
Development of eight-node quadrilateral membrane elements
using the area coordinates method

Soh Ai-Kah, Long Yuqiu, Cen Song

Abstract Two eight-node quadrilateral elements, namely,
AQ8-I and AQ8-II, have been developed using the quadri-
lateral area coordinate and generalized conforming meth-
ods. Some appropriate examples were employed to evaluate
the performance of the proposed elements. The numerical
results show that the proposed elements are superior to the
standard eight-node isoparametric element, thereafter
called Q8. This is because the former does not only possess
the same accuracy as the latter when regular meshes are
employed for analysis, but is also very insensitive to mesh
distortion, for which the Q8 element can not handle. It has
also been demonstrated that the area coordinate method is
an ef®cient tool for developing simple, effective and reliable
serendipity plane membrane elements.

1
Introduction
It has been a common practice to construct quadrilateral
elements using isoparametric coordinates �n; g�. However,
such formulation approach has several well-known dis-
advantages: (1) The element local coordinates �n; g� are
irrational functions of the Cartesian coordinates �x; y� and,
therefore, the former can not be expressed in terms of the
latter in ®nite terms except for the degenerate case of a
parallelogram. (2) The element stiffness matrix contains
the determinant of Jacobian inverse, for which the value
obtained by numerical integration is usually only an ap-
proximation in most of the ordinary cases.

The area coordinate method has been widely used to
construct triangular elements. Long et al. [1] has gener-
alized the said method to construct quadrilateral elements.
The quadrilateral area coordinates are natural and linearly
related to Cartesian coordinates. Furthermore, there is no
necessity to perform numerical integration for those for-
mulae expressed in terms of area coordinates, and the

exact results can be obtained if numerical integration is
carried out. Thus, the area coordinate method provides a
new tool for developing quadrilateral elements. Some basic
formulae, established using the area coordinate system, for
the development of quadrilateral elements have been
presented by Long et al. [2].

The 8-node isoparametric element (Q8) is one of the
most commonly used elements and its performance has
been thoroughly assessed by researchers. Stricklin et al. [3]
presented some results for a cantilever beam modeled
using distorted and undistorted elements, and they
showed that the 8-node isoparametric element stiffened
and performed very badly when it was distorted. Lee [4]
studied the various in¯uences to some serendipity (Q8,
Q12) and Lagrangian (Q9, Q16) elements using various
distorted meshes. He pointed out that the displacement
®elds of Q8 and Q12 are only C1 completeness under
distorted conditions, while Q9 and Q16 could reach much
higher order of completeness. Therefore, the Lagrangian
element types embody better stability in most cases, and
were strongly recommended by Lee. Zienkiewicz [5] has
made the same conclusion. Unfortunately, all Lagrangian
elements possess internal nodes and their formulations are
more complicated than those of the corresponding ser-
endipity elements. Thus, the latter is still preferred in
practical applications.

The objectives of this paper are two folds: (1) to con-
struct quadrilateral elements by employing the quadrilat-
eral area coordinates; and (2) to examine the potential
accuracy and versatility of the new tool. The concept of
generalized conforming [6, 7] will also be applied in the
element formulations. This is to say there is no necessity to
implement exact compatibility between two elements, and
only some relaxed compatibility conditions are imposed.
The said relaxed requirement provides more freedom for
selecting interpolation functions for the displacement
®elds within the element. Moreover, it assures the con-
vergence of results [8, 9]. For example, the displacement
®elds could be assumed to satisfy the following conditions:

�uÿ ~u�j � 0

�vÿ ~v�j � 0

�
(at each node j) �1�R

di
�uÿ ~u�ds � 0R

di
�vÿ ~v�ds � 0

(
(along each side di� �2�

where (u; v) are the displacement ®elds within one ele-
ment, and (~u; ~v) are the displacements on the boundary of
the element. Note that Eq. (1) is the point compatibility
condition for nodal de¯ection at each node, and Eq. (2) is
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the line compatibility conditions for the average de¯ection
along each side of the element. This step would soften the
elements.

In this paper, two 8-node quadrilateral membrane ele-
ments, AQ8-I and AQ8-II, will be developed using the area
coordinates and generalized conforming method. Some
appropriate examples will be employed to evaluate the
performance of the proposed elements.

