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Abstract In this paper, the conventional moving least
squares interpolation scheme is generalized, to incorpo-
rate the information concerning the derivative of the ®eld
variable into the interpolation scheme. By using this
generalized moving least squares interpolation, along with
the MLPG (Meshless Local Petrov±Galerkin) paradigm, a
new numerical approach is proposed to deal with 4th or-
der problems of thin beams. Through numerical examples,
convergence tests are performed; and problems of thin
beams under various loading and boundary conditions are
analyzed by the proposed method, and the numerical re-
sults are compared with analytical solutions.

Introduction
In the past decade, a considerable attention has been given
to meshless computational methods, due to their ¯exibility
in solving boundary value problems, especially in prob-
lems with discontinuities, or with moving boundaries, or
with severe deformations. The driving force for research
on the meshless method is the desire to minimize, or al-
leviate, the human labor and error involved in meshing the
entire structure. As a result, several so-called meshless
methods have been proposed, such as smooth particle
hydrodynamics (SPH) (Lucy, 1977), diffuse element
method (DEM) (Nayroles et al., 1992), element free
Galerkin method (EFG) (Belytschko et al., 1994; Organ
et al., 1996), reproducing kernel particle method (RKPM)
(Liu et al., 1995 and 1996), hp-clouds method (Duarte and
Oden, 1996), partition of unity method (PUM) (Babu�ska
and Melenk, 1997), local boundary integral equation
method (LBIE) (Zhu, Zhang, and Atluri, 1998a, b), mesh-
less local Petrov±Galerkin method (MLPG) (Atluri and
Zhu, 1998a, b). Of these, as discussed in Atluri and Zhu
(1998a, b), and in Zhu, Zhang and Atluri (1998a, b), only
the MLPG and LBIE methods are truly meshless.

To be a truly meshless method, the two characteristics
should be guaranteed: One is a non-element interpolation
technique, and the other is a non-element approach for

integrating the weak form. Most of the meshless methods
are based on the non-element interpolation techniques,
such as the Shepard interpolation technique (Shepard,
1968), moving least square interpolation (MLS) (Lancaster
and Salkauskas, 1981), reproducing kernel particle method
(RKPM), and the partition of unity method (PUM), which
do not need any elements for constructing the interpol-
ation functions for the unknown variables. However, be-
cause most of the so-called meshless methods, such as the
EFG, RKPM, and hp-clouds method, still require a global
background mesh for numerical integration of the global
weak-form, they cannot be classi®ed as being truly
meshless. From this point of view, only the recently pro-
posed LBIE and MLPG (meshless local Petrov±Galerkin)
methods can be labeled as being truly meshless. As distinct
from the other meshless methods based on the global weak
form, the elegant paradigm of MLPG method is based on
the local symmetric weak form (LSWF). Through the
LSWF, one is naturally lead to a local non-element inte-
gration in local sub-domains such as spheres, cubes, and
ellipsoids, in 3-D, without any dif®culty.

Because of this pioneering truly meshless nature of the
MLPG method, the present work is aimed at extending the
MLPG method for 4th order boundary value problems
governing thin beams or thin plates. Furthermore, in
dealing with 4th order boundary value problems by a
meshless computational method such as the EFG method,
only a few works (Krysl and Belytschko, 1995 and 1996)
were reported. Although only a thin beam will be ad-
dressed in this work, it is noted that the present approach
is quite general and can easily deal with 2D plate problems.

In the 4th order boundary value problems, displace-
ment and slope boundary conditions can be imposed at
the same point, while such is impossible in 2nd order
boundary value problems. Therefore, it is natural to in-
troduce the slope as another independent variable in the
interpolation schemes, in the 4th order problem. Due to
this necessity, the conventional moving least square
interpolation scheme is generalized, to incorporate the
independent slope information, and it is used as a mesh-
less interpolation technique in the MLPG method for 4th
order boundary value problems. (It should be noted that
the MLPG concept is independent of a meshless interpol-
ation technique, and it can be combined with any meshless
interpolation technique, such as PUM, or RKPM). To
study the accuracy of the present method, convergence
tests are carried out, and several problems of thin beams
under various loading and boundary conditions are ana-
lyzed. From these tests, it is con®rmed that the proposed
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method gives quite accurate results and shows promising
characteristics in the simulation of 4th order boundary
value problems.

A review of the moving least squares interpolation
To achieve a non-element type interpolation, a meshless
method uses a local interpolation or approximation, to
represent the trial function, with the values (or the ®cti-
tious values) of the unknown variable at some randomly
located nodes. The moving least squares interpolation is
one such popular scheme (along with PUM, RKPM,
Shepard function, etc.) which does not need any element
information. Additionally, the required smoothness of the
approximation function can be easily achieved by the
moving least squares interpolation technique. Due to these
reasons, the moving least squares technique may be a good
candidate for approximating the unknown variables in
boundary value problems.

In this section, the fundamental idea of the moving least
square method is brie¯y reviewed, and it is generalized in
the next section for 4th order boundary value problems.

