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Abstract We obtain explicit analytical particular solutions
for Helmholtz-type operators, using higher order splines.
These results generalize those in Golberg, Chen and Ra-
shed (1998) and Chen and Rashed (1998) for thin plate
splines. This enables one to substantially improve the ac-
curacy of algorithms for solving boundary value problems
for Helmholtz-type equations.

1
Introduction
Following the work of Nardini and Brebbia (1982), there
has been increasing interest in using the Dual Reciprocity
Method (DRM) to solve partial differential equations
(PDEs) by boundary methods (Partridge et al. 1992 and
Golberg and Chen 1997). Using the DRM enables one to
obtain `boundary ± only' formulations for inhomogeneous,
nonlinear and time-dependent problems by eliminating
the domain integral which typically occurs in integral
equation approaches (Partridge et al. 1992 and Golberg
and Chen 1997). The key ingredient in doing this is the
ability to analytically calculate particular solutions for
various linear PDEs Lu � f . This is usually done by ap-
proximating f by a series

PN
j�1 ajuj and then solving

LWj � uj, 1 � j � N , where fujg is an appropriate set of
linearly independent basis functions. Hence, the choice of
fujg is important, and the analysis given in Golberg et al.
(1998b) shows that fujg need to provide an accurate ap-
proximation to f and should be of a form so that LWj � uj
can be solved analytically (Partridge et al. 1992, Golberg
and Chen 1997 and Golberg et al. 1998b). Recent research
indicates that the theory of radial basis functions (rbfs)
provides a ®rm foundation for the ®rst problem (Golberg
et al. 1998b, Golberg and Chen 1994 and Golberg et al.
1996), while the latter depends on the nature of L. Clas-
sically, in the DRM, u�r� � 1� r has been used for the
basis, but better choices exist such as the thin plate

splines (TPS) u�r� � r2 log r in R2 or multiquadrics
u�r� � ��������������

r2 � c2
p

(Golberg and Chen 1997, Golberg and
Chen 1994 and Golberg 1995). If L � D, the Laplacian,
then LWj � uj, can be obtained in these cases by repeated
integration (Patridge et al. 1992, Golberg and Chen 1997),
but for other operators, such as Helmholtz-type operators,
L� � D� k2, this has proven dif®cult (Golberg and Chen
1994, 1997). A signi®cant result along these lines were
given by Chen and Rashed (1998a) where analytic for-
mulas were given for Wj when uj was a TPS. These for-
mulas have proved very useful in developing ef®cient
mesh-free algorithms for solving the diffusion equation in
R2 and R3 (Chen et al. 1998b).

However, since the convergence rate of TPS interpolants
is not large, O�hj log hj�, h = minimum separation dis-
tance (Powell 1994), in the uniform norm and O�h2� in the
L2 norm (Jumarhon et al. 1997), it is of considerable in-
terest to ®nd other rbfs whose convergence rate is better
than TPS. For Poisson's equation, Golberg, Chen and
Karur (1996) have shown that considerable improvement
can be obtained (up to three orders of magnitude) by
using multiquadrics, but there are dif®cult and unresolved
problems concerning the choice of the shape parameter c
and analytic particular solutions are known only for
L � D. In this paper, generalizing the results in Chen and
Rashed (1998a), we show how to obtain analytic particular
solutions when u�r� are higher order Duchon splines
(Duchon 1976). Since such functions can achieve L2 con-
vergence rates of O�hn� for an nth order spline, they can
provide high order accuracy, comparable to the multi-
quadrics, and particular solutions for L�W � u can be
obtained without numerical integration. Use of these for-
mulas is expected to improve the ef®ciency of algorithms
given in Chen et al. (1998b) and Golberg (1995).

We begin with a brief discussion of some problems
which lead naturally to the solution of inhomogeneous
Helmholtz-type equations and the need for higher order
approximation of f . Following this, we discuss the results
in Chen and Rashed (1998a) and indicate our approach for
obtaining these based on a generalization of the annihi-
lator method, well-known for ordinary differential equa-
tions. This is possible because higher order splines are
fundamental solutions of the iterated Laplacian Dn (Powell
1990). A brief discussion of higher order splines is fol-
lowed by our main results. Since there are four distinct
cases, one for each choice of signs and dimension 2 or 3,
we present our results in detail in the two dimensional case
for Lÿ � Dÿ k2. In the remaining cases, the formulas will
be stated and guidelines provided for their proofs. Finally,
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we present the results of a numerical experiment justifying
our approach.

