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Numerical simulation of gas-particle flows behind a backward-facing
step using an improved stochastic separated flow model

C. K. Chan, H. Q. Zhang, K. S. Lau

Abstract An improved stochastic separated flow (ISSF)
model developed by the present authors is tested in gas-
particle flows behind a backward-facing step, in this paper.
The gas phase of air and the particle phase of 150 pm glass
and 70 um copper spheres are numerically simulated using
the k-¢ model and the ISSF model, respectively. The pre-
dicted mean streamwise velocities as well as streamwise
and transverse fluctuating velocities of both phases agree
well with experimental data reported by Fessler. The
reattachment length of 7.6H matches well with the exper-
imental value of 7.4H. Distributions of particle number
density are also given and found to be in good agreement
with the experiment. The sensitivity of the predicted results
to the number of calculation particles is studied and the
improved model is shown to require much less calculation
particles and less computing time for obtaining reasonable
results as compared with the traditional stochastic sepa-
rated flow model. It is concluded that the ISSF model can be
used successfully in the prediction of backward-facing step
gas-particle flows, which is characterised by having recir-
culating regions and anisotropic fluctuating velocities.

Introduction

Two-phase flows are commonly found in many engineer-
ing and natural processes, such as pulverized-coal com-
bustion, spray combustion and solid transport. Generally,
there are two approaches to predict the properties of the
dispersed phase. They are the two-fluid model based on
the Eulerian approach and the trajectory model based on
the Lagrangian approach (Crowe et al., 1996). In the
Lagrangian approach, the stochastic separated flow (SSF)
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model is widely used among the deterministic separated
flow (DSF) model and ‘particle diffusion velocity’ model
(Chang and Yang, 1999).

In the SSF model, the key points are the concept of energy
containing eddies and their action on the motion of the
dispersed phase. It assumes that the local continuous phase
turbulent fluctuation has an effect on the particle turbulent
dispersion only for points at the beginning of the interaction
time on the whole trajectory (Chan et al., 2000). Therefore,
the turbulent interaction between two phases is treated as an
intermittent process and a large number of computation
particles (in the order 10*) (Chang and Yang, 1999) needs to
be introduced into the prediction for a smooth statistical
property of the dispersed phase. Noticing that much less
computation particles are needed in the DSF model for
smooth statistical results (Chang and Wu, 1994) and that
interaction of two phases is a continuous process, the pre-
sentauthors (Chan et al.,2000) have developed an improved
stochastic separated flow (ISSF) model, in which mean
properties including velocity and mean-square fluctuating
velocity are transported along its stochastic trajectory.
Instead of considering the turbulent interaction between
two phases to be a discrete process as in the SSF model, the
mean-square fluctuating velocity is defined along the sto-
chastic trajectory by the transport equation in the ISSF
model. This ensures that the turbulent interaction between
two phases is continuous within the entire trajectory. Sim-
ilar to the DSF model, the mean properties are also trans-
ported along the trajectory in the ISSF model, thus requiring
less computation particles. Therefore, the ISSF model is
capable of treating the turbulent interaction between two
phases as a continuous process without introducing a large
number of computation particles into predictions.

This model has been successfully applied to a turbulent
two-phase flow of planar mixing layer as well as sudden-
expansion particle-laden flows by Chan et al. (2000) and
Zhang et al. (2001). Further test for this model is carried
out in this paper in a typical engineering case of gas-
particle flow behind a backward-facing step, which has a
recirculating region. Detailed experimental information
of the two phases, especially the anisotropic fluctuating
velocity, is available to test the prediction ability of the
anisotropic turbulence of the particle phase.