Consider a continuous function u de®ned on a domain
X, where the (®ctitious) nodal values at the scattered
points xi �1 � i � n� in X, that enter the interpolation, are
given as ûi. To approximate the distribution of function u
in X, the global approximation form uh�x� is de®ned as
follows.

u�x� � uh�x� � pT�x�a�x�

�
Xm

i� 1

pi�x�ai�x�; for all x 2 X
�1�

where pT�x� � �p1�x�; p2�x�; . . . ; pm�x�� is a p-basis satis-
fying the conditions (Lancaster and Salkauskas, 1981) as

�i� p1�x� � 1 �2a�
�ii� pi�x� 2 Cr�X�; i � 1; . . . ;m �2b�
�iii� There exists ~x1; . . . ; ~xmf g � x1; . . . ; xnf g such that

p�~x1�; . . . ; p�~xm�f g is a linearly independent set:

�2c�
In Eq. (2b), Cr�X� denotes the set of functions, whose
derivatives are continuous up to the r-th degree. For ex-
ample, the �mÿ 1�-th order polynomial p-basis in one
dimension has the following form:

pT�x� � �1; x; x2; . . . ; xmÿ1� �3�
In two dimensions, a quadratic polynomial p-basis is
written as

pT�x� � �1; x; y; x2; xy; y2� �4�
Additionally, the paper of Atluri and Zhu (1998a) can be
referred to, for other forms of the p-basis in two and three
dimensional problems.

The vector a�x� � �a1�x�; a2�x�; . . . ; am�x��T is a vector
of undetermined coef®cients, whose values can vary ac-
cording to the position x 2 X. The coef®cient vector a��x� at
each position x � �x will be determined by a local weighted
least square approximation u�x�x� of the function u�x�, in a
suf®ciently small neighborhood nbd��x� of x � �x.

A local approximation u�x�x�, for each point �x 2 X, is
de®ned as

u�x� � u�x�x� � pT�x�a��x�; for all x 2 nbd��x� �5�
In order that the local approximation is the best approx-
imation to u, in a certain least square sense, the coef®cient
vector a��x� is selected as the m� 1 vector that minimizes
the following weighted least square discrete L2 error norm.

J�x�b� �
Xn

i� 1

wi��x� pT�xi�bÿ ûi
� �2

� Pbÿ û� �Tw��x� Pbÿ û� � �6�
That is, the coef®cient vector a��x� is selected to satisfy the
following condition.

J�x�a��x�� � J�x�b�; for all b 2 Rm �7�
In Eq. (6), wi�x� is the weight function associated with the
position xi of node i, and wi�x� is greater than 0 for all x in
the support domain (i.e., the region of non-zero values) of
wi�x� (which can in general be a sphere, a rectangular
parallelepiped, or an ellipsoid in 3-D), and n denotes the
number of nodes. For example, the support domain of the
weight function wi�x� can be taken to be a sphere in 3-D;
and the weight function wi�x� centered at each node xi is
usually adopted to be positive and non-zero if the distance
between node xi and x is less than a speci®ed radius Ri,
and to be zero if the distance is greater than or equal to the
radius Ri, in order to preserve the local character of the
MLS approximation.

The matrix P is an n�m matrix, and w��x� is n� n
diagonal matrix written as follows.

P � p�x1�; p�x2�; . . . ; p�xn�� �T �8�

w��x� �

w1��x� 0 � � � 0

0 w2��x� � � � ..
.

..

. ..
. . .

.
0

0 � � � 0 wn��x�

266664
377775 �9�

And the vector û denotes the vector of given ®ctitious
values ûi of variable u at nodes i (1 � i � n) as follows.

ûT � û1; û2; . . . ; ûn
� � � u�x1�; u�x2�; . . . ; u�xn�� �

�10�
It is noted that the ûi (1 � i � n) are not the nodal values
of the approximation function uh�x�.

The method to approximate the function by the moving
least square method is sketched in Fig. 1. At each position
x � �x, a local weighted least square approximation is
found by using Eqs. (5)±(7), and its coef®cient vector a��x�
is used in the global approximation form (1). Actually, it is
same as the moving procedure of local approximation to
obtain the global approximation, as stated in the previous
work (Lancaster and Salkauskus, 1981).

A generalized moving least squares interpolation
As reviewed before, it should be noted that the moving
least squares approximation is based only on the infor-
mation of the values (®ctitious values) of the variables at
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some scattered points. However, information concerning
the derivatives of variables at some scattered points may
be meaningful in some physical cases, and if they are used
in an approximation procedure, it may give a better ap-
proximation result than the procedure that does not use
the derivative information. From this point of view, the
moving least square interpolation scheme is generalized in
this paper, and the generalized approximation procedure
is applied to analyze an Euler beam problem, which is a
4th order boundary value problem. We use a local sym-
metric weak form, and the MLPG, to construct this ap-
proximate solution.

We assume that the information concerning the deriv-
atives up to an order l of the ®eld variable, is available at
some scattered points. Then one can expect that a rea-
sonable interpolation procedure gives a good approxima-
tion result for the variables, as well as their derivatives up
to l-th order. Therefore, it is reasonable that the derivative
information be incorporated in the approximation proce-
dure, if possible.

To approximate the function u in a domain X, the same
global approximation form (1) as in the MLS scheme is
de®ned in the present generalization also, and the same
p-basis as in the MLS scheme, except condition (2c), is also
used. However, a local approximation procedure, that is
different from the MLS scheme, will be adopted to incor-
porate the given derivative information in the present
generalized procedure.

For this purpose, the local approximation is carried out
using the following weighted discrete Hl error norm in-
stead of the weighted discrete L2 error norm as in Eq. (6).

J
�l�
�x �b� �

Xn

i� 1

X
jaj�l

w
�a�
i ��x� DapT�xi�bÿ Dau�xi�

� �2

�11�
where a multi-index notation is used. It is noted that l is
less than or equal to the minimum of the order of conti-
nuity of p-basis r and �mÿ 1�. And the coef®cient vector
a��x� at each position x � �x is chosen so as to minimize
the weighted discrete Hl error norm.

J
�l�
�x �a��x�� � J

�l�
�x �b�; for all b 2 Rm �12�

Finally, the coef®cient vector a��x� obtained by the local
minimization procedure is used for the global approxi-
mating function (1).