2
Time-dependent problems and Helmholtz-type operators
As motivation for our work we consider boundary value
problems for the diffusion equation

Du�P; t� � ut�P; t�; P 2 D � Rd; d � 2; 3 : �1�
Such boundary value problems can often be solved by
using time-dependent fundamental solutions (Partridge
et al. 1992), but this approach can be time-consuming due
to the need to evaluate domain integrals. To improve the
ef®ciency of integral equation algorithms, recent research
has focused on using time-independent fundamental so-
lutions instead (Partridge et al. 1992, Chen et al. 1998b
and Zhu et al. 1994). Generally, two approaches have been
taken: (i) elimination of the time dependence by using the
Laplace transform (Partridge et al. 1992, Chen et al.
1998b) and (ii) using ®nite differences for ut (Wrobel et al.
1986 and Chapko et al. 1997).

For (i), we de®ne the Laplace transform of u, U by

U�P; s� �
Z 1

0

eÿstu�P; t� dt �2�

and applying this to (1) gives

DU�P; s� ÿ sU�P; s� � ÿu0�P� �3�
where

u0�P� � u�P; 0� �4�
is the given initial condition. If u0 6� 0, then (3) is an in-
homogeneous modi®ed Helmholtz equation with k � ��

s
p

.
Transforming boundary conditions as well (Chen et al.
1998b), one arrives at a boundary value problem which
can be solved using standard boundary integral equation
techniques. Numerical inversion of the transform gives the
solution in time (Chen et al. 1998b).

However, in these formulations, domain integrals of the
formZ

D

G�P;Q; s�u0�Q� dv �5�

appear where G�P;Q; s� is the fundamental solution of
Dÿ s. Since the domain integrals are costly to calculate, it
is desirable to avoid them. In addition, if one adds a source
term f �P; t� to the left hand side of (1) the same problems
occur and much work in this area assumes f � u0 � 0 or
f � 0 and Du0 � 0 (Zhu et al. 1994, Wrobel et al. 1986 and
Chapko et al. 1997).

To overcome these dif®culties, Chen et al. (1998b) ap-
proximated the right hand side of (3) by thin plate splines
and the particular solutions were obtained using the re-
sults in Chen and Rashed (1998a). Since the accuracy of
the algorithm is limited by the convergence rate of the
TPS, it is desirable to have better approximating bases. As
we shall see, higher order splines r2n log r�n � 1� in R2 and
r2nÿ1�n � 1� in R3 are a suitable choice.

As an alternative to the Laplace transform one can use
®nite differencing in `t'. For example, de®ning

un�P� � u�P; ns�; s > 0; n � 0; 1; 2; . . . �6�
where s is the time-step, and approximating

ut�P; ns� ' u�P; ns� ÿ u�P; �nÿ 1�s�
s

�7�

gives vn, the approximation to un, as the solution to

Dvn�P� � vn�P� ÿ vnÿ1�P�
s

: �8�

Rearranging (8) gives

Dvn�P� ÿ vn�P�
s
� ÿvnÿ1�P�

s
: �9�

From (9), it follows that vn satis®es a modi®ed
Helmholtz equation with k2 � 1=s and f � ÿvnÿ1=s.
Hence, taking v0 � u0, boundary value problems for
(1) can be reduced to solving a sequence of Helm-
holtz-type equations. This method was apparently due
to Rothe (Chapko et al. 1997) and has recently been
analyzed in some detail by Chapko et al. (1997).
Again, they were limited to zero initial conditions and
source terms.

As might be expected, the analysis in Chapko et al.
(1997) showed that the error in using (8) is O�s� so
that further accuracy requires higher order time dif-
ferencing. A popular method in the BEM literature is
the h-method (Partridge et al. 1992). Here, we approx-
imate (tn � ns�
u�P; t� ' hu�P; �n� 1�s� � �1ÿ h�u�P; ns�;

0 � h � 1; tn � t � tn�1 ; �10�
and

Du�P; t� ' hDun�1�P� � �1ÿ h�Dun�P�; tn � t � tn�1:

�11�
Using (10)±(11) in (1) and denoting the approximation to
un�P� by vn�P�, we get

hDvn�1�P� � �1ÿ h�Dvn�P� � vn�1�P� ÿ vn�P�
s

;

�12�
so that

Dvn�1�P� ÿ vn�1�P�
hs

� ÿhvn�P� ÿ �1ÿ h�Dvn�P�
hs

:

�13�
For h � 1=2 we get the Crank-Nicholson scheme
(Partridge et al. 1992)

Dvn�1�P� ÿ 2vn�1�P�
s

� ÿ2vn�P� ÿ Dvn�P�
s

: �14�

Again we see that this method requires the solution of a
sequence of Helmholtz equations. Moreover, Lubich and
Schneider (1992) considered high order discretization
methods generalizing (9) and (13) of the form
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Dvn�1 ÿ dn�1vn�1 �
Xn

k�0

dnÿkvk

where fdkg are determined using A-stable multistep
methods for ordinary differential equations. Such schemes
are expected to require higher order spatial discretization
to maintain accuracy. In fact, as will be shown in Example
2 higher order splines can be useful in accelerating the
convergence of the low order time-stepping method in
Eq. (9). Su and Tabarrok (1997) considered a similar time-
differencing approach for a variety of other time-depen-
dent PDEs including the wave equation, the diffusion-
convection equation and nonlinear equations such as
Burger's equation. Numerically, each algorithm leads to
solving a sequence of Helmholtz-type equations with de-
rivative terms on the right hand side. Hence, we expect the
results in this paper to have wide applicability beyond
those already discussed.

