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Abstract This paper presents an ef®cient ®nite element
algorithm for propagating ¯uid-driven fractures in pres-
sure sensitive geomaterials. Fluid ¯ow in the fracture is
modelled by lubrication theory. Rock deformation is as-
sumed to be elastoplastic and dilatent. A cohesive model
based on the softening behaviour of rocks is employed as
the propagation criterion. A special continuation method
based on the volume of injected ¯uid in the fracture is
used for direct coupling of the ¯uid-¯ow with rock defor-
mation and for driving the solution during propagation.
Sample results are provided for the problem of hydraulic
fracturing to demonstrate the ef®ciency of the proposed
algorithm.

1
Introduction
The problem of a ¯uid-driven fracture has attracted many
contributions since the early ®fties (Kristianovitch and
Zheltov, 1955; Geertsma and DeKlerk, 1969). Interest in
such studies rises mainly from hydraulic fracturing, a
technique for stimulating hydrocarbon reservoirs but also
from other applications such as magma driven fracture
(Spence and Turcotte, 1985). With hydraulic fracturing, a
wellbore interval is pressurized with viscous ¯uid at high
pumping rates to initiate and propagate a tensile fracture.
Once the fracture is created, it is packed with proppant
(material like sand) to prevent closure after the hydraulic
pressure is released. The created propped fracture pro-
vides a highly conductive path for the ¯ow of hydrocar-
bons towards the well. New applications of hydraulic
fracturing have been recently found in geotechnical engi-
neering for ground reinforcement, in petroleum engi-
neering for re-injection of drilling cuttings and in
environmental engineering for solids waste disposal.
Modelling the propagation of hydraulic fractures is usually
carried out prior to fracturing in order to optimize the
treatment for maximum ef®ciency. Optimization is carried
out using models that incorporate principles of ¯uid me-
chanics, elasticity, and fracture mechanics. Parameters
which are optimized include the fracture length and width,
¯uid design and pumping schedule.

In practice, a lot of attention is focussed on the pre-
diction of wellbore pressure; wellbore pressure is normally
measured during the treatment and is usually the only
parameter available to evaluate the operation. Classical
hydraulic fracturing simulators often underestimate the
down-hole pressures which are measured in ®eld opera-
tions. A recent world-wide survey on net-pressures (dif-
ference between fracturing pressure and far-®eld con®ning
stress) indicated that net-pressures encountered in the
®eld are 50% to 100% higher than the net-pressures pre-
dicted by the conventional hydraulic fracturing simulators
(van Dam et al., 1997). The occurrence of high net pres-
sures triggered a series of dedicated research studies and
several hypotheses have been proposed to explain the
discrepancy between model predictions and ®eld mea-
surements. Among them, the most consistent with ob-
servations are (1) high friction losses in constrictions
within a fracture and (2) effective fracture toughness ef-
fects (e.g. due to micro-cracking or plasticity in the pro-
cess zone).

According to the ®rst hypothesis, the observed high net
pressure is related to a sharp drop of ¯uid-pressure and the
existence of a dry region near the crack-tip (Johnson and
Cleary, 1991). Earlier models often ignored the existence of
a fracturing ¯uid front and arbitrarily assigned (sometimes
wrongly) a pressure condition at an arbitrary location.
Fluid front tracking, however, involves an unknown posi-
tion and requires iteration in the numerical procedure.
This cumbersome process fuelled the motivation for un-
derstanding ®rst the nature of the solution in the vicinity of
the crack tip (Sharp and Spence, 1985) and for developing
later a `crack tip element' (Desroches et al., 1994; Carbonell
and Detournay, 1999). The tip region behaviour is an im-
portant aspect of the problem and a near-tip analytical
solution could be used either to obtain a complete analyt-
ical model for fractures with plane strain (Garagash and
Detournay, 1999) and penny-shape (Savitski and Detour-
nay, 1999) geometries or to provide tip region boundary
conditions in a numerical model of the complex geometry
problem (Carter et al., 1999). A thorough discussion on
these studies can be found in Detournay (1999).