For example, the weighted discrete H1 error norm in
one-dimension assumes the form shown below.

J
�1�
�x �b� �

Xn

i� 1

X
jaj�1

w
�a�
i ��x� DapT�xi�bÿ Dau�xi�

� �2

�
Xn

i� 1

(
w
�0�
i ��x� p�xi�Tbÿ ûi

h i2

� w
�1�
i ��x�

dp�xi�T
dx

bÿ ĥi

" #2)
�13�

where, ûi, and ĥi denote u�xi�, and ou�xi�=ox, respectively.
Using the matrix notation, it can be rewritten as follows.

J
�1�
�x �b� � Pbÿ û� �Tw�0���x� Pbÿ û� �

� Pxbÿ t̂
� �T

w�1���x� Pxbÿ t̂
� �

� P

Px

� �
bÿ û

t̂

� �� �T
w�0���x� 0

0 w�1���x�

" #

� P

Px

� �
bÿ û

t̂

� �� �
� Qbÿ d̂
h iT

W��x� Qbÿ d̂
h i

�14�
where,

Px � op�x1�
ox

;
op�x2�

ox
; . . . ;

op�xn�
ox

� �T

�15a�

t̂ � ou�x1�
ox

;
ou�x2�

ox
; . . . ;

ou�xn�
ox

� �T

� ĥ1; ĥ2; . . . ; ĥn
h iT

�15b�

w�a���x� �

w
�a�
1 ��x� 0 � � � 0

0 w
�a�
2 ��x� ..

. ..
.

..

. � � � . .
.

0
0 � � � 0 w

�a�
n ��x�

266664
377775 �15c�

By applying the stationarity condition to the weighted
discrete H1 error norm, the coef®cient vector a��x� can be
obtained from the following matrix equation.

A��x�a��x� � B��x�d̂
where,

A��x� � QTW��x�Q � PTw�0�P� PT
x w�1�Px

B��x� � QTW��x� � PTw�0�;PT
x w�1�

h i �16�

As in the one-dimensional case, the weighted discrete H1

error norm in two-dimensional space has the following
form:

J
�1�
�x �b� �

Xn

i� 1

X
jaj�1

w
�a�
i ��x� DapT�xi�bÿ Dau�xi�

� �2

Fig. 1. Conceptual explanation of the moving least squares
interpolation scheme
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�
Xn

i� 1

w
�0;0�
i ��x� pT�xi�bÿ ûi

� �2

� w
�1;0�
i ��x� op�xi�

ox

T
bÿ ĥi

x

h i2

� w
�0;1�
i ��x� op�xi�

oy

T
bÿ ĥi

y

h i2

8>>>><>>>>:

9>>>>=>>>>; �17�
where, ûi, ĥi

x, and ĥi
y denote u�xi�, ou�xi�=ox, and

ou�xi�=oy, respectively. It can be also rewritten in matrix
notation, as:

J
�1�
�x �b� � Pbÿ û� �Tw�0;0���x� Pbÿ û� �

� Pxbÿ t̂x

� �T
w�1;0���x� Pxbÿ t̂x

� �
� Pybÿ t̂y

� �T
w�0;1���x� Pybÿ t̂y

� �
�

P

Px

Py

264
375bÿ

û

t̂x

t̂y

8><>:
9>=>;

8><>:
9>=>;

T

�
w�0;0���x� 0 0

0 w�1;0���x� 0

0 0 w�0;1���x�

264
375

�
P

Px

Py

264
375bÿ

û

t̂x

t̂y

8><>:
9>=>;

8><>:
9>=>;

� Qbÿ d̂
h iT

W��x� Qbÿ d̂
h i

�18�
where,

Px � op�x1�
ox

;
op�x2�

ox
; . . . ;

op�xn�
ox

� �T

�19a�

Py � op�x1�
oy

;
op�x2�

oy
; . . . ;

op�xn�
oy

� �T

�19b�

t̂x � ou�x1�
ox

;
ou�x2�

ox
; . . . ;

ou�xn�
ox

� �T

� ĥ1
x; ĥ

2
x; . . . ; ĥn

x

h iT �19c�

t̂y � ou�x1�
oy

;
ou�x2�

oy
; . . . ;

ou�xn�
oy

� �T

� ĥ1
y; ĥ

2
y; . . . ; ĥn

y

h iT �19d�
By using the same minimization procedure as in the one-
dimensional case, the coef®cient vector a��x� can be ob-
tained from the following matrix equation.

A��x�a��x� � B��x�d̂
where,

A��x� � QTW��x�Q
� PTw�0;0�P� PT

x w�1;0�Px � PT
y w�0;1�Py

B��x� � QTW��x� � PTw�0;0�;PT
x w�1;0�;PT

y w�0;1�
h i �20�

The GMLS (Generalized MLS) approximation is well de-
®ned only when the matrix A in Eqs. (16) and (20) is non-
singular as in the MLS approximation. To guarantee a
non-singular matrix A, it is necessary that the rank of Q be
greater than or equal to the number of p-basis m, and at
least m diagonal elements of weight function matrix W��x�
are non-zero. The approximation procedure is conceptu-
ally explained in Fig. 2.