Basic equations

Backward-facing step gas-particle flows
In order to compare with experimental results, the test
case is carried out with the same flow parameters and
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Fig. 1. Test section

geometry of the test section as those of the experiment
carried out by Fessler and Eaton (1999). The test section
has an expansion ratio of 5:3 as shown in Fig. 1. The flow
is a single-sided sudden expansion oriented vertically
downward. The Reynolds number of the inlet channel
flow, based on the centerline velocity U, of 10.5 m/s and
the channel half-height, is 13,800; whereas the Reynolds
number of the backward facing step, based on the channel
centerline velocity and step height is 18,400. 150 pum glass
and 70 pm copper spheres are introduced into the back-
ward-facing step flow as the particle phase, their densities
are 2500 and 8800 kg/m?, respectively. The backward-
facing step flow is considered to be a steady two-dimen-
sional turbulent gas-particle flow.

Basic equations of gas-phase flow

The k-¢ turbulence model is adopted to describe the gas-
phase turbulent motion. The general form of Reynolds-
averaged equations of continuous phase is given as follows

0p 0 o
%x> w(%)
+Sp + Spo (1)

where ¢ is the generalized dependent variable, I',, is the
transport coefficient, S, is the source term of gas phase of
viscosity y and density p, and S,,, is the source term due to
the gas-particle interaction. The meaning of ¢, I',, S, and
Sy, for each governing equation is given in Table 1. The
empirical constants are given in Table 2.

S (o) + < (v0) =
ax U Gyp(p_ﬁx

Basic equations of particle-phase flow
The particle phase is simulated in Lagrangian approach
using an improved stochastic separated flow model. In the

Table 2. Empirical constants

c/4 G 073 Ok O

0.09 1.44 1.80 0.8 1.1

ISSF model, the dispersed phase is treated as individual
particles moving through the turbulent flow field of the gas
phase, and each of them represents a group of physical
particles with the same size, velocity and history. The
particle-particle interactions, pressure gradients, virtual
mass, Basset and Magnus forces are neglected

The time-averaged velocities 1’ and v}’ for the m-th
particle in the x-and y-directions are glven as

dup _ dup o dup _ u— up @
dt Prday P dyn o

and

dvp B d Y dvp v ()
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where u and v are the time-averaged velocities of gas phase

and 7y is the particle dynamic relaxation time defined by
4D p™
pp
Ty = . (4)
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The drag coefficient C}J' for a spherical drop is given by an
empirical formula of Putnam (1961),
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where the particle Reynolds number Rej!

Re —p\/u—um (v—v’”) Dy /u (6)

and p;' and D}’ are the particle’s density and diameter,
respectlvely

The mean-square ﬂuctuatlng velocities u;ﬁ and v’" for
the m-th particle are given as

is defined by

Table 1. Governing equation
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where the turbulent modulation term u‘g” u' and v;)mv’ are
proposed by Chen and Wood (1986) as

m
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with the time scale of an energetic eddy tr, empirical
constants Cr and By given as

T = CTk/S s (11)
Cr =0.165, Br=0.5 . (12)
For the stochastic trajectory, the m-th particle’s position

m m 1
x,' and y;' are given as

Vmy =2 ex 10
s p
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3 Wt (13)
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The time-averaged velocities of the m-th particle 4" and

vy are determined by Eqgs. (2) and (3), respectively. The

fluctuating velocities of the m-th particle »;" and v;" are
sampled from a ( Gaussian distribution with zero mean and
variances of u;" and v’“’2 obtained from Egs. (7) and (8)
such that

/ T2
upm = é’(u;n ) ? (15)

/ o
upm = C(v;” ) . (16)
After calculating sufficient number of particles, mean
properties of the dispersed phase such as velocities uy, v,
and fluctuating velocities uj,, v, in each control volume are
obtained by statistical approach as
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where At)! = 10}, — fif represents the residence time of the

m-th computatlonal partlcle in a control volume. The
particle number density 7, is given as

m

where AV is the control volume. The source terms due to
the gas-particle interaction, S,, and Sy, are given by
Crowe et al. (1977) as
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The time-averaged properties of the dispersed phase in-
cluding velocity and fluctuating velocity are transported
along the stochastic trajectory in the ISSF model. Both
effects of the particle’s history and its current state on the
fluctuation of dispersed phase are included.