3
The annihilator method
As we indicated in the Introduction, to ®nd approximate
particular solutions up to

Lu�P� � f �P� �15�
we approximate f by f̂ where

f̂ �P� �
XN

j�1

ajuj�P�; P 2 Rd; d � 2; 3; �16�

and fajg are obtained by some surface ®tting technique
(Golberg and Chen 1997 and Golberg 1995). In the BEM
this has usually been done by interpolation (Golberg and
Chen 1997 and Golberg 1995) and then

up�P� �
XN

j�1

ajWj�P� �17�

where

LWj�P� � uj�P� : �18�
For numerical ef®ciency, it is best to solve (18) analytically
(Golberg et al. 1998b). For L � D, this can often be done
by repeated integration. However, for L� this is usually not
possible (Zhu 1993). To overcome this dif®culty, we con-
sider another approach, usually called the annihilator
method in the context of ordinary differential equations
(Derrick and Grossman 1976). Here we assume that there
exists a linear partial differential operator M which satis-
®es

Muj � 0 �19�
and commutes with L; i.e., ML � LM. Then,

MLWj � Muj � 0 � LMWj : �20�
If the solution sets V � fv : Lv � 0g and
W � fw : Mw � 0g are ®nite and disjoint, then

Wj �
Xs

k�1

bkbk �
Xt

k�1

ckck � z �21�

where fbkg is a basis for V , fckg is a basis for W and
Lz � 0. The coef®cients fbkg and fckg are determined by
requiring LWj � uj and additional regularity conditions
(Golberg and Chen 1997 and Golberg et al. 1999). Before
proceeding with our general results, we illustrate this
procedure by rederiving the results in Chen and Rashed
(1998a). For simplicity we consider the case Lÿ in R2.

In Chen et al. (1998b) f was approximated by thin plate
splines. Letting rj � kPÿ Qjk be the Euclidean distance
between P and Qj where fQjg is a set of interpolation
points, a TPS is of the form

f̂ �P� �
XN

j�1

ajr
2
j log rj � aN�1 � aN�2x� aN�3y : �22�

As is well known, the interpolation problem

f̂ �Qj� � f �Qj�; 1 � j � N �23�
with the constraints �Qj � �xj; yj��XN

j�1

aj �
XN

j�1

ajxj �
XN

j�1

ajyj � 0 �24�

has a unique solution for every set of distinct noncollinear
points in R2 (Golberg 1995 and Duchon 1976). Hence,
particular solutions to Lÿu � f̂ can be obtained by solving

LÿWj�P� � r2
j log rj; 1 � j � N �25�

and

LÿWN�1 � 1; LÿWN�2 � x; LÿWN�3 � y : �26�
The latter can easily be found by the method of undeter-
mined coef®cients as in Chen and Rashed (1998a)

WN�1 � ÿ1

k2 ; WN�2 � ÿx

k2 ; WN�3 � ÿy

k2 : �27�
To solve (25), we use the annihilator method. First, we
observe that it suf®ces to solve (Golberg et al. 1999)

LÿW�P� � r2 log r; r � kPk ; �28�
so that (28) reduces to the ordinary differential equation

1

r

d

dr
r

dW�r�
dr

� �
ÿ k2W�r� � r2 log r : �29�

Then Wj � W kPÿ Qjk
ÿ �

, 1 � j � N (Chen et al. 1998b).
Now, making use of the fact that

D2r2 log r � 0; r > 0 ; �30�
W can be obtained by solving D2LÿW � 0. For radially
symmetric solutions this is equivalent to solving

D2
r Dr ÿ k2
ÿ �

W � 0 �31�
where

Dru�r� � 1

r

d

dr
r

du�r�
dr

� �
: �32�

Since D2
r and Dr ÿ k2 commute, and the solution spaces for

Dr ÿ k2
ÿ �

v � 0 and D2
r w � 0 are ®nite dimensional, W can

be obtained by solving

413



D2
r w � 0; Dr ÿ k2

ÿ �
v � 0 : �33�

Since Dr ÿ k2 is a Bessel operator (Derrick and Grossman
1976),

v�r� � AI0�kr� � BK0�kr� �34�
where I0 and K0 are Bessel functions of order zero. Since
D2

r is a multiple of an Euler operator, we look for solutions
of the form w � rp with the characteristic exponents p to
be determined (Derrick and Grossman 1976).