The nodal basis functions from GMLS interpolation
procedure
In the one-dimensional case, solving for a�x� from Eq.
(16), and substituting it into Eq. (1), gives a relation which
may be written in the form of a linear combination of
nodal shape functions similar to that used in ®nite element
method, as

uh�x� � WT
u�x�û�WT

h �x�̂t

�
Xn

i� 1

ûiw�u�i �x� � ĥiw�h�i �x� �21a�

where

WT
u�x� � pT�x�Aÿ1�x�PTw�0��x�

WT
h �x� � pT�x�Aÿ1�x�PT

x w�1��x�
�21b�

or

w�u�i �x� �
Xm

j� 1

pj�x� Aÿ1PTw�0�
h i

ji

w�h�i �x� �
Xm

j� 1

pj�x� Aÿ1PT
x w�1�

h i
ji

�21c�

Similarly, the form of an interpolation function obtained
from the generalized moving least squares method with
discrete H1 error norm, in two-dimensions can be written
as follows.

uh�x� � WT
u�x�û�WT

hx
�x�̂tx �WT

hy
�x�̂ty

�
Xn

i� 1

ûiw�u�i �x� � ĥi
xw
�hx�
i �x� � ĥi

yw
�hy�
i �x� �22a�

Fig. 2. Conceptual explanation of a generalized moving least
squares interpolation scheme
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where

WT
u�x� � pT�x�Aÿ1�x�PTw�0;0��x�

WT
hx
�x� � pT�x�Aÿ1�x�PT

x w�1;0��x�
WT

hy
�x� � pT�x�Aÿ1�x�PT

y w�0;1��x�
�22b�

or

w�u�i �x� �
Xm

j� 1

pj�x� Aÿ1PTw�0;0�
h i

ji

w�hx�
i �x� �

Xm

j� 1

pj�x� Aÿ1PT
x w�1;0�

h i
ji

w
�hy�
i �x� �

Xm

j� 1

pj�x� Aÿ1PT
y w�0;1�

h i
ji

�22c�

In actual computations, various kinds of weight functions
can be adopted for GMLS approximation procedure, as in
the MLS approximation procedure. The required condi-
tion for the continuity of the approximating function can
be easily satis®ed by changing the weight function in the
GMLS approximation procedure. In this work, we restrict
ourselves to the weight functions that have the form of

w
�a�
i �x� � 1ÿ xÿ xik k2=R2

i

ÿ �s
; if xÿ xik k � Ri

0; if xÿ xik k > Ri

�
�23�

where Ri denotes the radius of support of weight function.
If the derivatives of the p-basis in the GMLS approxima-
tion are continuous up to the r-th derivative, the resulting
GMLS approximation function from this weight function
is continuously differentiable up to the minimum of
�sÿ 1� and r. One can also use other kinds of weight
functions such as spline weight function or Gaussian
weight function (Atluri and Zhu 1998a). However, it is
noted that the weight function of (23) is in®nitely differ-
entiable at node xi, whereas conventional spline weight
functions are not in®nitely differentiable at node xi.

The GMLS nodal shape functions derived from mini-
mizing the discrete H1 error norm, in one-dimension and
two-dimensions, are plotted in Figs. 3 and 4, respectively.

Local symmetric weak form of 4th order problems
The thin beam (Euler beam) equation is given by the fol-
lowing 4th order differential equation.

EIu0000 � f in global domain X �24�
where u is transverse displacement, EI denotes the bend-
ing stiffness and f is distributed load over the beam. The
boundary conditions are given at the global boundary, C,
as

u�x� � �u�x� on Cu; and
ou�x�
ox

� �h�x� on Ch �25a�
M � �M on CM; and V � �V on CV �25b�
where M and V denote the moment and the shear force,
respectively. Cu, Ch, CM and CV denote the boundary re-
gions where displacement, slope, moment, and shear force

are speci®ed, respectively. The moment and shear force
are related to the displacement through the equations:

M � EIu00 and V � ÿEIu000 �26�
Different from the other meshless methods, such as the
element free Galerkin method, which are based on the
global weak formulation over the entire domain X, a local
weak form over a local sub-domain Xs located entirely
inside the global domain X will be used in this study. It is
noted that the local sub-domain can be of an arbitrary
shape containing a point x in question. Even though a
particular approximation of the local weak form will give
the same resulting discretized equations as from the
Galerkin approximation of global weak form, the local
weak form will provide the clear concept for a local non-
element integration, which does not need any background
integration cell over the entire domain. And, it will lead to
a natural way to construct the global stiffness matrix, not
through the integration over a global domain, but through
the integration over a local sub-domain.

To satisfy the equilibrium condition in a local subdo-
main Xs, in an average sense, the equilibrium equation is
weighted by a test function v and integrated over the local
subdomain. In this work, a penalty method is used to

Fig. 3. a GMLS nodal shape functions for displacement u(x),
in one dimension; b GMLS nodal shape functions for slope
du�x�=dx, in one dimension
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impose the essential boundary conditions (i.e.,
displacement and slope boundary conditions), because it
is ef®cient and does not need any other additional un-
known variables (Zhu and Atluri, 1998). The local
weighted residual equation can be written as shown below.

0 �
Z

Xs

EIu0000 ÿ f� �v dx � au �uÿ �u�v� �oXs\Cu

� ah �u0 ÿ �h�v0� �
oXs\Ch

; for all v �27�
where au and ah denote the penalty parameters to enforce
displacement and slope boundary conditions, respectively.
The boundary of the local sub-domain Xs is denoted by
oXs. By using integration by parts, Eq. (27) is recast into a
local symmetric weak form, as follows.

0 �
Z

Xs

EIu00v00 dxÿ
Z

Xs

fv dxÿ �nEIu00v0� �oXs

� �nEIu000v� �oXs
�au �uÿ �u�v� �oXs\Cu

� ah �u0 ÿ �h�v0� �
oXs\Ch

; for all v �28�
where �n � 1 if boundary is on the right side of Xs, and

�n � ÿ1 if it is on the left side of Xs. Since the interior of

the global domain X
�

, shear force boundary CV , and dis-

placement boundary Cu are mutually disjoint, and are

related by X � X
� S

CV

S
Cu, the boundary of the sub-

domain oXs can be decomposed into disjoint subsets of

oXs

T
X
�

, oXs

T
CV , and oXs

T
Cu. By the same reason, it

can be also decomposed into disjoint subsets of oXs

T
X
�

,

oXs

T
CM , and oXs

T
Ch. By using these decompositions,

along with the boundary condition (25b) and Eq. (26), Eq.