Numerical procedure and boundary conditions

In the experiment, a 5.2-m long channel flow development
section ensures fully developed flow at the inlet to the test
section and allows sufficient time for the particles to come
to equilibrium with the channel flow. However, the inlet
conditions of the backward-facing step flow are not given
in experiment. Therefore, numerical simulation of the
5.2-m long channel flow is first carried out to give the inlet
condition of the backward-facing step flow, which includes
distribution of velocity, turbulent kinetic energy and its
dissipation rate. The distributions of inlet velocity and its
fluctuations are shown in Figs. 2-4, where x/H = 0. No-
slip condition for velocity is used such that u and v are
zero at the walls. For k and ¢, wall-function approximation
for near-wall grid nodes are adopted. At the exit, fully-
developed flow conditions are used such that

0¢/0x =0 (¢ = u,k,¢) and v = 0.
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Fig. 2. Streamwise mean velocity
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Fig. 3. Streamwise mean fluctuating velocity

For the particle phase, streamwise velocities at the inlet
correspond to terminal velocities of the experiment which
are 0.92 m/s for the 150 um glass particles and 0.88 m/s
for the 70 pm copper particles. Transverse velocities of
particles at the inlet are taken to be zero. The streamwise
and transverse fluctuating velocities are given as the same
as those of the gas phase. It can be seen that the fluctuating
status of particle phase at the inlet is easily set using the
ISSF model. The elasticity-collision condition is adopted
for the particle phase at the walls. Particles are introduced
into the flow at 40 different equally spaced inlet positions
between y = 26.7 and 66.7 mm. In order to verify the
sensitivity of the predicted results to the number of cal-
culation particles, 250 and 500 calculation particles are
selected for two different simulated cases. For the 250
calculation particles, 15 particles are added into the flow at
each of the first five positions near y = 26.7 mm and 5
particles at each of other positions. For the 500 calculation
particles, 30 particles are added into the flow at each of the
first five positions near y = 26.7 mm and 10 particles at
each of the other positions. The mass flow rate of each
particle varies with the inlet position where the particle is
added to establish a uniform distribution of particle
number density. In order to increase the probability of
particle appearing in the recirculating region and improve
the predicting results in this region, more particles are
added near y = 26.7 mm as described above.

The set of partial differential equations of the gas phase
are integrated numerically by the SIMPLE algorithm sub-
ject to the boundary conditions above. The set of equa-
tions of the particle phase are integrated over a time step
At (of the order 10*s) by the Eulerian method. In inte-
grating the particle position equations, the action times of
each sampled fluctuating velocity of the particle phase are
determined. In fact, this action time is related to the en-
ergy spectrum and frequency of the particle’s fluctuation
that are measured by experiments. This prediction is de-
termined by reference to the action time of the gas-phase
fluctuating velocity in the SSF model.

The gas-phase flow field is obtained by first solving the
governing equations without the source term due to the
interaction between the two phases. As the particles move
through the above gas-phase flow field the source terms
are then introduced. The gas-phase governing equations
are solved iteratively with the source terms until conver-
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Fig. 4. Transverse mean fluctuating velocity

gence is attained. The convergence criterion is that the
sum of the absolute values of the momentum residual is
less than 107°.

Results and discussion

Predicted and measured results of the streamwise veloci-
ties as well as streamwise and transverse fluctuating ve-
locities of the gas phase are shown in Figs. 2-4,
respectively. As fluctuating velocities cannot be obtained
directly using the k-¢ turbulence model, the ratio of
streamwise mean-square fluctuating velocity u2 to trans-
verse mean-square fluctuating velocity v2 is assumed as
2:1 in predictions for the gas phase. It can be seen that the
predicted mean velocities and fluctuating velocities are in
good agreement with Fessler’s experiment. It indicates that
the backward-facing step flow is anisotropic and the as-
sumed ratio is correct. As is well known, the reattachment
length predicted using k-¢ model is much less than that of
experiment. However, in our predictions, the predicted
reattachment length is 7.4H as shown in Fig. 5, which
agrees well with the experimental value of 7.6H. This is
mainly due to the accurate inlet conditions and adjustment
of model constants as shown in Table 2.