2
Area coordinates for quadrilateral elements
Consider an 8-node straight-side serendipity element, as
shown in Fig. 1. Nodes 1, 2, 3 and 4 are the corner nodes;
and nodes 5, 6, 7 and 8 are the mid-side nodes of sides
12; 23; 34 and 41, respectively. The position of an arbitrary
point P within the element is speci®ed by the area coor-
dinates L1; L2; L3 and L4, which are de®ned as

Li � Ai

A
�i � 1; 2; 3; 4� �3�

where A is the area of the quadrilateral element, Ai is the
area of the triangle constructed by point P and the ith side
of the element.

L1; L2; L3 and L4 can be expressed in terms of Cartesian
coordinates �x; y� as follows:

Li � 1

2A
�ai � bix� ciy� �i � 1; 2; 3; 4� �4�

where

ai � xjyk ÿ xkyj; bi � yj ÿ yk;

ci � xk ÿ xj � ��i; j; k
���! � �1; 2; 3; 4

�����!� �5�

and �xi; yi� (i � 1; 2; 3; 4) are the Cartesian coordinates of
the four corner nodes.

Introduce four dimensionless parameters g1; g2; g3 and
g4 to each of the quadrangles, as shown in Fig. 2. These
parameters are de®ned as

g1 � A0

A
; g2 � A00

A
; g3 � 1ÿ g1; g4 � 1ÿ g2 �6�

where A0 and A00 are the areas of D124 and D123, respec-
tively.

It is obvious that any point in a plane problem has two
degrees of freedom. Therefore, only two of the coordinates
Li �i � 1; 2; 3; 4� are independent. It can be shown that
Li �i � 1; 2; 3; 4� must satisfy [1] the following conditions:

L1 � L2 � L3 � L4 � 1 �7�
g4g1L1 ÿ g1g2L2 � g2g3L3 ÿ g3g4L4 � 0 �8�
Note that Li �i � 1; 2; 3; 4� can also be expressed in terms
of the quadrilateral isoparametric coordinates �n; g� as
follows:

L1 � 1
4 �1ÿ n��g2�1ÿ g� � g3�1� g��

L2 � 1
4 �1ÿ g��g4�1ÿ n� � g3�1� n��

L3 � 1
4 �1� n��g1�1ÿ g� � g4�1� g��

L4 � 1
4 �1� g��g1�1ÿ n� � g2�1� n��

�9�

The coordinates of the eight nodes are:

node 1: �g2; g4; 0; 0� node 5:
g2

2
;
g3 � g4

2
;
g1

2
; 0

� �
node 2: �0; g3; g1; 0� node 6: 0;

g3

2
;
g4 � g1

2
;
g2

2

� �
node 3: �0; 0; g4; g2� node 7:

g3

2
; 0;

g4

2
;
g1 � g2

2

� �
node 4: �g3; 0; 0; g1� node 8:

g2 � g3

2
;
g4

2
; 0;

g1

2

� �
In a quadrilateral element, the following basic formulae
can be used to evaluate the line integral for arbitrary
power functions of area coordinates along each side
Li � 0 �i � 1; 2; 3; 4�:
(i) Along side 12 �L4 � 0�:Z 1

0

Lm
1 Ln

2L
p
3 d�s

� m!n!p!

�m� n� p� 1�! gm
2 g

p
1

Xn

k�0

gnÿk
3 gk

4 C
p
p�nÿkCm

m�k

�10�
(ii) Along side 23 �L1 � 0�:Z 1

0

Ln
2L

p
3L

q
4 d�s

� n!p!q!

�n� p� q� 1�! gn
3 g

q
2

Xp

k�0

g
pÿk
4 gk

1 C
q
q�pÿkCn

n�k

�11�
(iii) Along side 34 �L2 � 0�:Z 1

0

L
p
3L

q
4Lm

1 d�s

� p!q!m!

�p� q�m� 1�! g
p
4 gm

3

Xq

k�0

g
qÿk
1 gk

2 Cm
m�qÿkC

p
p�k

�12�

Fig. 1. De®nition of area coordinates Li

Fig. 2. De®nition of four parameters g1; g2; g3 and g4
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(iv) Along side 41 �L3 � 0�:Z 1

0

L
q
4Lm

1 Ln
2 d�s

� q!m!n!