(28) can be rewritten as follows.

0 �
Z

Xs

EIu00v00 dx

ÿ
Z

Xs

fv dx� au �uÿ �u�v� �oXs\Cu
�ah �u0 ÿ �h�v0� �

oXs\Ch

ÿ �n �Mv0� �oXs\CM
ÿ �n �Vv� �oXs\CV

ÿ �nEIu00v0� �oXs\Ch
� �nEIu000v� �oXs\Cu

ÿ �nEIu00v0� �
oXs\X

� � �nEIu000v� �
oXs\X

� ; for all v �29�

If we take the test function v whose values and derivatives

are zero at oXs

T
X
�

, Eq. (29) is reduced to the following

equation.
For all v such that v � v0 � 0 at oXs \ X

�
,

0 �
Z

Xs

EIu00v00 dxÿ
Z

Xs

fv dx� au �uÿ �u�v� �oXs\Cu

� ah �u0 ÿ �h�v0� �
oXs\Ch

ÿ �n �Mv0� �oXs\CM
ÿ �n �Vv� �oXs\CV

ÿ �nEIu00v0� �oXs\Ch
� �nEIu000v� �oXs\Cu

�30�

The MLPG method, using the GMLS interpolation
Under the paradigm of MLPG method, the local symmetric
weak form holds for arbitrary local sub-domains con-
taining the point x in question inside the global domain X;
and further, the shapes of local sub-domain can be chosen
arbitrarily, such as spheres, cubes, and ellipsoids in 3-D.
Therefore, if the nodal points xi, and the supports of nodal
shape functions for trial function are given, then the local
symmetric weak form can be constructed for each local
sub-domain Xs centered around each nodal point xi. (It is
noted that the support of nodal shape function is the same
as the support of weight function in the GMLS interpol-
ation procedure, as well as in MLS interpolation proce-
dure.)

Because there is no restriction for the shape and size of
the local sub-domains, the local sub-domain Xs can be
taken to be different from the supports of nodal trial shape
functions; and, as a special case, to be the same as the

Fig. 4. a GMLS nodal shape function for displacement u(x),
in two dimensions. b GMLS nodal shape function for slope
du�x�=dx, in two dimensions. c GMLS nodal shape function
for slope du�x�=dy, in two dimensions

339



supports of nodal trial shape functions. In the MLPG
method, the local sub-domain is assumed to be the sup-
port of nodal test function v, centered at a node i. If the
size of local sub-domain is different from that of the
support of nodal shape function for trial function; or if the
nodal test function is different from the nodal trial func-
tion, the procedure becomes a Petrov±Galerkin approxi-
mation. On the other hand, if the size of local sub-domain
is the same as that of the support of nodal shape function
for the trial function; and, further, if exactly the same
forms of nodal test and trial functions are used, it leads to
the usual Galerkin approximation procedure. Therefore,
the MLPG method is one of the most general methods,
including the Petrov±Galerkin approximation procedure,
as well as the Galerkin approximation procedure, as spe-
cial cases. In this work, only the Galerkin approximation
procedure is presented, even though the MLPG method is
not con®ned to a Galerkin approximation.

We assume that the nodal points, and the sizes of
supports of weight functions at each node, for the GMLS
interpolation, are given. The symmetric weak form for
each nodal point xi is constructed as follows.

For all v such that v � v0 � 0 at oXs \ X
�

,

0 �
Z

X�i�s

EIu00v00 dxÿ
Z

X�i�s

fv dx� au �uÿ �u�v� �oX�i�s \Cu

� ah �u0 ÿ �h�v0� �
oX�i�s \Ch

ÿ �n �Mv0� �oX�i�s \CM
ÿ �n �Vv� �oX�i�s \CV

ÿ �nEIu00v0� �oX�i�s \Ch
� �nEIu000v� �oX�i�s \Cu

�31�

where X�i�s denotes the local sub-domain, which, as a

special case in the present study, is taken to be of the same

size as the support of weight function wi�x� for xi. Thus, in

the present study, the local sub-domain X�i�s is the same as

the support of the nodal trial function, as well as the

support of the nodal test function.
The unknown displacement u in this local symmetric

weak form is approximated by the nodal shape functions
obtained through the GMLS interpolation procedure.

u�x� � uh�x� �
Xn

j�1

û jw�u�j �x� � ĥ jw�h�j �x�
� �

�32�

where û j and w�u�j �x� denote the ®ctitious nodal displace-
ments and their corresponding GMLS nodal basis func-
tions; and ĥi and w�h�i �x� denote the ®ctitious nodal slopes
and their corresponding GMLS nodal shape functions. The
test function v for the local sub-domain X�i�s is approxi-
mated by a linear combination of the nodal shape func-
tions for nodal point xi.

v�x� � vh�x� � v̂iw�u�i �x� � b̂iw�h�i �x� �no summation�
�33�

where v̂i and b̂i denote the ®ctitious nodal displacement
and the ®ctitious nodal slope, of the test function v, re-

spectively. It is noted that the values and the derivatives of

nodal test function vh�x� in Eq. (33) are zero at oXs

T
X
�

.

By substituting Eqs. (32) and (33) into the local sym-
metric weak form (31) gives the following discretized
equation.

