energy

In animal models, a low energy intake slows down the
progression of renal disease [62, 63]. Vice versa, a high
energy intake may result in renal failure [64] and hyper-
tension [65]. Obese humans present with high leptin lev-
els [66]. High leptin levels may be involved in the pro-
gression of glomerular sclerosis as noticed from animal
studies [67]. Humans with morbid obesity are prone to
develop focal segmental glomerulosclerosis [68]. Chil-
dren [69] and adults [70] with progressive renal disease
have high leptin levels which may contribute to lack of
appetite [69] and progression of renal failure.

Although a sufficient energy intake is recommended
for children with CRF, an exaggerated calorie intake may
induce hyperlipidemia, hyperinsulinism and arterial scle-
rosis in the long term. Prospective studies on this subject
are missing.

The utilisation of protein is correlated with the amount
of energy intake even in individuals with protein and 
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Fig. 2 Hypothetical model of
events leading to progression
of renal failure. ROS reactive
oxygen species



energy intakes within the normal range [71, 72, 73].
Therefore, a low protein intake must be accompanied by
high energy intake in order to avoid malnutrition.

Protein

A low protein diet postpones the development of uremic
symptoms and start of dialysis in patients with advanced
renal failure [74]. Lowering protein intake reduces the
amount of protein degradation products that are not ade-
quately excreted by the diseased kidney and contribute to
acidosis. Acidosis is one main reason for catabolism in
uremic patients [75]. This is especially seen in acute aci-
dosis, whereas a partial metabolic adaptation is noted for
chronic acidosis. Acidosis impairs growth hormone in-
duced growth [76]. Phosphorus intake usually is reduced
in parallel to protein intake. Therefore, control and pre-
vention of hyperparathyroidism is easier in patients on a
low protein intake [77]. Besides its role in renal bone
disease, hyperparathyroidism and other undefined ure-
mic toxins are suspected of augmenting insulin resis-
tance [78] and disturbances of lipid metabolism [79, 80].

In humans and animals a high protein intake, most
from animal origin, induces renal hyperfiltration [38]. In
animals with reduced renal mass high protein intake pro-
vokes intraglomerular hypertension [39], loss of autoreg-
ulation of intrarenal blood pressure [81] and glomerular
hypertrophy. Hyperfiltration and glomerular hypertro-
phy, which presumably are mediated by insulin-like-
growth factor 1 (IGF-1), are in many animal models and
in human diseases, e.g. diabetic nephropathy, the first
visible events in the process leading to progressive renal
disease [82]. However, in animal models, administration
or expression of IGF-I did not result in an increased
damage of renal cells [83, 84]. In children with normal
renal function and normal energy intake IGF-1 diminishes
with a low protein intake [85]. Considering low protein
diet in children, one should keep in mind that IGF-1 is
needed for body growth [86] while its unfavorable effect
on renal function is not proven.

In patients with a steroid resistant nephrotic syndrome
[87] and also in some patients with CRF [10] a low pro-
tein diet reduces proteinuria. At the subcellular level a
low protein intake reduces the generation of reactive
oxygen species (ROS) [88], the generation and activity
of mediators of inflammation [89, 90], and the activation
of the renin-angiotensin system [91] (Fig. 2). The activa-
tion of inflammatory pathways can add to the altered lip-
id metabolism and increase serum lipid levels in renal
disease [92]. Recently, it has been postulated that pro-
teinuria by virtue of the processes listed above, plus the
telomere-shortening limit on hyperplasia, leads to renal
cell senescence and loss of renal function [93, 94]. Telo-
meres are the DNA-protein complexes found at the ends
of chromosomes. In the absence of the enzyme telom-
erase these structures shorten at each cell division. After
a critical degree of shortening, cells senesce and finally
die through apoptosis.