Predicted and measured results of the streamwise ve-
locities as well as streamwise and transverse fluctuating
velocities of 150 pm glass and 70 um copper particle phase
are shown in Figs. 6-11, respectively. These show that the
predicted mean velocities and fluctuating velocities agree
well with those of the experiment. The characteristic dif-
ference between the streamwise mean fluctuating velocity
and transverse mean fluctuating velocity can be seen from
predicted results and experiment values. This indicates
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Fig. 5. Flow pattern
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Fig. 7. Streamwise mean fluctuating velocity for glass particles
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Fig. 8. Transverse mean fluctuating velocity for glass particles

that the ISSF model has a good ability for predicting
anisotropic turbulent particle flows. For inlet conditions of
the fluctuating velocity of the particle phase, it is easily
considered using the ISSF model by taking corresponding
inlet conditions as initial conditions of Eqgs. (7) and (8).
150 pm glass particles can be found in the recirculating
regions in the prediction and in the experiment, while

70 pm copper particles are not found in the recirculating
region in the experiment. Sensitivity of the predicted re-
sults to the number of calculation particles is also studied.
As shown in Figs. 6-11, there is no significant difference in
the predicted results of particle phase for using 250 and
500 particles. For similar cases using the conventional SSF
model, 10,000 particles were used for computing the
mono-dispersed particle laden jet by Mostafa et al. (1989)
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Fig. 9. Streamwise mean velocity for copper particles
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Fig. 11. Transverse mean fluctuating velocity for copper particles

and 9000 computation particles were needed for smooth
profiles of predictions in a confined particle-laden jet by
Adeniji-Fashola and Chen (1990). Unlike the conventional
stochastic separated flow model which requires many
more computation particles, the present study using the
ISSF model requires far less particles (<250) in obtaining
smooth statistical and reasonable results.

The distributions of particle number density are shown
in Fig. 12. The distribution becomes uniform from up-
stream to downstream, which is very similar to the ex-
periment. Chang and Yang (1999) reviewed some
numerical issues of the stochastic Eulerian-Lagrangian
models for two-phase turbulent flow computations. They
concluded that inlet condition of the dispersed-phase
fluctuating velocity has an important effect on predicted
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Fig. 12. Dimensionless particle number density

results of the fluctuating flow quantity of the dispersed
phase. Such inlet condition is generally neglected in other
stochastic Lagrangian computations. In addition, a large
number of computational particles (in excess of 10*) for
each size is needed to attain a statistically stationary so-
lution of u/? and v2. These issues are successfully resolved
in numerical simulation of backward-facing step gas-par-
ticle flows using the ISSF model.

In the ISSF model, the inlet condition of the dispersed-
phase fluctuating velocity is easily introduced into the
computations without increasing any of the stochastic
trajectory. The solved quantities of the dispersed phase
along the stochastic trajectory are time-averaged velocity
and root-mean-square of fluctuating velocity. In this re-
spect, in the ISSF model, the interaction between the two
phases are considered to be a continuous process, which is
similar to the DSF model and different from the SSF
model. This is the key factor why the ISSF model requires
far less computation particles to obtain a statistically sta-
tionary solution of mean velocity and root-mean-square
fluctuating velocity. Therefore, compared with SSF model,
the ISSF model has the advantage of easy manipulation of
inlet conditions of the dispersed phase and far less
computational particles to obtain statistically smooth
solutions.

Conclusions

Using the ISSF model, predicted results of velocity and
fluctuating velocity of both phases of backward-facing step
flow are in good agreement with the experiment. Distri-
butions of particle number density are very similar to that
of the experiment. As the inlet condition is easily intro-
duced into the computations and the quantities solved
along the trajectory are not related to the instantaneous
quantities, the ISSF model requires fewer particles in
obtaining smooth and reasonable statistical results. It is
concluded that the ISSF model is successfully applied in
predicting backward-facing step flow.
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