0 �
Xn

j�1

Z
X�i�s

EI v̂iw�u�
00

i � b̂iw�h�
00

i

� �
ûjw�u�

00

j � ĥjw�h�
00

j

� �
dx

ÿ
Z

X�i�s

v̂iw�u�i � b̂iw�h�i

� �
f dx

�
Xn

j�1

au

�
v̂iw�u�i � b̂iw�h�i

� �
� ûjw�u�j � ĥjw�h�j ÿ �u
� ��

oX�i�s \Cu

�
Xn

j�1

ah

�
v̂iw�u�

0

i � b̂iw�h�
0

i

� �
� ûjw�u�

0

j � ĥjw�h�
0

j ÿ �h
� ��

oX�i�s \Ch

ÿ v̂iw�u�
0

i � b̂iw�h�
0

i

� �
�n �M

h i
oX�i�s \CM

ÿ v̂iw�u�i � b̂iw�h�i

� �
�n �V

h i
oX�i�s \CV

ÿ
�

�nEI v̂iw�u�
0

i � b̂iw�h�
0

i

� �
ûjw�u�

00

j � ĥjw�h�
00

j

� ��
oX�i�s \Ch

�
�

�nEI v̂iw�u�i � b̂iw�h�i

� �
ûjw�u�

000

j � ĥjw�h�
000

j

� ��
oX�i�s \Cu

�34�
Because Eq. (34) should be satis®ed for arbitrary v̂i and b̂i,
Eq. (34) can be rewritten as the following equation.

0 � K
�node�
i d� K

�bdy�
i dÿ f

�node�
i ÿ f

�bdy�
i �35�

where,

d � û1; ĥ1; û2; ĥ2; . . . ; ûn; ĥn
h iT �36a�

K
�node�
i � k

�node�
i1 ; k

�node�
i2 ; . . . ; k

�node�
in

h i
�36b�

K
�bdy�
i � k

�bdy�
i1 ; k

�bdy�
i2 ; . . . ; k

�bdy�
in

h i
�36c�

k
�node�
ij � EI

R
X�i�s

w�u�
00

i w�u�
00

j dx
R

X�i�s
w�u�

00

i w�h�
00

j dxR
X�i�s

w�h�
00

i w�u�
00

j dx
R

X�i�s
w�h�

00

i w�h�
00

j dx

24 35
�36d�

k
�bdy�
ij �au

w�u�i w�u�j w�u�i w�h�j

w�h�i w�u�j w�h�i w�h�j

24 35
oX�i�s \Cu

� �nEI
w�u�i w�u�

000

j w�u�i w�h�
000

j

w�h�i w�u�
000

j w�h�i w�h�
000

j

24 35
oX�i�s \Cu

� ah

w�u�
0

i w�u�
0

j w�u�
0

i w�h�
0

j

w�h�
0

i w�u�
0

j w�h�
0

i w�h�
0

j

24 35
oX�i�s \Ch
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ÿ�nEI
w�u�

0

i w�u�
00

j w�u�
0

i w�h�
00

j

w�h�
0

i w�u�
00

j w�h�
0

i w�h�
00

j

24 35
oX�i�s \Ch

�36e�

f
�node�
i �

R
X�i�s

w�u�i f dxR
X�i�s

w�h�i f dx

8<:
9=; �36f�

f
�bdy�
i � �n �M

w�u�
0

i

w�h�
0

i

( )
oX�i�s \CM

� �n �V
w�u�i

w�h�i

( )
oX�i�s \CV

� au

�uw�u�i

�uw�h�i

( )
oX�i�s \Cu

� ah

�hw�u�
0

i

�hw�h�
0

i

( )
oX�i�s \Ch

�36g�
In this equation, one can easily notice that the numerical
integration in one local sub-domain gives two equations,
without any global background integration mesh. The
LSWF concept for constructing the discretized equation is
presented in Fig. 5. It is noted that the number of nodal
variables coupled in Eq. (35) changes, according to the size
of local sub-domain, while the number of coupled nodal
variables in the usual ®nite element method for 4th order
problems is six, as shown in Fig. 6.

Because the above relation (35) should hold for every
local sub-domain X�i�s , the same kind of equations can be
obtained for each local sub-domain X�i�s . Finally, we can
obtain the following matrix equation for the discrete sys-
tem, by collecting the equations obtained from each local
sub-domain X�i�s , without any element assembly.

Kd � f �37�
It is noted again that it is suf®cient to integrate in each
local sub-domain, without any global background inte-
gration mesh, and an entry of the global stiffness matrix
can be obtained directly without any element matrix as-
sembly.

Numerical integration algorithm
In this section, the numerical integration scheme of the
proposed method is discussed. Because both the GMLS

nodal shape functions, as well as the MLS nodal shape
functions, are not polynomial functions, it is dif®cult to
integrate the weak form corresponding to either the GMLS
shape functions or the MLS shape functions accurately, by
using a conventional numerical integration scheme such as
the Gaussian quadrature rule. Because of this reason, more
integration points are usually needed to obtain acceptable
numerical results, as compared to the usual ®nite element
method. Moreover, an accurate integration becomes more
dif®cult, because the Gaussian quadradure rule is based on
an interpolation function that is in®nitely differentiable in
the integration domain, whereas the GMLS nodal shape
function and MLS nodal shape function are not in®nitely
differentiable in the integration domain. Actually, the
higher order derivatives of GMLS and MLS nodal shape
functions, which are higher than the order of continuity of
the weight function, are discontinuous at the support
boundaries. In Fig. 7, the discontinuities, arising in the
higher derivatives of GMLS nodal shape function, are
presented. In the calculation of the nodal shape function in
Fig. 7, a C2 continuous weight function, and a second
order polynomial p-basis are used. The C2 continuous
weight function used in this example has the form of