�q�m� n� 1�! g
q
1 gn

4

Xm

k�0

gmÿk
2 gk

3 Cn
n�mÿkC

q
q�k

�13�

where �s is a dimensionless coordinate along each side,
and it is 0 at the starting node and 1 at ending node;
m; n; p, and q are arbitrary positive integers; and Cn

m is
de®ned as

Cn
m �

m!

�mÿ n�!n!
�m > n� �14�

3
Shape functions of the new 8-node quadrilateral elements

3.1
Preparatory shape functions for corner nodes
Firstly, prescribe a set of ``shape functions'' for the four
corner nodes:

N0
1 �

L1

2g2
1ÿ L4

g1

� �
� L2

2g4
1ÿ L3

g1

� �
N0

2 �
L2

2g3
1ÿ L1

g2

� �
� L3

2g1
1ÿ L4

g2

� �
N0

3 �
L3

2g4
1ÿ L2

g3

� �
� L4

2g2
1ÿ L1

g3

� �
N0

4 �
L4

2g1
1ÿ L3

g4

� �
� L1

2g3
1ÿ L2

g4

� �

8>>>>>>>>>>>><>>>>>>>>>>>>:
�15�

i.e.

N0
i �

Li

2gj
1ÿ Lm

gi

� �
� Lj

2gm
1ÿ Lk

gi

� �
� ��i; j; k;m
�����! � � ��1; 2; 3; 4

�����!� �16�

It can be clearly seen that N0
i �i � 1; 2; 3; 4�, which are

quadratic, satisfy the following conditions:

N0
i ��L1�j; �L2�j; �L3�j; �L4�j�

� dij �
1 �i � j�
0 �i 6� j�

�
�i; j � 1; 2; 3; 4� �17�

But N0
i are not zero at mid-side nodes 5, 6, 7 and 8. Thus,

they cannot be the real shape functions for the corner
nodes. Therefore, they are called the preparatory shape
functions for corner nodes.

3.2
Shape functions for mid-side nodes
Secondly, de®ne two sets of shape functions for the mid-
side nodes as follows:

(i)

N5 � 2

g1g2
L1L3 1� 2

g3 � g4
L2 ÿ 2

g1 � g2
L4

� �
N6 � 2

g2g3
L2L4 1� 2

g4 � g1
L3 ÿ 2

g2 � g3
L1

� �
N7 � 2

g3g4
L3L1 1� 2

g1 � g2
L4 ÿ 2

g3 � g4
L2

� �
N8 � 2

g4g1
L4L2 1� 2

g2 � g3
L1 ÿ 2

g4 � g1
L3

� �
�18�

i.e.

N4�i � 2

gigj
LiLk 1� 2

gk � gm
Lj ÿ 2

gi � gj
Lm

� �
� ��i; j; k;m
�����! � �1; 2; 3; 4

�����!� �19�
(ii)

N5 � 4

g1g2
L1L3 L2 ÿ L4 � g1 � g2

2

� �
N6 � 4

g2g3
L2L4 L3 ÿ L1 � g2 � g3

2

� �
N7 � 4

g3g4
L3L1 L4 ÿ L2 � g3 � g4

2

� �
N8 � 4

g4g1
L4L2 L1 ÿ L3 � g4 � g1

2

� �
�20�

i.e.

N4�i � 4

gigj
LiLk Lj ÿ Lm � gi � gj

2

� �
� ��i; j; k;m
�����! � �1; 2; 3; 4

�����!� �21�
It can be clearly seen that both sets of Ni �i � 5; 6; 7; 8�
satisfy:

Ni��L1�j; �L2�j; �L3�j; �L4�j�
� dij

� 1 �i � j�
0 �i 6� j�

�
�i � 5; 6; 7; 8; j � 1; 2; . . . ; 7; 8� �22�

Let Zi �i � 1; 2; 3; 4� be the difference between the
shape functions given by Eqs. (19) and (21). Thus, we
obtain