A theoretically negative aspect of a very low protein
diet may be the lower L-arginine supply, which may low-
er the production of nitric oxide (NO), the most potent
vasodilator in the body, acting against hypertension and
proteinuria [95, 96]. Additionally, diets low in L-arginine
may promote dyslipidemia [97]. This is in contrast to
some animal models of antibody mediated glomerulone-
phritis, in which the favorable effect of low protein diet
could be counteracted by substitution of L-arginine [98].

A more practical problem is that the minimal and
maximal amount of protein intake compatible with opti-
mal health of humans and animals not exactly known
[99, 100]. In adults with renal failure, the lowering of
protein intake to 0.6 g/kg per day or less (if amino acid
and keto acid mixtures had been added) and in children
with renal failure the lowering to the levels given by
RDA (Table 1) proved to be safe for periods up to 3
years as documented in controlled studies. But, in spite
of the skills of trained dietitians, lowering protein intake
was accompanied by a small but significant drop in
mean energy intake. In the MDRD study mean energy
intake dropped from 73% of RDA at start to 63% of
RDA during this study (–10%) [101] and in the European
study in children from 92% to 85% of RDA (–7%) [11].

Within all positive and negative arguments for or
against a low protein diet, the key question is whether
such a diet can slow down the progressive loss of renal
function. This question has not definitely been answered,
although several well designed studies in hundreds of pa-
tients with non-diabetic renal disease, running for 2
years and longer have been performed [11, 52, 53, 102,
103 104] (Table 2).

Meta-analyses of all these studies demonstrate that a
small but statistically significant reduction in the inci-
dence of end-stage renal disease is evident for low pro-
tein diet [105, 106, 107, 108, 109]. As the progression
rate was not significantly influenced by protein restric-
tion (Table 2), this seems to reflect postponement of the
start of renal replacement therapy in patients with end-
stage renal failure because of amelioration of uremic
symptoms by low protein intake.

Though there was no statistically significant differ-
ence in the progression rate in patients randomised for
low versus normal protein intake, most studies demon-
strated a higher loss of renal function in patients random-
ised for higher protein intakes (Table 2). It may be
tempting to speculate that with a longer period of obser-
vation this difference will become significant. But, in the
two studies which added 1 or 2 years of prolongation
[11, 103], the difference, which was not significant after
2 years, was almost absent after 3–4 years.

In all studies (Table 2) most patients did not reach
their low protein goal. Protein intakes were in the mean
30% higher than recommended. In consequence, the dif-
ference in protein intake between randomised groups
was lower than planned and figured at 20–30%. In two
studies only primary analyses of the results based on the
intention to treat, and additional secondary analyses
based on compliance have been performed [9, 10, 11]. In
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adults participating in the MDRD study [9, 10] recalcu-
lation of the data in a regression model controlled for
covariates demonstrated a significantly lower loss of re-
nal function and a reduced risk for renal death at differ-
ent levels of reduction of protein intake. In patients with
moderate renal failure [10] this difference became evi-
dent only when the loss of renal function was calculated
from 4 months after randomisation to the end of observa-
tion. During the first 4 months the higher loss of renal
function in patients with low protein intake was assumed
to be induced by the loss of protein-induced hyperfiltra-
tion. In children participating in the European Study on
low protein diet [11], similar calculations (data not pub-
lished) did not confirm the results. In children with mod-
erate renal failure, as defined by the MDRD study, there
was no accelerated loss of renal function during the first
4 months on low protein diet and during 2 years the loss
of renal function was significantly lower with higher
protein intakes.