w
�0�
i �x� � w

�1�
i �x�

� 1ÿ jxÿ xij2=R2
i

ÿ �3
; if jxÿ xij � Ri

0; if jxÿ xij > Ri

(
�38�

Because the derivatives of the weight function, higher than
the second order, are discontinuous at the boundaries of
supports of sub-domains, the derivatives higher than the
second order derivative may show discontinuities at the
boundaries of supports of sub-domains, as denoted by
scissors in Fig. 7. To handle this dif®cult problem in nu-
merical integration, an integration procedure that uses the
information of all boundaries of supports of sub-domains
is proposed in this work. Consider the arrangement of
sub-domains shown in Fig. 8. Then the higher derivatives
of the GMLS nodal shape function, in a sub-domain Xs,
will be discontinuous at each boundary of the other sup-
port. Therefore it is natural that integrations in a sub-
domain are performed in each divided sub-region, after

Fig. 5. The LSWF concept for constructing the discretized
equation for the node i in MLPG

Fig. 6. The LSWF concept for constructing the discretized
equation in the Galerkin ®nite element method
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dividing the sub-domain by boundaries of supports of
other nodes. To evaluate the entry of stiffness matrix
k
�node�
ij , related to node i and node j, it is suf®cient to

integrate only in the sub-regions in which both of nodal
shape functions are non-zero, because the integrand is
zero in the other regions. This situation is sketched in
Fig. 9.

Numerical tests
By using the presently developed GMLS approximation
procedure, with a local symmetric weak form and MLPG,
several numerical examples are worked out to investigate
the numerical characteristics of the proposed method. The
calculated results are compared with analytical solutions.
A 10 point Gaussian quadrature rule is used in each sub-
region of intersection of sub-domains to evaluate the entry
of the stiffness matrix accurately.

Convergence test
Convergence tests are carried out, for the problem of a
cantilevered thin beam under a uniformly distributed load.

To observe the convergence, three relative error norms are
measured. They are de®ned as follows.

Relative L2 error norm:������������������������������������������R
X junum ÿ uexactj2 dx

q
��������������������������R

X juexactj2 dx
q �39�

Relative H1 error norm :�����������������������������������������������������������������������������R
X junum ÿ uexactj2 � ju0num ÿ u0exactj2 dx

q
�����������������������������������������������R

X juexactj2 � ju0exactj2 dx
q �40�

Relative H2 error norm:����������������������������������������������������������������������������������������������������������R
X junumÿuexactj2�ju0numÿu0exactj2�ju00numÿu00exactj2 dx

q
����������������������������������������������������������������R
X juexactj2�ju0exactj2�ju00exactj2 dx

q
�41�

Fig. 7. a C2 continuous nodal shape function, and its derivatives, for displacement. b C2 continuous nodal shape function,
and its derivatives, for slope
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In Fig. 10, the second order polynomial p-basis, C2

continuous weight, and the value of 2.7 times nodal
distance (2.7Dx) for radius of support, are used. The
results show that the convergence rates of L2, H1 and H2

error norms are 2.98, 2.62, 1.48, respectively. In Fig. 11,
the order of p-basis is increased to a third order poly-
nomial. From the results, it is observed that the con-
vergence rate is greatly improved. Especially, the

convergence rate of L2 norm is increased from 2.98 to
4.31. However, it should be noted that the computational
burden is increased, as the order of p-basis is increased,
because a larger matrix A in Eq. (21b) should be inverted
to obtain the higher order p-basis GMLS nodal shape
function. In Fig. 12, the weight function is changed to a
C4 continuous weight function, holding the other pa-
rameters to be the same as those adopted in the simu-

Fig. 7. Continued

Fig. 8. Sub-domain Xs, divided by the boundaries of supports
of other sub-domains Fig. 9. Integration domain to evaluate the terms of stiffness

matrix k
�node�
ij related to node i and node j
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lation of Fig. 10. It shows that the convergence rate is
similar to the case of C2 continuous weight function.
However, the magnitude of the relative error norm be-
comes much smaller than in the case of a C2 continuous
weight function. It is noted that a C4 continuous weight
function can be easily used, because there is no addi-

tional computational cost to increase the order of con-
tinuity of weight function. In Fig. 13, the radius of
support (sub-domain size) is increased to 4.7 times nodal
distance (4.7Dx) without changing the other parameters
of Fig. 12. Because more nodes are considered in one
sub-domain as the radius of support is increased, both

Fig. 10. Convergence rates for a cantilevered beam under
uniform loading, using second order polynomial p-basis, and
a C2 continuous weight function, with the value of 2:7Dx for
the radius of support

Fig. 11. Convergence rate for cantilevered beam under
uniform loading, using third order polynomial p-basis, and
a C2 continuous weight function, with the value of 2:7Dx for
the radius of support

Fig. 12. Convergence rate for cantilevered beam under
uniform loading, using second order polynomial p-basis, and
a C4 continuous weight function, with the value of 2:7Dx for
the radius of support

Fig. 13. Convergence rate for cantilevered beam under
uniform loading, using second order polynomial p-basis, and
a C4 continuous weight function, with the value of 4:7Dx for
the radius of support
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the convergence rate and the magnitude of the error
norm are drastically increased. The convergence rates of
the L2 error norm, the H1 error norm, and the H2 error
norm are close to 4, 3, and 2, respectively, even though
the second order polynomial p-basis is used in the
computation.