Zi � �N4�i�I ÿ �N4�i�II

� 1ÿ gi ÿ gj

gigj
LiLk

1

2
ÿ Lj

gk � gm
� Lm

gi � gj

� �� �
� ��i; j; k;m
�����! � �1; 2; 3; 4

�����!� �23�
Substituting the equations of each element side,
Li � 0 �i � 1; 2; 3; 4�, and the coordinates of the nodal
points on each side into Eq. (23), we ®nd that Zi is always
zero along the element sides. This is to say, Eqs. (19) and
(21) are the same along the element sides. But within the
element, the bubble function Zi �i � 1; 2; 3; 4) for these
two elements are different.
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3.3
Shape functions for corner nodes
For corner nodes, the following modi®ed shape functions
are employed:

Ni � N0
i ÿ

1

2
ÿ gi ÿ gj

8gm

� �
N4�i ÿ gk�gj ÿ gk�

8gmgi
N4�j

� gk�gk ÿ gm�
8gigj

N4�k ÿ 1

2
� gm ÿ gi

8gj

� �
N4�m

� ��i; j; k;m
�����! � �1; 2; 3; 4

�����!� �24�
It is obvious that Ni �i � 1; 2; 3; 4� satisfy:

Ni��L1�j; �L2�j; �L3�j; �L4�j�
� dij

� 1 �i � j�
0 �i 6� j�

�
�i � 1; 2; 3; 4; j � 1; 2; . . . ; 7; 8�

�25�

3.4
Shape functions for two new elements
Equations (24) and (19) constitute a set of shape functions
for an 8-node quadrilateral element, which is denoted as
AQ8-I.

Another set of shape functions can be obtained by
combining Eqs. (24) and (21) for developing a different 8-
node quadrilateral element denoted by AQ8-II.

Note that the shape functions of these two elements are
all cubic, both within and along the sides
(Li � 0; i � 1; 2; 3; 4) of the elements. The displacement
®elds composed by these two sets of shape functions sat-
isfy both the point and the side average conforming con-
ditions, refer to Eqs. (1) and (2), respectively. Therefore,
the AQ8-I and AQ8-II elements are generalized conform-
ing elements. Figure 3 displays the process of the con-
struction. When the element degenerates to a rectangular
element, the shape functions of AQ8-I and AQ8-II will be
the same as those of the Q8 element.

4
The stiffness matrix and efficient load vector

4.1
Stiffness matrices of the new elements
The displacement ®eld of the element is given by:

u
v

� �
� �N�fqge �26�

where

fqge � �u1 v1 u2 v2 u3 v3 u4 v4 u5 v5 u6 v6 u7 v7 u8 v8�T
�27�

�N� � �N1 N2 N3 N4 N5 N6 N7 N8� �28�

�Ni� � Ni 0
0 Ni

� �
�i � 1; 2; . . . ; 8� �29�

The strain ®eld of the element is given by:

feg � �B�fqge �30�
where

feg � fex ey cxygT �31�
�B� � �B1 B2 B3 B4 B5 B6 B7 B8� �32�

�Bi� �
oNi

ox 0

0 oNi

oy
oNi

oy
oNi

ox

264
375 �i � 1; 2; . . . ; 8� �33�

and

o
ox
o
oy

( )
� 1

2A

b1 b2 b3 b4

c1 c2 c3 c4

� � o
oL1
o

oL2
o

oL3
o

oL4

8>>><>>>:
9>>>=>>>; �34�

The evaluation of oNi=ox and oNi=oy are presented in the
Appendix.

The element stiffness matrix can then be expressed as:

�K�e �
ZZ
A

�B�T�D��B�t dA �35�

where [D] and t are the elasticity matrix and the thickness
of the element, respectively. For plane stress problems, we
have

�D� � E

1ÿ l2

1 l 0
l 1 0
0 0 1ÿl

2

24 35 �36�

where E and l are Young's modulus and Poisson's ratio,
respectively. For plane strain problems, the E and l in
Eq. (36) should be replaced by E=�1ÿ l2� and l=�1ÿ l�,
respectively.