The second hypothesis implies that the non-linear de-
formation of the rock might have a strong in¯uence in
hydraulic fracturing. This hypothesis is strongly supported
by the recent survey on the net pressures which revealed
that the difference between model predictions and ®eld
measurements was consistently higher in weak formations
(van Dam et al., 1997). In addition, it is important to
mention that in the last decade fracture design has chan-
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ged from long fractures to shorter and wider fractures. The
need for modelling the non-linear rock behaviour could be
justi®ed following two avenues. The ®rst avenue suggests
that the non-linear rock behaviour will induce a pressure
pro®le near the crack tip that is quite different from that
predicted by linear elasticity. This could affect the com-
plete pressure response (Barr, 1991) . One can include in
this approach the possibility of fracture multi-branching
which was mainly based on observations from a ®eld ex-
periment (GRI, 1991). However, Germanovich et al. (1988)
recently showed that propagation of multiple fractures
does not necessarily cause a signi®cant increase in re-
quired net pressure. The second avenue states that the
energy required to create new rock surface(s) dominates
the pressure response. This energy must be much higher
than the free surface energy measured in small scale lab-
oratory experiments and the in¯uence of large scale het-
erogeneities or large scale plasticity could be introduced.
In this approach, the viscous loss could be neglected and
the pressure in the crack could be assumed to be uniform
(Shlyapobersky, 1985).

In an attempt to explain the observed high net pres-
sures, we developed an elastoplastic hydraulic fracturing
model. Conclusions derived from an analytical solution for
elastic materials (Desroches et al., 1994) and from pre-
liminary computations, showed that the stress and defor-
mation ®elds around the fracture tip depend strongly on
the ¯uid-¯ow in the fracture. It is therefore essential to
solve the problem fully coupled, although it becomes
highly non-linear. This paper concentrates on the nu-
merical aspects of the involved processes with particular
emphasis on the solution algorithm used for direct cou-
pling of the ¯uid-¯ow with rock deformation during
propagation. The proposed model has been tried suc-
cessfully in a series of studies which are related to the
in¯uence of plastic deformation in hydraulic fracturing
(Papanastasiou and Thiercelin, 1993; Papanastasiou,
1997a; Papanastasiou, 1999a). We found that plastic
yielding near the tip of a propagating fracture provides an
effective shielding, resulting in an increase of the rock
effective fracture toughness by more than an order of
magnitude (Papanastasiou, 1999a). Higher pressure is
needed for propagating an elasto-plastic fracture than an
elastic fracture and the created elasto-plastic fracture is
shorter and wider than the elastic fracture of the same
volume (Papanastasiou, 1997a).

The paper is organized as follows: ®rstly we describe in
Sect. 2 the involved processes in the model which are the
¯uid-¯ow, rock deformation and fracture propagation.
Fluid ¯ow in the fracture is modelled by lubrication the-
ory. Rock deformation is assumed to behave like an
elastoplastic and dilatant Mohr-Coulomb solid. The
propagation criterion is based on the softening behaviour
of rocks. In Sect. 3, we present a special continuation
method based on the volume of injected ¯uid in the
fracture which is used for direct coupling of the ¯uid-¯ow
with rock deformation and for controlling the solution
during propagation and closure. In Sect. 4, we present
sample results for propagating and receding elastic and
elastoplastic hydraulic fractures to demonstrate the ef®-
ciency of the developed algorithm.

2
Model description
The developed model is based on a plane strain fracture
geometry (Fig. 1). This is the most appropriate geometry
for short fractures with fracture height relatively large
compared to the fracture length. In addition, this geometry
is appropriate for examining tip effects since the defor-
mation near the tip of any arbitrary shape fracture be-
comes planar. We note, in parenthesis, that fractures
initiated either from perforations or directly from the
wellbore are initially aligned with the near-wellbore stress
®eld, but quickly reorient themselves to propagate in the
preferential plane which is perpendicular to the far-®eld
minimum in situ stress. The length-scale where fracture
re-orientation takes place is much smaller than the frac-
ture length so it can easily be ignored. In this study, we
simply assume that the fracture propagates perpendicular
to the minimum in situ stress remaining planar.

Describing the model using Fig. 1, the pumping viscous
¯uid pressurizes the fracture surfaces which deform. De-
pending on formation properties, in situ stresses and
pumping parameters, the ¯uid may not necessarily reach
the fracture tip thus allowing for the possibility of a dry
zone (¯uid lag) near the fracture tip. Due to high stress
concentration near the tip region, plastic deformation may
take place resulting in stress redistribution and tip
shielding. With increasing pressurization, critical stress
conditions ahead of the tip will be reached splitting the
formation and driving fracture propagation. Thus, there is
a strong coupling between moving ¯uid, rock deformation
and fracture propagation. In summary, the main physical
processes which govern hydraulic fracturing in a weak
formation are (1) viscous ¯uid ¯ow in the fracture, (2)
elastoplastic deformation caused by the stress concentra-
tion, (3) fracture propagation and (4) ¯uid leak-off from
the fracture into the formation. The last process is not
taken into consideration here assuming that in practice
¯uid leak-off can be controlled by ¯uid additives.

