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Green'’s function for two-and-a-half dimensional elastodynamic

problems in a half-space

A. Tadeu, J. Antonio, L. Godinho

Abstract This paper presents an analytical solution, to-
gether with explicit expressions, for the steady state re-
sponse of a homogeneous three-dimensional half-space
subjected to a spatially sinusoidal, harmonic line load.
These equations are of great importance in the formula-
tion of three-dimensional elastodynamic problems in a
half-space by means of integral transform methods and/or
boundary elements. The final expressions are validated
here by comparing the results with those obtained with the
boundary element method (BEM) solution, for which the
free surface of the ground is discretized with boundary
elements.

Introduction

The aim of this study is to provide Green’s functions for
calculating the wavefield radiated by a spatially sinusoidal,
harmonic line load buried in a half-space. These functions,
or fundamental solutions, relate the field variables
(stresses or displacements) at some location in the half-
space domain caused by a dynamic source placed else-
where in the medium.

The expressions are developed using the displacement
potentials defined by the methodology used by the au-
thors (Tadeu and Kausel, 2000) to evaluate the Green’s
functions for a harmonic (steady state) line load whose
amplitude varies sinusoidally in the third dimension.
These displacement potentials are written as a superpo-
sition of plane waves following the approach used first by
Lamb (1904) for the two-dimensional case and then by
Bouchon (1979) and Kim et al. (1993) to compute the
three-dimensional field using a discrete wave number
representation. The Green’s functions for the half-space
are then derived, assuming free stress boundary condi-
tions at the surface. The Green’s function for a half-space
is first written as the sum of the Green’s function for a
full-space with surface terms, using a technique similar to
that described by Kawase (1988). Then the surface term is
decomposed into two parts, one of which corresponds to
the image-source solution, following a methodology
closely related to the work of Kawase and Aki (1989). The
expressions presented here make it possible to compute
the wavefield inside a half space, without a full discreti-
zation of the interior domain, by means of numerical
techniques such as the finite differences, or even by
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discretizing the free surface using boundary elements
techniques.

The authors believe that the fundamental solution
presented here can be of great value in the formulation of
3D elastodynamic problems, via boundary elements to-
gether with integral transforms. The fundamental solu-
tions are expressed in an explicit form, and represent the
Green’s functions for a harmonic (steady state) line load
buried in a half-space whose amplitude varies sinusoidally
in the third dimension. Such problems are referred to in
the literature as 21/2D problems. The present equations
are very important in themselves because not only can
they relate the displacements at some point produced by a
point load somewhere in the three dimensional space, but
they also can be incorporated into a numerical boundary
element approach in order to avoid the full discretization
of the free surface of the half-space. Notice that this full
discretization is only possible using different simplified
approaches, such as the use of damping, because it will
lead to an system of equations which, due to its size, will
be unsolvable.

Fundamental solution

Consider an infinite, homogeneous space subjected at the
origin of coordinates to a spatially varying line load in the
z direction of the form p(x,,z,t) = 5(x)d(y)el® %2 and
acting in one of the three coordinate directions. In this
expression, o(x) and J(y) are Dirac-delta functions,  is
the frequency of the load and k, is the wavenumber in z
(see Fig. 1a). The response to this load can be obtained by
applying a spatial Fourier transform in the z direction to
the Helmholtz equations for a point load (see e.g.
Gradshteyn and Ryzhik, p. 1151, Eq. 17.34.4). The z
transformed equations are then
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where k, = /k} — k2 with (Imag(k,) < 0) and k, = w/a,
kg = \/k* — k2 with (Imag(kz) < 0) and k; = o/f,
o=+/(A+2u)/pand f = +/p/p are the velocities for P
(pressure) waves and S (shear) waves, respectively, 4
and p are the Lamé constants, p is the mass density,