By using the integration formulae for area coordinates
in quadrilateral elements [2], the explicit expression of �K�e
can be obtained for straight-side elements. However, the
numerical integration method would be more convenient

Fig. 3. Construction process of AQ8-I and AQ8-II
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for computer coding. Thus, Eq. (35) is expressed in terms
of isoparametric coordinates as follows:

�K�e �
Z 1

ÿ1

Z 1

ÿ1

�B�T�D��B�tjJjdn dg �37�

where jJj is the Jacobian determinant, which is the same as
that of the 4-node isoparametric element. Since there are
no �J�ÿ1 (the Jacobian inverse) in [B], as long as the ele-
ment sides are straight, exact value of �K�e can be deter-
mined by numerical integration when the 3� 3 Gauss
integration points are employed. It is obvious that the
results of Eq. (37) are only approximated values when the
element sides are curved.

4.2
Efficient load vector for the new elements
The ef®cient load vector can be obtained using the stan-
dard approach. For the distributed load along the element
side, the consistent element nodal load can be expressed as

fRge
16�1 � fRx1 Ry1 Rx2 Ry2 Rx3 � � � Rx8 Ry8gT

�
Z

�s
�N�Tffg2�1 d�s �38�

where �s denotes the direction along element side; and the
distributed load vector ffg2�1 is given by

ffg2�1 � �fx fy�T �39�
where fx and fy are the distributed load functions in the x
and y directions, respectively, along the element side.

5
Numerical examples

Example 1. Patch test. A small patch is discretized into
some arbitrary elements, as shown in Fig. 4. The dis-
placement ®elds corresponding to the constant strain are:

u � 10ÿ3�x� y=2�
v � 10ÿ3�y� x=2�

The exact solution is as follows:

rx � ry � 1333:3333; sxy � 400:0

The coordinates and the displacement of control nodes are
shown in Table 1.

The displacements of the boundary nodes (5±12), as
shown in Table 1, are the displacement boundary condi-
tions. The exact results of the displacements and stresses
at each node can be obtained using the AQ8-I and AQ8-II
elements. This demonstrates that the new elements pass
the patch test and are able to ensure convergence.

Example 2. Constant-bending-moment problem for
a cantilever beam (refer to Fig. 5). The results of the
de¯ections and stresses at selected points are shown in
Table 2.

It can be clearly seen from Table 2 that the AQ8-I and
AQ8-II elements possess the same accuracy as that of the Q8
element when regular rectangular meshes are used. How-
ever, when distorted meshes are employed for analysis, the
two new elements exhibit much superior stability than that
of the Q8 element. Note that in this paper, all results of the
Q8 element were obtained using the 3� 3 Gauss integration
rule. For this problem, the AQ8-I and AQ8-II elements
produced almost the exact solution using different meshes.

The proposed area coordinate method is mainly for
formulating straight-sided elements. However, the said
elements developed can still work when one or more sides
are curved (refer to the results of mesh 5 in Table 2). The
procedure to make it work is simple, and it can be done by
indicating the coordinates of the mid-side node of the
curved side while keeping other things unchanged. It canFig. 4. Patch test

Table 1. Patch Test

Node Coordinates Displacement (´10)3)

xi yi ui vi

1 0.04 0.02 0.05 0.04
2 0.18 0.03 0.195 0.12
3 0.16 0.08 0.20 0.16
4 0.18 0.08 0.12 0.12
5 0.00 0.00 0.00 0.00
6 0.24 0.00 0.24 0.12
7 0.24 0.12 0.30 0.24
8 0.00 0.12 0.06 0.12
9 0.12 0.00 0.12 0.06

10 0.24 0.06 0.27 0.18
11 0.12 0.12 0.18 0.18
12 0.00 0.06 0.03 0.06

Fig. 5. Constant-bending-moment
problem for cantilever

380



be seen from Table 2 that the said elements are better than
the Q8 element in terms of de¯ection. But the reverse is
true for stresses.

Example 3. Linear-bending problem for a cantilever beam
(refer to Fig. 7). The results of the de¯ection and stresses
at selected points are shown in Table 3.