Fig. 1. Geometry for a plane strain hydraulic fracture
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2.1
Fluid-flow
Most of the ¯uids that are used for hydraulic fracturing are
power-law ¯uids with a shear-thinning behaviour, mean-
ing that the viscosity decreases with increasing shear-
strain rate. For simplicity, we assume in this study that the
fracturing ¯uid is an incompressible, uniform, linear
(Newtonian) viscous ¯uid. A Newtonian ¯uid has a para-
bolic pro®le when it ¯ows between parallel plates with
shear rates of zero in the middle of the pro®le and higher
towards the sides. Fluid-¯ow will be approximated here
using an average ¯uid velocity, v, and an effective channel
viscosity, �l.

The ®rst ¯uid-¯ow equation is derived from the conti-
nuity equation which imposes conservation of mass in one
dimensional ¯ow

ow

ot
� oq

ox
� 0 ; �1�

where w is the local fracture width and q is the local ¯ow
rate. Equation (1) ignores any leak-off from the fracture
surface into the rock formation.

A second equation is derived from conservation of
momentum. For a ¯uid-¯ow between parallel plates the
lubrication equation, which relates the pressure gradient
to the fracture width for a Newtonian ¯uid of viscosity l
degenerates to

q � vw � ÿ w3

12l
op

ox
; �2�

where p denotes the ¯uid pressure in the fracture. The
effective channel ¯ow viscosity �l is introduced because it
appears in the denominator of (2) for the average ¯uid
velocity and it is directly related to the ¯uid viscosity,
�l � 12l.

The ¯uid-¯ow Eqs. (1) and (2) are supplemented with a
®rst boundary condition for a given ¯ow rate at the well-
bore

q�0� � q0 : �3�
As mentioned earlier, the ¯uid may not necessarily reach
the fracture tip allowing for the possibility of a ¯uid lag
near the tip. In such a case the existence of a ¯uid-lag
provides a second boundary condition. The pressure in the
¯uid-lag region can take either a maximum value equal to
the pore-pressure when the fracture propagates slowly in a
high permeability rock or it can be zero if the fracture
propagates relatively fast in a low permeability rock. In
this study we will assume the latter case since ¯uid in®l-
tration and diffusion from the fracture into the rock and
vise-versa are ignored. Therefore, a second boundary
condition is de®ned at the ¯uid-front

p�l� � 0 : �4�
Equation (2) can be used to determine the pressure pro®le
along the fracture from the local width, w, and local ¯ow
rate, q, starting the integration from a reference pressure.
According to (2), the pressure gradient is very sensitive to
fracture width:

op

ox
� ÿq�l

1

w3
: �5�

Therefore, the largest part of the pressure drop takes place
within a small area near the tip region where the width
varies most, approaching zero value. In the numerical
models due to the steep gradient at the ¯uid-front region,
an attempt to start the pressure integration from the ¯uid-
front position using (4) and (5) becomes a cumbersome
procedure because small variation in the fracture width
during the iteration cycle results in pressure overshooting.
As an alternative solution, we propose in Sect. 3 a pressure
integration scheme which starts from the wellbore. The
required reference pressure at the wellbore is determined
indirectly from the condition that the fracture must be at
propagation state. The position of the ¯uid-lag is deter-
mined from the mass balance equation (1) and the
boundary condition (4).

2.2
Inelastic rock deformation
In weak rocks, large inelastic deformation is expected to
take place in the area near the crack tip due to excessive
stress concentration. In such a case one should use plas-
ticity theory which properly describes the irreversible
deformation. When the fracture propagates the plastic
zones unload elastically behind the advancing crack and
the new area near the current tip deforms plastically. In
summary, the rock mass remote from the fracture may
deform elastically, whereas the area near the body of the
fracture is initially elastic but then deforms plastically and
®nally unloads elastically after the fracture tip has ad-
vanced. Under such conditions, the plasticity model must
be capable of dealing with non-proportional loading. Such
capabilities are provided, of course, by an incremental ¯ow
theory of plasticity and ®nite element analysis.

Among the different yield criteria, the Mohr-Coulomb
model adequately describes the pressure-sensitive behav-
iour of rocks which exhibit dilatency when sheared. Unlike
most cases of classical fracture mechanics, the remote
stress ®eld in the hydraulic fracturing problem is com-
pressive, due to the presence of the in situ stresses. In such
a case the use of Mohr-Coulomb yield criterion, which is
usually employed in cases of compressive stresses, is fully
justi®ed. The tensile failure along the propagation line is
modelled in the next section by a cohesive-type model. In
a simple form, the Mohr-Coulomb yield criterion can be
expressed in terms of maximum and minimum principal
stresses, r1 and r3, respectively, (compression is negative)

re � r1
1� sin /
1ÿ sin /

ÿ r3 ; �6�

where / is the friction angle and re is the equivalent stress
which is related to the cohesion c via

re � 2c
cos /

1ÿ sin /
: �7�

Post yield strengthening with deformation can be mod-
elled using a cohesion hardening model. According to this
model the equivalent stress, re, increases with the accu-
mulated equivalent plastic strain, �p,
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re � r0
e � h�p ; �8�

where r0
e is the value of equivalent stress at initial yield. The

linear hardening plasticity modulus h has been derived in
Papanastasiou (1997) from the loading and unloading
moduli as measured in a uniaxial compression test.