The above differences in the effect of a low protein
diet in children and adults may be explained by the age

of patients, totally different patterns of underlying renal
diseases, higher protein intakes or different techniques to
measure renal function. An additional important differ-
ence between the MDRD trial and the European Study in
children is the number of patients with calculations of re-
nal function at each point of observation. While mea-
surement of renal function by estimating GFR from body
length and serum creatinine used in the study in children
[11, 110] is definitely inferior to the iothalamate clear-
ance method used in the study in adults [53], frequent
collection of creatinine data may be more complete and
exact for calculations of the slope of GFR over time than
infrequent iothalamate clearance data. In the trial in chil-
dren available data on renal function dropped from 100%
to 88% in the 2-year study and from 100% to 97% in the
three-year study because of the intercurrent necessity to
start renal replacement therapy. In the trial in adults the
number of clearance studies available for calculation
dropped from 100% to 62% at 2 years and to 24% at 3
years, while only about 215 (24%) patients dropped out
for medical reasons [9, 111]. It seems questionable, if

115

Table 2 Randomised studies on the effect of a low protein diet on the progression of non-diabetic renal failure with more than 100 pa-
tients enrolled for 2 years and more

Reference No. of Age Dura- Outcome measures Approximate  Loss of GFR Conclusion
patients (mean, tion of GFR at start (ml/min per  

years) observa-  Progression Survival at a (ml/min per 1.73 m2) per year
tion defined endpoint 1.73 m2)
(years) Diet Control

aRosman et al. 149 48 2 1/creatinine 10% rise in serum 30 ? ? In favour of 
1984 [104] creatinine low protein diet

aRosman et al. 153 48 4 Endogenous 50% loss of  30 –2.23 –2.50 Limited effect of 
1989 [103] creatinine endogenous low protein diet

clearance creatinine clearance
bLocatelli et al. 456 49 2 Endogenous Doubling of serum 38 –1.8 –0.96 No effect of 

1991 [102] creatinine creatinine low protein diet
clearance

bD’Amico et al. 128 54 2 Endogenous Halving of 33 ? ? Good effect of 
1994 [52] creatinine endogenous low protein diet

clearance creatinine clearance
cKlahr et al. 1994, 585 52 3 Iothalamate Endstage renal 39 –3.6 –4.0 No effect of 

Study A [53] clearance disease low protein diet
cKlahr et al. 1994, 255 51 3 Iothalamate Endstage renal 19 –3.6 –4.4 No effect of 

Study B [48] clearance disease low protein diet
dWingen et al. 191 10 2 Estimated 10 ml/min per  37 –3.0 –3.4 No effect of 

1997 [11] creatinine 1.73 m2 loss low protein diet
clearance of creatinine 
(Schwartz) clearance

dWingen et al. 112 10 3 Estimated 10 ml/min per  41 –2.0 –2.0 No effect of 
1997 [11] creatinine 1.73 m2 loss low protein diet

clearance of creatinine 
(Schwartz) clearance

a The same patients are reported at different times of observation.
Patients in the low protein group with a GFR below 30 ml/min per
1.73 m2 were instructed to lower protein intake to 0.4 g/kg per day
and those with a GFR above 30 ml/min per 1.73 m2 to lower pro-
tein intake to 0.6 g/kg per day. Advice was given to lower protein
intake of animal origin
b Both studies reduced protein intake to 0.6 g/kg per day with 0.5 g
of animal origin in low protein diet and to 1.0 g/kg per day with
0.6 g of animal origin in the control group
c In study A normal protein intake of 1.3 g/kg per day was com-
pared to low protein intake (0.58 g/kg per day) in patients with

moderate renal failure. In study B low protein intake of 0.58 g/kg
per day was compared to a protein intake of 0.28 g/kg per day
supplemented with 0.28 g/kg per day amino acids and keto acids
in patients with advanced renal failure
d Protein intake was lowered to the recommendations of WHO
(0.8–1.1 g/kg per day according to age) [2]. Of 191 children ob-
served for 2 years, 112 completed an additional third year. Creati-
nine clearance was calculated with the formula published by
Schwartz [110]



even the best statistical methods can compensate for a
heavy censoring like this.