Fig. 6. Meshes devised for Example 2

Fig. 7. Linear-bending problem for cantilever

Table 3. The de¯ection at a selected location for linear-bending
problem of cantilever

Q8 AQ8-I AQ8-II Exact solution

Mesh 1 v(100,0) 3.85 3.85 3.85 4.03
Mesh 2 v(100,0) 0.74 3.15 3.15 4.03
Mesh 3 v(100,0) 2.00 3.30 3.30 4.03
Mesh 4 v(100,0) 3.65 3.99 3.99 4.03

Table 2. Numerical results at
selected locations for the con-
stant-bending-moment pro-
blem

Q8 Q12 [4] AQ8-I AQ8-II Exact
solution

Mesh 1 rx (0,10) 120.000 120.0 120.000 120.000 120.0
rx (0,0) )120.000 120.0 )120.000 )120.000 )120.0
v(100,0) ´ 103 )12.000 )12.00 )12.000 )12.000 )12.0

Mesh 2 rx (0,10) 56.447 125.5 118.222 118.222 120.0
rx (0,0) )74.863 )145.5 )114.667 )114.667 )120.0
v(100,0) ´ 103 )2.328 )5.18 )12.014 )12.014 )12.0

Mesh 3 rx (0+,10) 13.665 29.4 119.696 119.815 120.0
rx (0,10)) 5.262 14.0 118.887 119.271 120.0
rx (0,0+) )5.665 )13.1 )119.112 )119.341 )120.0
rx (0+,0) )14.299 )28.5 )119.880 )119.866 )120.0
v(100,0) ´ 103 )0.477 )0.69 )11.997 )11.997 )12.0

Mesh 4 rx (0,10) 120.000 120.0 120.000 120.000 120.0
rx (0,0) )120.000 )120.0 )120.000 )120.000 )120.0
v(20,0) ´ 104 )4.8000 )4.800 )4.8000 )4.8000 )4.800

Mesh 5 rx (0,10) 120.244 ± 124.977 124.977 120.0
rx (0,0) )120.244 ± )124.977 )124.977 )120.0
v(20,0) ´ 104 )4.689 ± )4.896 )4.896 )4.800

Fig. 8. Mesh for Example 3
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It is again obvious that the AQ8-I and AQ8-II elements
perform better than the Q8 element when irregular meshes
are used.

Example 4. Sensitivity test for mesh distortion. Re-per-
form examples 2 and 3 using the mesh shown in Fig. 9,
where a varies from 0 to 0.99l. The curves of the per-
centage errors are plotted in Figs. 10, 11 and 12.

From Figs. 10±12, it can be clearly seen that the two new
elements are very insensitive to mesh distortion. For the
quadratic problem (refer to Figs. 10 and 11), the AQ8-I
and AQ8-II elements can almost produce the exact solu-
tion in the distorted conditions. For the cubic problem,
their accuracy is also much higher than that of the Q8
element. This is to say the good performance of the pro-
posed elements is not affected by mesh distortion. The
above phenomena imply that the formulae for the dis-
placement ®elds of the proposed elements have second

order completeness in Cartesian coordinates. Thus, their
performance is comparable to that of the Q9 Lagrangian
element of straight-sides.

Example 5. Cook's problem. This example, in which a
skew cantilever, as shown in Fig. 12, was subjected to a
shear distributed load at the free edge, was proposed by
Cook [10]. The results of the vertical de¯ection at point
C, the maximum principal stress at point A and the
minimum principal stress at point B are listed in
Table 4.

Fig. 9. Sensitivity test for mesh distortion

Fig. 10. Percentage error (%) of the de¯ection at point A in
constant-bending problem due to mesh distortion

Fig. 11. Percentage error (%) of the sress rx at point B in
constant-bending problem due to mesh distortion

Fig. 12. Percentage error (%) of the de¯ection at point A in
linear-bending problem due to mesh distortion

Table 4. The results of Cook's
problem Vc rA(max) rB(min) Vc rA(max) rB(min)

Mesh 1 ´ 1 Mesh 2 ´ 2
Q8 17.22 0.1345 )0.1862 22.72 0.2472 )0.2261
AQ8-I 19.99 0.1559 )0.1928 22.98 0.2523 )0.2144
AQ8-II 19.99 0.1559 )0.1928 22.98 0.2523 )0.2144

Mesh 4 ´ 4 Mesh 8 ´ 8
Q8 23.71 0.2421 )0.2007 23.88 0.2390 )0.2041
AQ8-I 23.74 0.2415 )0.2024 23.89 0.2389 )0.2041
AQ8-II 23.74 0.2415 )0.2024 23.89 0.2389 )0.2041

Reference solution 23.95 [11] 0.2359 [12] )0.2012 [12] 23.95 [11] 0.2359 [12] )0.2012 [12]
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This example shows that the proposed elements con-
verge faster than the Q8 element when irregular meshes
are used.