Ap(x,y,k;, ) and As(x,y, k;,w) are the Fourier trans-
forms of the two potentials Ap(x,y,z, w) and A(x,y,z,®)
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for the irrotational and equivoluminal parts of the dis-
placement vector, Hy, (2 )( ) are Hankel functions of the

second kind and n-th order, r = /x2 —I—y and i=+v-—1
From equilibrium conditions we find A, and A,

fip = = 5 [HE (kar) = HEY (—ikor)| .
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The displacements Gj; in direction i due to a load applied
in direction j can now be obtained from the relation

(4 - 4)
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in which 0;; is the Kronecker delta, x; = x, y, z for
j=1,2,3, and 0/0z = —ik,. We may observe that
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A full set of Green’s functions for the strains and stresses,
are given in Tadeu and Kausel (2000), and these fully agree
with a solution for moving loads given earlier by Pedersen
et al. (1994) and Papageorgiou et al. (1998).

These same equations can be represented as a contin-
uous superposition of homogeneous and inhomogeneous
plane waves.
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Load acting in the direction of the x-axis

The displacement potentials resulting from a spatially si-
nusoidal harmonic line load along the z direction, applied
at the point (xo, yo) in the x direction, are then given by the
expressions,
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Fig. 1a, b. Geometry of the problem:
a full-space; b half-space

where v = /k} — k2 — k* with (Imag(v) < 0),

y = v/k? — k2 — k? with (Imag(y) < 0), and the integra-
tion is with respect to the horizontal wave number, k,
along the x direction.

In order to transform the integral into a summation,
consider an infinite number of such sources distributed
along the x direction, at equal intervals L,. The above
compressional and rotational potentials can then be writ-
ten as
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where E, = 1/(2pa?Ly,), Ep = e "0l B, = e~ byl

—iky,(x—xg).
k3 — k2 — kj, with (Imag(v,) < 0), yn =
\/k2 k2 — k2 with (Imag(y,) < 0), k, = 2 n which can

in turn be approx1mated by a finite sum of equations, N.

The Green’s functions can be expressed in terms of the
compressional and rotational potentials, ¢, /7, lﬁ and /3,
from which the following three components of d1splace-
ment can be obtained,
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The Green’s functions for a half-space can be expressed as
the sum of the source terms which are the same as those in
the full-space and the surface terms which are necessary to
satisfy the free-surface conditions (see Fig. 1b). These
surface terms can be expressed in a form similar to that of
the source term, namely
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where Eyg = e " Ey = e 7 A%, BX, and C7, are as yet
unknown coefficients to be determined from the appro-
priate boundary conditions, so that the field produced
simultaneously by the source and surface terms should
produce oy, =0, g, =0 and 0, = 0 at y = 0.

The imposition of the three stated boundary conditions
for each value of n leads to a system of three equations in
the three unknown constants. While this procedure is
straightforward, the detailed derivations are lengthy, and
are therefore omitted. Only the final system of equations is
presented,
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Having obtained the constants, we may compute the
motions associated with the surface terms by means of
the equations relating potentials and displacements. In
essence, this requires the consideration of Eq. 8 and the
application of partial derivatives to go from potentials to
displacements. The Green’s functions for a half-space are
then given by the sum of the source terms and these
surface terms. After carrying out this procedure, one
obtains expressions for the half-space of the form:
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The expressions for the Green’s function for two-and-

a-half dimensional full space GMI, G/,fv‘jcn and GM!' can be

defined in explicit form, as listed in the Appendix
(Tadeu and Kausel, 2000). Additionally, the surface term
can be separated into two parts, one of which corresponds
to the image source solution. This image source part,
Ghlt thg,go nd G | can be calculated again in closed

form (see Appendix).
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Expressions for the strains and stresses may be obtained
from Gj; by means of the well-known equations relating
strains and displacements.

The corresponding expressions for forces applied along
the y and z directions can be obtained in a similar manner.
The derivation of these solutions is presented in the fol-
lowing sections, in a condensed form.