Despite all these discussions, one should not forget
that the primary analysis in both studies in adults [53]
and children [11] did not document a significant benefit
of a low protein diet within a period of 3 years. If there
would really be a significant effect after much longer ob-
servation periods, this effect is predicted to be small and
seems, at present, not to justify the prescription and the
burden of a low protein diet in children over many years
(starting already at an early stage of CRF). However, it
seems prudent to avoid a protein excess also in view of
the concomitant high phosphate intake.

Only few studies in humans with small numbers of
patients address the question whether it makes any dif-
ference, if the protein supplied is from vegetable or ani-
mal origin. Few studies reveal the recommended compo-
sition of protein in the method section [52, 102]. In chil-
dren it is difficult to provide the high energy require-
ments by strict vegetarian diets, because their energy
density is low. Possibly soy protein may provide the re-
quired density of calories. Studies in animals and hu-
mans suggest that protein intake in the normal range pro-
vided by soy exerts beneficial effects on dyslipidemia
and renal function [112, 113]. However, a diet based on
soy protein requires a total change in nutritional habits.

Children with renal disease, as well as healthy chil-
dren in western countries ingest a percentage of protein
provided from animal origin of 60–70% [5, 11], while
the recommendations are approximately 50%. In the Eu-
ropean study, children with renal failure randomized to
the protein-restricted group consumed 54% of protein
from animal origin [11]. There was no difference in pro-
gression of renal failure in the secondary analyses based
on total protein intake and percentage provided from ani-
mal origin (unpublished).

Fat

Patients with renal failure tend to have dyslipidemia, dys-
lipoproteinemia and high serum lipids [114, 115, 116]. In
a recent study in children aged 2–18 years with glomeru-
lar filtration rates between 15 and 60 ml/min per 1.73 m2

about 60% of patients demonstrated triglyceride, choles-
terol, HDL-C, LDL-C or VLDLC levels above the 95th

centile for healthy children [11]. Hyperlipidemia is corre-
lated to the degree of renal function and proteinuria [11,
117]. Hyperparathyroidism [79, 80], high levels of cyto-
kines [92] and low NO [97] may add to dyslipidemia.

Lipids and lipoproteins may interact with mesangial
cells, vascular endothelial cells, glomerular epithelial
cells and tubular epithelial cells in the kidney and induce
oxidant stress [118, 119, 120, 121]. LDL oxidised by
ROS, more than native LDL, exert direct toxic effects on
the cell and stimulate the release of mediators of inflam-
mation [118, 119, 122, 123]. Via binding to podocytes
hyperlipidemia may disturb the glomerular filtration bar-
rier and add to proteinuria and its negative influence on

renal function (Fig. 2) [120]. Hyperlipidemia may in-
crease angiotensin II receptor expression and thereby in-
terfere with progressive loss of renal function [124].

In animal models with renal failure, interventions ag-
gravating hyperlipidemia are correlated to higher rates of
progression of renal failure and higher indices of renal
damage [120, 123, 125, 126, 127, 128, 129, 130, 131]. In
summary, lowering lipids may theoretically contribute to
halt the progression of renal failure.

In humans using univariate statistical models, hyper-
lipidemia significantly correlated to the progression of
renal disease [11, 111, 117, 132, 132, 133, 134, 135,
136]. However, in multivariate models, which include
the degree of renal failure and proteinuria, the correla-
tion of hyperlipidemia and progression was minimal or
absent [11, 111, 117, 134]. Up to now it is unproven that
lipids add to the progression of renal failure in humans.
However, the lipid profile in patients with renal failure
may add to the augmented risk of atherosclerosis in pa-
tients with renal disease.

Therapeutic options to lower serum lipids are: (i) di-
ets low in fat, phosphate and protein or diets based on
soy protein, (ii) lipid lowering drugs like statins, fibrates
or probucol, and (iii) lipidapheresis. All these therapeutic
options work in patients with renal failure, i.e. they low-
er serum lipids. Hopefully, they may reduce the risk for
atherosclerosis. However, it is not yet proven in humans,
if hyperlipidemia in humans is correlated to the progres-
sion of renal disease and if lowering concentrations of
serum lipids halts the progression of renal disease.