Thin beam under various loading
and boundary conditions
In Fig. 14, a thin beam under a uniformly distributed
load is analyzed by the present method. Simply sup-
ported boundary conditions are imposed. For the simu-
lation, the values of 2.7Dx for the radius of support of
weight function; and a C4 continuous weight function are
used. The second order polynomial p-basis is adopted,
and 12 nodes are used. From the results, it can be ob-
served that both the cases of a uniform node distribution,

and an irregular node distribution, give accurate results.
Although the error of the second derivative in irregular
node distribution is a little bit larger than in the uniform
node distribution case, the case of irregular node distri-
bution also shows excellent agreements with the exact
solution.

In Fig. 15, the loading condition of Fig. 14 is changed to
that of a point load at the center of the beam, while the
other conditions of Fig. 14 are preserved. The simulated
results also show good agreements with the analytical so-
lution. In the vicinity of the center of the beam, the
maximum error of the second derivative occurs, because
of the kink in the analytical solution for the second de-
rivative.

In Figs. 16 and 17, a thin beam with clamped boun-
dary condition is considered. The uniformly distributed
load is depicted in the case of Fig. 16, and the linearly

Fig. 14. a Numerical solution of a simply supported thin beam
under uniformly distributed load, by using uniformly spaced
nodes. b Numerical solution of a simply supported thin beam
under uniformly distributed load, by using irregularly spaced
nodes

Fig. 15. a Numerical solution of a simply supported thin beam
under a point load at the center of the beam, by using uniformly
spaced nodes. b Numerical solution of a simply supported thin
beam under a point load at the center of the beam, by using
irregularly spaced nodes
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distributed load is depicted in the case of Fig. 17. Similar
to the case of a simply-supported boundary condition, it
can be observed that the numerical solutions are highly
accurate.

Concluding remarks
In this paper, the MLPG method is extended to solve the
4th order boundary problems of thin beams. For the
meshless interpolation scheme in the MLPG method, the
conventional moving least squares interpolation scheme
is generalized. (As noted before, the MLPG concept is
independent of the interpolation scheme, and it can be
combined with other meshless interpolation schemes.) In
this generalized moving least squares (GMLS) interpol-
ation procedure, the slope is introduced as an additional
independent variable, through the modi®cation of local
approximation in the MLS interpolation scheme. For an

accurate integration of the global stiffness matrix, a
new non-element local integration scheme is proposed,
and it is implemented in the present numerical
algorithm.

To study the accuracy of the proposed method,
convergence tests are performed. Additionally, several
problems of thin beams under various loading and
boundary conditions are analyzed, and compared with
analytical solutions. From these numerical results, it is
con®rmed that the proposed method shows promising
characteristics in dealing with 4th order boundary value
problems.

References
Atluri SN, Zhu T (1998a) A new meshless local Petrov±Galerkin

(MLPG) approach in computational mechanics. Comp. Mech.
22:117±127

Fig. 16. a Numerical solution of a clamped thin beam under
uniformly distributed load, by using uniformly spaced nodes.
b Numerical solution of a clamped thin beam under uniformly
distributed load, by using irregularly spaced nodes

Fig. 17. a Numerical solution of a clamped thin beam under
linearly distributed load, by using uniformly spaced nodes.
b Numerical solution of a clamped thin beam under linearly
distributed load, by using irregularly spaced nodes

346



Atluri SN, Zhu T (1998b) A new meshless local Petrov±Galerkin
(MLPG) approach to nonlinear problems in computer mod-
eling and simulation. Comput. Modeling Simul. Eng. 3:187±
196

Babu�ska I, Melenk J (1997) The partition of unity method. Int. J.
Num. Meth. Eng. 40:727±758

Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin meth-
ods. Int. J. Num. Meth. Eng. 37:229±256

Duarte CA, Oden JT (1996) An h-p adaptive method using clouds.
Comp. Meth. Appl. Mech. Eng. 139:237±262

Krysl P, Belytschko T (1995) Analysis of thin plates by the ele-
ment-free Galerkin method. Comp. Mech. 17:26±35

Krysl P, Belytschko T (1996) Analysis of thin shells by the ele-
ment-free Galerkin method. Int. J. Solids Struct. 33:3057±3078

Lancaster P, Salkauskas K (1981) Surfaces generated by moving
least squares methods. Math. Comp. 37:141±158

Liu W, Jun S, Zhang Y (1995) Reproducing kernel particle
methods. Int. J. Num. Meth. Fluids 20:1081±1106

Liu WK, Chen Y, Chang CT, Belytschko T (1996) Advances in
multiple scale kernel particle methods. Comp. Mech. 18:73±111

Lucy LB (1977) A numerical approach to the testing of the ®ssion
hypothesis. The Astro. J. 8:1013±1024

Nayroles B, Touzot G, Villon P (1992) Generalizing the ®nite
element method: diffuse approximation and diffuse elements.
Comp. Mech. 10:307±318

Organ D, Fleming M, Terry T, Belytschko T (1996) Continuous
meshless approximations for nonconvex bodies by diffrac-
tion and transparency. Comp. Mech. 18:225±235

Shepard D (1968) A two-dimensional function for irregularly
spaced data. Proc. of ACM Nat'l Conf., pp. 517±524

Zhu T, Atluri SN (1998) A modi®ed collocation method and a
penalty formulation for enforcing the essential boundary
conditions in the element free Galerkin method. Comp. Mech.
21:211±222

Zhu T, Zhang JD, Atluri SN (1998a) A local boundary integral
equation (LBIE) method in computational mechanics, and a
meshless discretization approach. Comp. Mech. 21:223±235

Zhu T, Zhang JD, Atluri SN (1998b) A meshless local boundary
integral equation (LBIE) method for solving nonlinear
problems. Comp. Mech. 22:174±186

347