Load acting in the direction of the y-axis

The discrete form of the displacement potentials, resulting
from a spatially sinusoidal harmonic line load along the z
direction, applied at the point (xo,yo) in the y direction,
are given by the expressions,
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The Green’s functions for a two-and-a-half dimensional
full space are thus,
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These surface terms can be expressed in the form,
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The imposition of the three stated boundary conditions
(dyx = 0,0, = 0 and gy, = 0 at y = 0) for each value of n
leads to a system of three equations,

(14)

7k2 7k2
2 e T n T A
12 12 5
_2vn Y_kﬂ )r_kz + 'yn Bn
n n y
(—k2—22) -2 -2k | LG

2
2v,Ep — (:/L: + Vn>Ecl

2
= 2v,Ep — (:/L: + Vn)Ecl (15)

(—ki —2v},)Epn +2v2,Ea

Having obtained the amplitude of each potential, the
Green’s functions for a half-space are then given by the
sum of the source terms and these surface terms, giving
the following expressions,
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The surface term can be separated into two parts, one of
which corresponds to the image source solution.
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These expressions Ghul, G}f})‘,u, Gfull Gi‘éuo, Gf“”0 and Gg‘éno,
can be used in exphc1t form as shown in the Appendlx
Again, expressions for the strains and stresses may be
derived from G;; by means of the well-known equations
relating strains and displacements.

Load acting in the direction of the z-axis

The discrete form of the displacement potentials, resulting
from a spatially sinusoidal harmonic line load along the z
direction, applied at the point (xo, y) in the z direction,
are given by the expressions,
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The Green’s functions for two-and-a-half dimensional full
space are then,
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The imposition of the boundary conditions
(6)x =0,0,, = 0 and 7,, = 0 at y = 0) for each value of
n leads to the following system of three equations,
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Having obtained the amplitude of each potential, the
Green’s functions for a half-space are then given by the
sum of the source terms and these surface terms, giving
the following expressions,
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The surface term can be separated into two parts, one of
which corresponds to the image source solution.
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These expressions Gy, GIit, GIJY, Gy, Gty and G,
can be used in exphc1t form as shown in the Appendix.
Again, expressions for the strains and stresses may be
derived from G; by means of the well-known equations
relating strains and displacements.
Notice that, if k, = 0 is used, the two-dimensional

Green’s function for plane strain line-loads is recovered,
agreeing with those provided by Kawase and Aki (1989).

Validation of the solution

The expressions described in the previous sections were
implemented and validated by applying them to the cal-
culation of the three displacement fields generated by a
spatially harmonic varying line load in the z direction in a
half-space. The results obtained by the proposed Green’s
functions are compared with those arrived at by using the
BEM to discretize the free surface, together with the
Green’s functions for a full space. The BEM code has been
validated for the case of a circular inclusion, for which
analytical solutions exist.

Complex frequencies with a small imaginary part of the
form o, = w — i (with # = 0.7(2n/T)) are used to avoid
an unlimited discretization of the free surface (Bouchon
and Aki, 1977 and Phinney, 1965). Boundary elements are
only required to the extent that they make a significant
contribution to the response for a certain value of dam-
ping. These elements are distributed along the surface up
to a spatial distance, Lgis from the center, given by
Lgiss = oT. This gives a discretized surface with a length
2Lgisr. Many simulations were performed to study the ef-
fect of varying the size of boundary elements on the ac-
curacy of the response. The performance was found to be
better when smaller elements were placed close to where
the response is required. Boundary elements of varying
size were therefore used, with the shorter elements placed
nearer to the center of the discretized surface.

The scheme used in this work to determine the place-
ment and size of the boundary elements makes use of a
geometrical construction, by which an auxiliary circular
arc is divided into equal segments according to a previ-
ously defined ratio between the wavelength of the dilata-
tional waves and the length of boundary elements. The
boundary elements are then defined on the topographic
surface by the vertical projection of these segments. The
radius of the required circular arc, R is bigger than
(2Lgist)/2 and is placed tangent to the topographic surface
at its boundary discretization end, thereby avoiding the
existence of improperly small boundary elements. In this
work, R is assumed to be [(2Lgist)/2]/cos 10° (see Fig. 2).