Drugs such as statins, fibrates and probucol not only
lower serum lipids, but specifically interfere with in-
flammatory processes in diseased kidneys [125, 127,
129, 130, 131, 137, 138, 139]. Therefore, the beneficial
effect of these drugs on the progression of renal disease
is not, or at least not only, mediated by lowering serum
lipids. None of these drugs is approved for use in chil-
dren. Therapy with statins or fibrates must be monitored
closely, and probucol has recently been taken off the
market because of severe side effects [140].

Fat has a high calorie-density of 9.3 kcal/g. Fat is an
important factor for the palatability of nutrition. There-
fore, a strict reduction of fat intake is not advisable for
renal patients, who suffer from lack of appetite and mal-
nutrition. But care should be taken, that the composition
of fat is optimal. Fat with a good mix from animal and
vegetable origin should be preferred.

Lipids derived from marine sources are enriched with
omega-6 polyunsaturated fatty acids, which are metabo-
lised to vasodilatory eicosanoids. In animal and human
IgA nephropathy supplementation with fish oil signifi-
cantly slowed the progression of renal failure [141, 142].
From the animal model of IgA nephropathy it may be
concluded that this effect may be at least partially medi-
ated by the alpha-tocopherol content of the preparation
[141]. Vitamin E is a known antioxidant, which can
block the action of ROS.
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Conclusions

Given the complex roles of nutrients in the progression
of CRF as outlined in this review, which practical recom-
mendations can be given for dietary counselling of chil-
dren with CRF?

In animal models, reductions of either protein or fat
intake could favorably influence the complex self-per-
petuating pathways of hyperfiltration and interstitial fi-
brosis, and slow down the progression of CRF (Fig. 2).
By contrast, the results of similar dietary manipulations
in humans have been disappointing so far. Reasons for
this discrepancy between animal and human studies are
complex and include the diversity of underlying renal
diseases, genetic backgrounds, comorbid conditions and
the difficulty to define, and even more, adhere to, nutri-
tional modifications in the long term.

Based on the data accumulated so far, it cannot be ex-
cluded that strict restrictions of protein and/or fat intake
may have a small beneficial effect if adhered to over ex-
tended periods of time; however, the burden would be
high over many years and the psychosocial acceptability
of such strict diets in children with CRF and their fami-
lies must be questioned. On the other hand, one reassur-
ing result of the European trial on low protein diet in
children with CRF was that protein restriction to 0.8–
1.1 g/kg daily adjusted for age and a calorie intake of at
least 85% of RDA is not detrimental on longitudinal
height and weight gain. Moreover, since many children
tend to eat self selected diets with a very high protein in-
take of mainly animal origin and fat with a high content
of cholesterol and saturated fat, a change in dietary hab-
its in healthy children as well as in children with CRF
seems to be worthwhile. A moderate protein intake is
certainly advisable, particularly in children with ad-
vanced CRF with regard to the control of metabolic aci-
dosis, phosphorus intake and the accumulation of toxic
nitrogen waste products.

Hence, while no arguments for specific dietary inter-
ventions can be derived from the clinical trials performed
so far, dietary counselling in children with CRF should
aim at a calorie intake not below the recommended die-
tary allowances. Phosphorus and potassium intake must
be reduced if necessary, and acidosis should be controlled
by medication as soon as serum bicarbonate falls below
20 mmol/l. Children should follow an optimal mixed diet,
composed of a large variety of foods, best depicted in the
food guide pyramid [7]. The pyramid consists of a broad
basis composed of bread, cereals, rice and pasta, a small-
er second level comprising vegetables and fruit, and an
even smaller third level composed of milk, milk products,
meat, fish, beans, eggs and nuts. The small tip of the pyr-
amid is composed of foods that should be used sparingly
like sweets, oils, cream, etc. This composition follows the
general concept of preventive nutrition [143].
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