h � Eloading

1ÿ Eloading=Eunloading
: �9�

In the ¯ow theory of plasticity the strain increment d�ij is
decomposed into an elastic d�e

ij and a plastic part d�
p
ij

d�ij � d�e
ij � d�

p
ij : �10�

The elastic strain increment d�e
ij can be obtained from

Hooke's law. The plastic strain increments, d�
p
ij, are gen-

erated when the yield surface is reached and can be gen-
erally expressed by a non-associated ¯ow rule in the form

d�
p
ij � dk

oQ

orij
; �11�

where Q is the plastic potential and the scalar function dk
is the so called plastic multiplier. The plastic potential Q
can have a similar form to yield surface re, if in Eq. (6) the
dilation angle w replaces the friction angle /. This allows
non-associated plasticity to be dealt with, and associated
rules to be obtained as a special case, by making w � / or
Q � re.

As mentioned before, the yield surface and plastic po-
tential are generally functions of stresses and the harden-
ing parameter �p (a scalar). The hardening parameter �p is
calculated from the principle of plastic power equivalence
(Papanastasiou and Durban, 1997),

red�p � rijd
p
ij : �12�

In general, weak rocks obey a non-linear yield criterion
and exhibit non-associative behaviour. Experimental re-
sults from triaxial compression tests show (a) that the
dilation angle increases slightly with increasing plastic
strain when low con®ning pressures are used but remains
approximately constant in samples under high con®ning
pressure and (b) the value of dilation angle is a strong
function of the con®ning pressure. In tests with low con-
®ning pressure the measured dilation angle is greater than
the friction angle but decreases rapidly with increasing
con®ning pressure, eventually becoming negative. This
indicates compaction at very high con®ning pressure. In
hydraulic fracturing, compaction is excluded because the
initial in-situ mean pressure near the crack tip decreases
during propagation. Furthermore, earlier computations by
Papanastasiou and Thiercelin (1993) showed that the non-
associative solution (e.g. zero dilation) was bounded by
the associative solution and the elastic solution.

2.3
Propagation criterion
The most robust propagation criterion currently available
in non-linear mechanics is based on constitutive model-
ling of the cohesive zone (Barenblatt, 1962). The cohesive
zone is the region ahead of crack tip that is character-
ized by micro-cracking and interlocking along a portion of

the crack (Fig. 1). According to Labuz et al. (1985) and
Bazant (1986) the main fracture is formed by inter-con-
nection of these micro-cracks. The cohesive model implies
that normal stress continues to be transferred across a
discontinuity which may or may not be visible (Fig. 2).
This stress is determined from the softening stress-dis-
placement relation that various rocks exhibit in the post-
peak regime of calibration tests. In this separation process,
the restraining stress, r is a function of opening displace-
ment d which falls off to zero at a critical opening dis-
placement dc and the actual crack propagates (Fig. 2). It is
also assumed that the cohesive zone localizes, due to the
softening behaviour, into a narrow band ahead of the true
crack tip. The last assumption is very convenient for ®nite
element analysis, where the softening behaviour is mod-
elled by interface elements lying in the direction of crack
growth, ahead of the true crack tip (Hillerborg et al., 1976).

The constitutive behaviour of interface elements can be
de®ned by the stress-displacement curve which is usually
derived from a displacement control uniaxial tensile test.
Because of the con®nement by the in situ stresses in the
problem of hydraulic fracturing, the stress path ahead of
the fracture tip has more similarities with the triaxial ex-
tension test rather than with the direct tensile test. Fur-
thermore, a direct tensile test is dif®cult to perform in
weak or poorly consolidated sandstones. Due to the lack of
available data, and in order to keep the number of input
parameters minimum, a linear softening material was as-
sumed (Fig. 3). The area under the stress-displacement
curve, �d� equals the strain energy release rate GIC when
the size of the cohesive zone is small compared to the
crack length. For elastic solids the strain energy release
rate, GIC is related to rock fracture toughness, KIC via
(Kanninen and Popelar, 1985):