A harmonic point source was applied to the half
space medium (o = 4208 m/s, f§ = 2656 m/s with
p = 2140kg/m?), at the source point (x = 1.0m,

| Ldist ]

Fig. 2. Definition of the boundary elements



y = 2.0m), acting along the directions x, y and z inde- terms), the displacement in the i direction due to a load
pendently. Computations are performed in the frequency acting along j, is computed at a receiver point placed at

range [2.50,320.0 Hz|] with a frequency increment of x =3.0m and y = 5.0 m. The imaginary part of the fre-
2.5Hz. The scattered displacement field ij‘"f (surface quency has been set to n = 0.7(2n/T) with T = 0.0466s.
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To illustrate the correctness of the analytical expres-
sions, the results are computed for a single value of
k. (k; = 0.4rad/m). Figures 3-5 display the real and
imaginary parts of the displacements. The solid lines
represent the analytical responses, while the marked dots

l X
Z)/ 7(IL 2)
surf
G.\'Z
#y.s)
G;w G;'i":/
a) v
5.0
)
=
@
°
=
=
£
<
50 i i i
0 80 160 240 320
b) Frequency (Hz)
5
Ima ginary?'
o ol
x
(0]
o
2
2
g s
10 i : ;
0 80 160 240 320
c) Frequency (Hz)
5.0
2.5 foereerrsssen erenin ........................ ...................... .................... 5
< i H i
3
N ) PP T-r-y. vow. <~ TR, | VIRRNRRRTRRIY ¢ PIRRRR.
R i W
a H “\a
Imaginary
5 E iagma Y W\
I N3 (. ........................ ...................... oN...........
-5.0 . i i
0 80 160 240 320
d) Frequency (Hz)

Fig. 5a-d. Spatially sinusoidal harmonic line load along the z
direction in a half-space, applied in the z direction: a geometry of

the problem; b G2 solutions; ¢ G}s,‘z1rf solutions; d GUf solution

correspond to the boundary element method (BEM) so-
lution. This was obtained for a very large number of
boundary elements defined by the ratio between the
wavelength of the incident waves and the length of the
boundary elements, which was kept to a minimum of 18.
These calculations are restricted to low frequencies be-
cause, for higher frequencies, the BEM solution would
require the use of a very large number of boundary ele-
ments, which would make its solution impossible, owing
to computational cost. It may further be mentioned that
the BEM solutions provided in the present examples were
obtained by limiting the discretization of the free topo-
graphical surface, through the use of complex frequencies,
in such a way as to diminish the contribution of the waves
generated at sources placed at the end of the discretization.

Clearly, the agreement between these two solutions is
excellent. Tests with loads and receivers placed at other
points produced equally accurate results.

Conclusions

A fully analytical solution for the steady state response of a
spatially sinusoidal, harmonic line load in a homogeneous
three-dimensional half-space has been obtained. The final
expressions were validated by comparing them with nu-
merical results computed via the BEM. An excellent
agreement between the two solutions was found when the
free surface was discretized with a large number of
boundary elements.

The analytical solutions presented in this paper are
interesting in themselves. They provide the displacement,
strain or stress at a point buried in a half-space illumi-
nated by a spatially sinusoidal, harmonic line load buried
in a half-space and excited somewhere in the medium.
The solutions applied in conjunction with numerical
methods such as the BEM make the discretization of the
free surface unnecessary, and may prove to be very useful
in many engineering applications, such as the propaga-
tion of ground surface waves generated by seismic
sources.

Appendix

The Green’s function for a two-and-a-half dimensional
full-space
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with 7= 1/(x — %0+ — o)’
Hoy = HP (k1)

H,p = H? (kpr)

B, = KiH,s — k!Hy,

: » : full  cafull
For the image source, the Green’s functions (G5, Gyayo>

full  ~full . .
G 0200 Gxoyo: - - -) are obtained using the above expressions,

but replacing (y — yo), with (y + o).
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