6
Conclusions
Two eight-node quadrilateral membrane elements have
been developed using area coordinates. The shape func-
tions of these elements satisfy the generalized conforming
conditions. The potential accuracy and versatility of the
said elements have been illustrated using ®ve numerical
examples, which show that

1. The AQ8-I and AQ8-II elements have the same accu-
racy as the Q8 element when rectangular meshes are used.

2. For arbitrary quadrilateral meshes, the displacement
®elds of the proposed elements always possess second
order completeness in Cartesian coordinates, which is not
the case for the Q8 element. This is why the proposed
elements are insensitive to mesh distortion but not the Q8
element. In fact, the performance of the proposed elements
is comparable to that of the Q9 Lagrangian element of
straight sides.

3. The two new elements can still work when the ele-
ment sides are curved. It is worth noting that the results
for displacement obtained by these two elements are still
better than those of the Q8 element in some cases. How-
ever, it is recommended that a combination of the pro-
posed and Q8 elements be used to study a practical
problem in which curved meshing is required.

The work in this paper also demonstrate that the
quadrilateral area coordinates method is an ef®cient tool
for constructing simple, effective and reliable serendipity
plane membrane elements.

Appendix: Evaluation of ­Ni=­x and ­Ni=­y
The terms oNi=ox and oNi=oy can be expressed in the
following manner suitable for computer coding:

Step 1:
For i � 1 to 4
j � i� 1 if j > 4 then j � 1
k � j� 1 if k > 4 then k � 1
m � k� 1 if m > 4 then m � 1

oN0
i

oLi
� 1

2gj
1ÿ Lm

gi

� �
oN0

i

oLj
� 1

2gm
1ÿ Lk

gi

� �
oN0

i

oLk
� ÿ Lj

2gmgi

oN0
i

oLm
� ÿ Li

2gigj

�A1�

For AQ8-I

oN4�i

oLi
� 2Lk

gigj
1� 2Lj

gk � gm
ÿ 2Lm

gi � gj

� �
oN4�i

oLj
� 4LiLk

gigj�gk � gm�
oN4�i

oLk
� 2Li

gigj
1� 2Lj

gk � gm
ÿ 2Lm

gi � gj

� �
oN4�i

oLm
� ÿ 4LiLk

gigj�gi � gj�

�A2�

For AQ8-II

oN4�i

oLi
� 4Lk

gigj
Lj ÿ Lm � gi � gj

2

� �
oN4�i

oLj
� 4LiLk

gigj

oN4�i

oLk
� 4Li

gigj
Lj ÿ Lm � gi � gj

2

� �
oN4�i

oLm
� ÿ 4LiLk

gigj

�A3�

End Step 1.
Step 2:
For i � 1 to 4
j � i� 1 if j > 4 then j � 1
k � j� 1 if k > 4 then k � 1
m � k� 1 if m > 4 then m � 1
For ii � 1 to 4

oNi

oLii
� oN0

i

oLii
ÿ 1

2
ÿ gi ÿ gj

8gm

� �
oN4�i

oLii

ÿ gk�gj ÿ gk�
8gmgi

oN4�j

oLii
� gk�gk ÿ gm�

8gigj

oN4�k

oLii

ÿ 1

2
� gm ÿ gi

8gj

� �
oN4�m

oLii
�A4�

End Step 2.
Step 3:
For i � 1 to 8

oNi

ox
� 1

2A
b1

oNi

oL1
� b2

oNi

oL2
� b3

oNi

oL3
� b4

oNi

oL4

� �
oNi

oy
� 1

2A
c1

oNi

oL1
� c2

oNi

oL2
� c3

oNi

oL3
� c4

oNi

oL4

� � �A5�

End Step 3.

Fig. 13. Cook's problem
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