K2
IC �

GICE

1ÿ m2
; �13�

where E is the Young's modulus and m is the Poisson ratio.
The fracture toughness, KIC , is de®ned as a material pa-
rameter for elastic solids and can be calculated in a lab
experiment as long as no plastic yielding takes place
around the tip. If one assumes reasonable values for the

Fig. 2. Representation of the fracturing process of rock
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rock fracture toughness KIC and the uniaxial tensile
strength of the rock (approximately 8 to 10 times less than
the uniaxial compressive strength, rc � 10rT) the stress-
displacement relation, r�d�, is uniquely determined from
equation:

r � rT�1ÿ d=dc� �14�
where rT is the uniaxial tensile strength of the rock and dc

is the critical opening displacement at which r falls off to
zero. The value of dc, is given by,

dc � 2K2
IC�1ÿ m2�

ErT
�15�

In this study a two-dimensional, isoparametric, 6-node
interface element was employed. A consistent isopara-
metric formulation permits modelling of curved crack
surfaces and provides an element that is compatible with
the 8-node quadratic displacement ®nite elements that are
used to discretized the internal domain.

2.4
Initial solution
The numerical algorithm requires initial conditions to be
speci®ed at t � 0 for the initial fracture length `�0�, width
pro®le w�x; 0� and ¯uid pressure p�x; 0�. In setting these
initial conditions, the analytic solution derived in De-
sroches et al. (1994) for an elastic material with zero
fracture toughness has been used. This solution is sum-
marized as follows:

p�x; 0� � r1 � E0lv
3

� �1=3 6
���
2
p

p
1

`�0�1=3
ÿ 1

�`�0� ÿ x�1=3

" #
�16�

w�x; 0� � �`�0� ÿ x�2=3 lv
E0
� �1=3

� 7:21ÿ 3:17 1ÿ x

`�0�
� �5=6

" #
�17�

where r1 is the in situ stress perpendicular to the fracture
axis, E0 � E=�1ÿ v�2 is the plane strain modulus, l is

the ¯uid viscosity and v is the propagation velocity given
in terms of ¯ow rate q0 by

v � 0:835q�0�3=4`�0�ÿ1=2 E0

l

� �1=4

�18�

The solution described by Eqs. (16)±(18) has been derived
under the assumption of constant velocity v � const: and
it pertains to the near tip region. This solution has recently
been extended by Carbonell and Detournay (1999) to ap-
ply to the whole of the hydraulic fracture.

The numerical model of ¯uid-driven fractures requires
an initial fracture length which may leave its signature on
propagating elastoplastic fractures since plasticity is path
dependent. It has been shown in Papanastasiou (1997a),
where propagations were carried out with different initial
lengths, the initial fracture length had an effect on the
fracture pro®les in the initial fracture length interval, but,
the fracture pro®les were correctly calculated in the region
where the fractures were propagated. In addition, we
found that the elastoplastic and elastic solutions are rela-
tively close at the ®rst propagation step (Papanastasiou,
1997a). This observation justi®es the use of the elastic
analytic solution as an initial solution for the propagation
of elastoplastic fractures.

3
Numerical implementation

3.1
Coupling of fluid-flow and solid deformation
The described time-dependent non-linear problem of hy-
draulically propagating fractures is solved coupled fol-
lowing an incremental/iterative procedure. Incremental
analysis is employed for propagating the fracture and it-
erative procedure is required to bring the ¯uid-¯ow, rock
deformation and fracturing processes in equilibrium at
every propagation step. The in situ stresses are applied in
the ®rst propagation step along with the initial solution for
the pressure in the fracture given by (16). During fracture
propagation the ¯uid pressure in fracture, denoted by
kfPg is unknown and needs to be determined. fPg is a
normalized pressure and k is a pressure multiplier. The
meaning of these terms will be explained further in the
coupling of ¯uid-¯ow with the rock deformation. The
governing equation, in terms of the unknown nodal in-
cremental displacement fDUg at the �m� 1�th propaga-
tion step, is obtained from the well known equation of
non-linear ®nite element analysisZ

X
�B�T�Dep��B�fDUgdX � km�1fPg ÿ

Z
X
�B�TfrmgdX

�19�
or

�K�fDUg � fRg �20�
where �K� is the global stiffness matrix

�K� �
Z

X
�B�T�Dep��B�dX �21�

Fig. 3. Constitutive model for the cohesive zone
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and

fRg � km�1fPg ÿ
Z

X
�B�TfrmgdX �22�

is the residual vector (or unbalanced forces) which can be
visualized as additional nodal forces required to bring the
assumed displacement pattern into nodal equilibrium.
Thus, the nonlinear problem is stepwise linearized and the
linearization error is corrected by additional equilibrium
iterations. The technique of choice for solving the non-
linear equation set, is Newton's method.

During fracture propagation, the pressure at the well-
bore may raise or drop therefore the pressure level can not
predetermined. This problem is solved by adapting one of
the several methods described in the literature for tracing
the response of structures near limit points (Ramm, 1981).
An elegant procedure for overcoming limit points is an
indirect displacement control; this method is summarized
hereafter. The increment fDUg�j�, in the iteration j fol-
lowing the i iteration, from Eq. (19) is conceived to be
composed of two contributions:

fDUg�j� � Dk�j�fDUg�j�I � fDUg�j�II �23�
with

fDUg�j�I � �K�i��ÿ1fPg
fDUg�j�II � �K�i��ÿ1fRg�i�

�24�

and the level of applied pressure is

k�j�m�1 � k�i�m�1 � Dk�j� �25�
After computing the displacement vectors fDUg�j�I and
fDUg�j�II , the value for Dk�j� is determined from some
constraint equation on the displacement increments. As a
constraint we will use the global mass balance equation
which says that in time Dt the volume of the injected ¯uid
in the fracture must be equal with the volume increase of
the fracture occupied by ¯uid. Suppose that in the prop-
agation step, �m� 1� we have injected in the fracture ¯uid
of volume

DV � q0Dt �26�
where q0 is from the boundary condition (3). If DV

�j�
I and

DV
�j�
II denote the volume changes of the fracture which

correspond to the displacements of fracture boundary
®lled with ¯uid, fDUg�j�I and fDUg�j�II , respectively, then
the volume increase, DV�j� in the iteration j, is given by

DV�j� � Dk�j�DV
�j�
I � DV

�j�
II �27�

In the ®rst iteration we have, DV�1� � DV and (27) allows
the determination of the incremental pressure multiplier

Dk�1� � DV ÿ DV
�1�
II

DV
�1�
I

�28�

In all further iteration the fracture volume is kept constant,
therefore DV � 0 and the value of Dk�j� is

Dk�j� � ÿDV
�j�
II

DV
�j�
I

�29�

The described continuation method enables the simul-
taneous control of the solution during propagation and the
direct coupling of ¯uid-¯ow with rock deformation. This
coupling passes through the term kfPg where, as already
mentioned, fPg is the eigen-pressure vector along the
fracture with unit value at wellbore and k is the value of
the pressure at wellbore and it is determined implicitly
from Eqs. (25)±(29). The term kfPg gives the applied
pressure along the fracture. The eigen-pressure vector fPg
is determined as follows: First we note that for internally
pressurized cracks the fracture width is governed by the
net-pressure. For example, the pro®le of an elastic crack of
length L which is loaded with uniform internal pressure pf

and remote con®ning stress r1 (negative) has an elliptical
shape given by

w � 4
pf � r1

E0
���������������
L2 ÿ x2
p

�30�
Along this line, we found that if the eigen-pressure vector
is constructed from net-pressure the algorithm results in a
much faster convergence. The eigen-pressure vector fPg is
determined following a second order, 0�h2�, Euler inte-
gration scheme of Eq. (5). The 1-D space discretization of
the ¯uid-¯ow equation is identical with the discretization
of the fracture boundary. The 2nd order Euler integration
starts always from the wellbore with value P�0� � 1 and it
shoots to the side of the crack tip. The eigen-pressure at
the node �n� 1� is calculated from

P�n�1� � P�n� ÿ dp

dx

�n�1=2�
dx�n�=�pw � r1� �31�

where pw is the pressure at the wellbore in the last itera-
tion. In the ¯uid-lag region the eigen-pressure is constant
given by

Plag � r1

pw � r1
�32�

The ¯uid-front position is found at the point where the
¯uid-pressure changes sign. In addition, the way the iter-
ative process is conducted warranties that the ¯uid-front
position satis®es the global mass equation. Nevertheless,
post-calculation checking veri®ed that the new ¯uid-front
position agrees with the expected movement of the ¯uid-
front in time increment Dt according to the average ¯uid-
front velocity, v, predicted by (2). Depending mainly on
pumping parameters (¯ow rate and ¯uid viscosity) the
¯uid-front may reach the cohesive zone (visual tip). In that
case the ¯uid lag disappears and the value of ¯uid pressure
is determined from (31).

We note that in the described continuation scheme the
eigen-load changes in every iteration whereas in the con-
tinuation methods belonging to arc-length or displace-
ment control families the loading is proportional; all load
magnitudes vary with a single scalar parameter (e.g. the
parameter k). This is a result of the varying pressure from
the ¯uid-¯ow in the fracture. Furthermore, if in the
Eqs. (27)±(29) the change of volume of the fracture DV is
replaced by the displacement DUk of any node k, the
procedure reverts to the standard displacement control
method. However, we found that it is easier to control the
volume of the fracture which reaches a constant rate in-
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crease after the ®rst steps of propagation. Following such a
control procedure, convergence is reached faster and the
fracture propagation criterion is satis®ed exactly in every
propagation step.

We found the displacement control approach to be
more convenient method for modelling fracture closure.
During closure it is assumed that there was no ¯uid-¯ow
in the fracture and as a result the pressure acting along the
fracture was constant. At every step the displacement of
the ®rst node of the element behind the crack-tip is ®xed
to the negative value of its opening. In this way, the use of
contact algorithm for preventing surface overlap during
closure is not required.

3.2
Finite element discretization
The calculations were carried out using the 8-node quad-
rilateral elements and a nine-point Gaussian integration
for the internal domain. Compatible 6-node isoparametric
quadratic displacement interface ®nite elements with zero
thickness were used for modelling the fracturing process.
Singular elements near the crack tip, which widely em-
ployed in elastic singularities of 1=

��
r
p

type, were not em-
ployed here since plastic yielding and cohesive modelling
which is employed as a fracture propagation criterion
cancel the singular ®elds near the fracture tip. An explicit
technique, similar to the Euler forward method has been
employed in the integration of the stress-strain law. Con-
vergence criterion for terminating the equilibrium itera-
tions has been chosen the Euclidean norm of the out of
balance forces not to exceed a percentage (0:01%) of the
norm of the applied external load.

A meshing/remeshing scheme is employed in order to
carry out longer propagations with ®ne mesh near the
fracture tip. The meshing/remeshing scheme was based on
the following steps: The sensitive area near the tip where
high gradients exist was discretized using a ®ne mesh and
the region away from the crack-tip was discretized with a
coarser mesh. After some propagation steps and well be-
fore the fracture tip moves into the coarse mesh, the ®ne
mesh was shifted near the tip. With the extension of the
fracture the discretization of the far ®eld was also ex-
tended. The element grading in the original mesh was
constructed in such a way that with mesh re®nement every
element ahead of the tip was subdivided into two elements
in the direction of propagation. Figure 4 shows a detail of
the mesh near the fracture tip. Uncontrolled increase of
the number of elements was avoided by merging two ele-
ments into one in the area behind the advancing tip. The
information from the old mesh was mapped into the new
mesh using higher order interpolation functions. For ex-
ample, information either was maintained at the common
node locations of the old and new meshes or was calcu-
lated only at new locations using the 8-node shape func-
tions and appropriate averaging from neighbouring
elements. The known shape functions of the 9-node
Langragian element have been scaled appropriately and
were used to map the information (e.g. stresses) from the
old location to the new location of the Gauss points. The
ef®ciency of the remeshing scheme was validated by
checking the equilibrium of the external and internal

forces immediately after remeshing and before any reso-
lution. The out of balance forces were remarkably found to
be of the same magnitude as before remeshing and still
smaller than the convergence criterion.

4
Computational results
In this section we present sample results for hydraulically
driven fractures in an elastic and an elastoplastic media to
show the ef®ciency of the proposed algorithm. The pa-
rameters upon which the numerical computations were
based are given in Table 1. The only extra material pa-
rameters required for propagating an elastoplastic fracture
are the plastic constants. With the chosen material pa-
rameters and in situ stresses the rock is initially elastic but
very close to a yielding state.

Fig. 4. Mesh detail near the fracture tip

Table 1. Input parameters of computational example

Elastic constants
Unloading modulus Eunloading � 16200 MPa
Poisson ratio m � 0:3

Plastic constants
Friction angle / � 28�
Dilation angle w � 28�
Initial yield strength r0

e � 4 MPa
Loading modulus Eloading � 1785 MPa

Fracturing parameters
Fracture toughness KIC � 1:0 MPa

����
m
p

Uniaxial tensile strength rT � 0:5 MPa

In situ effective stresses
Vertical stress r3 � 14 MPa
Minimum horizontal stress r1 � 3:7 MPa
Maximum horizontal stress r2 � 9 MPa

Pumping parameters
Fluid viscosity l � 10ÿ7 MPa sec
Flow rate q0 � 0:0005 m3=sec m
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Figure 5 shows the width pro®le of a propagating
fracture in an elastic medium. Allowing for plastic yielding
to take place, we obtain the width pro®le of a propagating
elastoplastic fracture shown in Fig. 6. For clarity we plot-
ted the width pro®le at intervals of every four propagation
steps for the elastic fracture and every eight propagation
steps for the elastoplastic fracture. The cusping of the
crack tips with zero slope is a result of the cohesive model
which was incorporated as the propagation criterion. As
mentioned earlier, the model of the elastoplastic fracture
requires an initial fracture length which was set to 0:5 m;
the in¯uence of this can be seen in the width pro®les in
Fig. 6. If we compare the fracture openings in the region
where the fractures were propagated (i.e., distance from
wellbore between 0.5 and 2.2 m) we see that the width
pro®le of the elastoplastic fracture is much wider than the
width pro®le of the elastic fracture.

Figure 7 shows the comparison of the net pressure
(pf � r1) pro®les in the fracture for the same fracture
length. The very narrow opening of the elastic fracture
results in greater pressure drop near the fracture tip and
signi®cant ¯uid-lag. Figure 8 compares the net pressures
at the wellbore as a function of the fracture length. If this
comparison is made over pumping time (as in the ®eld)
the required net-pressure for propagating the elastoplastic
fracture is much higher than the net-pressure required for
propagating the elastic fracture because of the different
fracture volumes (Papanastasiou, 1997a).

In order to check the validity of the assumed propa-
gation criterion we plotted in Fig. 9 the stress normal to
the propagation direction ahead of the fracture tip. The
results show that the tensile stress is contained in a small
region near the tip with maximum tensile stress equal to
the assumed tensile strength of the weak rock. As

Fig. 5. Width pro®les of a propagating elastic fracture

Fig. 6. Width pro®les of a propagating elasto-plastic fracture

Fig. 7. Net-pressure pro®les in the fractures; fracture-tip is
shown by `o'

Fig. 8. Net-pressures at wellbore vs fracture length
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expected, during the fracturing process there is a relief of
the compressive stresses ahead of the fracture tip followed
by separation when the normal stress reaches the (very
low) tensile strength of the rock. We also observed that the
cohesive zone is small for the elastoplastic model and large
for the elastic model. This is a result of an extra closing
stress imposed from the yielded zone on the propagation
line. In addition, we note that although a linear softening
constitutive relation was implemented the calculated stress
pro®les are non-linear. This ®nding suggests that it is un-
necessary to use a more sophisticated softening relation as
it requires extra material parameters that are almost im-
possible to be directly determined in the softening regime.

Plastic yielding near the tip of a propagating fracture
provides an effective shielding, resulting in an increase in
the effective rock fracture toughness. This is shown in
Fig. 10 where we plotted the increase in the effective
fracture toughness as a function of the fracture growth.

The effective fracture toughness was determined using the
calculated, path independent, J-integral (Rice, 1968) ac-
cording to Eq. (13) with GIC � J. The value of the effective
fracture toughness is directly related to the size of the
plastic zones. After some propagation steps the plastic
zones fully develop and the effective fracture toughness
reaches an asymptotic value. This asymptotic value can be
more than an order of magnitude higher than the original
fracture toughness which is determined under lab control
conditions. We found that the effective fracture toughness
increases with the contrast of the magnitude of the in situ
stresses that it is strongly in¯uenced by the strength of the
rock and by the elastic modulus but also by the pumping
parameters (¯uid viscosity and ¯ow rate) (Papanastasiou
1999a).

Finally, in the last computational example we modelled
the fracture closure of elastoplastic fracture which has ®rst
been propagated. The closing fracture makes surface
contact initially near the fracture tip and subsequently
towards the mouth of the fracture (Fig. 11). In contrast, a
pressurized stationary elastoplastic fracture closes uni-
formly but remains open after the applied load is released.
Practical applications of fracture closure pattern can be
found in different aspects of hydraulic fracturing such as
in the in situ parameters determination from the inversion
of the pressure vs time record and in the closure stress
which holds the proppant in place in the fractures (Pa-
panastasiou 1999b, c).

5
Conclusions
In this paper, we presented an ef®cient algorithm for
propagating ¯uid-driven fractures in pressure sensitive
geomaterials. The objective was to study the in¯uence of
non-linear rock deformation on propagating hydraulic
fractures in order to explain the high net-pressures that
are often observed in ®eld operations. Rock was modelled
by Mohr-Coulomb ¯ow theory of plasticity for cohesive-
frictional dilatent material. Fluid ¯ow was modelled by
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lubrication theory. A cohesive crack model which takes
into account the softening behaviour of rocks was em-
ployed as the propagation criterion. The fully coupled
non-linear model was solved numerically by the ®nite el-
ement method. A special continuation method based on
the volume of injected ¯uid in the fracture was used for the
direct coupling of the ¯uid-¯ow with rock deformation
and for controlling the solution during propagation. The
ef®ciency of the proposed algorithm was demonstrated
presenting sample results for propagating and receding
elastic and elastoplastic fractures.
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