Since Drrp � p2rpÿ2; D2
r rp � p2�pÿ 2�2rpÿ4, p must

satisfy the characteristic equation p2�pÿ 2�2 � 0. Hence,
p � 0 or p � 2 and the general solution of D2

r w � 0 is
(Derrick and Grossman 1976)

w�r� � a� b log r � cr2 � dr2 log r : �35�
Thus,

W�r� � AI0�kr� � BK0�kr�� a� b log r � cr2 � dr2 log r:

�36�
The coef®cients fA;B; a; b; c; dg are found by requiring
Dr ÿ k2
ÿ �

W � r2 log r and the condition that W be con-
tinuous at r � 0. One solution is given in Chen and Rashed
(1999) by

W�r� � ÿ 4
k4 ÿ 4 log r

k4 ÿ r2 log r

k2 ÿ 4K0�kr�
k4 ; r 6� 0 ,

ÿ 4
k4 � 4c

k4 � 4
k4 log k

2

ÿ �
; r � 0 ,

(
�37�

where c ' 0:5772156649015328 is Euler's constant.

4
Higher order splines
To achieve higher convergence rates for f̂ , we consider
using the higher order splines (Golberg 1995, Jumarhon
et al. 1997 and Duchon 1976)

u�n�j �P� � r2n
j log rj; n � 1; in R2 �38�

and

u�n�j �P� � r2nÿ1
j ; n � 1; in R3 �39�

Then

f̂ �P� �
Xn

j�1

aju
�n�
j �P� � pn �40�

where pn is a polynomial of total degree n. As for TPS, the
coef®cients fajg and pn can be determined by interpolat-
ing f by f̂ on fQjg where fQjg is a unisolvent set of points
for polynomial interpolation and the coef®cients of pn

satisfy the constraintsXN

j�1

ajbi�Pi� � 0; 1 � i � ln ; �41�

where

ln � n� d
d

� �
; d � 2; 3 ; �42�

is the dimension of Pn, the set of polynomials of degree
�n, and fbjg is a basis for Pn. Usually, fbjg are taken to
be monomials. As was shown by Duchon (1978), this
problem has a unique solution. If fQjg � D, a compact
subset of Rd, then (Duchon 1978)

f ÿ f̂
 

2
� chn �43�

where

h � max
P2Rd

min
Q2D
kPÿ Qk �44�

and c depends on D but not on fQjg.
To ®nd particular solutions for L� when uj is an nth

order spline, we proceed as for TPS and get

Wj�P� � W kPÿ Qjk
ÿ �� v�P� �45�

where

L�W�r� � r2n log r in R2 ; �46�
L�W�r� � r2nÿ1 in R3 ; �47�
and

Lv � pn; in Rd; d � 2; 3 : �48�
Then the particular solution up is given by

up�P� �
XN

j�1

ajWj�P� � v�P� : �49�

For brevity, we work out the details for Lÿ in R2; for the
remaining cases, we merely quote the results which can be
veri®ed by the reader. We begin with (46).

First, we observe that Dn�1
r uj � 0, r > 0, since

u kPÿ Qjk
ÿ �

is the fundamental solution for Dn�1
r (Golberg

1995). Applying Dn�1
r to (46), solutions can be found by

solving

Dn�1
r Dr ÿ k2
ÿ �

W � 0 : �50�
As for TPS,

W � v� w �51�
where

Dn�1
r w � 0; Dr ÿ k2

ÿ �
v � 0 : �52�

As for TPS, v is given by (34), so it suf®ces to solve
Dn�1

r w � 0. Since Dn�1
r is a multiple of an Euler operator

(Golberg et al. 1999) we look for solutions of Dn�1
r w in the

form w � rq where q is the characteristic exponent. Using
Drrq � q2rqÿ2 repeatedly, gives

Dn�1
r rq � q2�qÿ 2�2 � � � �qÿ 2n�2rqÿ2n : �53�

Hence, the characteristic equation is,

q2�qÿ 2�2 � � � �qÿ 2n�2 � 0 �54�
and the characteristic exponents are q � 0; 2; 4; . . . ; 2n.
Since the roots are double, the theory of the Euler equation
shows that the solution space W is spanned by
fr2k; r2k log rg, 0 � k � n (dim W � 2n� 2) (Derrick and
Grossman 1976) so that

W�r� � AI0�kr� � BK0�kr� � w�r� �55�
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where

w�r� �
Xn�1

k�1

ckr2kÿ2 log r �
Xn�1

k�1

dkr2kÿ2 : �56�

We now need to choose A;B; fckg; fdkg so that
LÿW � r2n log r with W having the maximum differentia-
bility. For this, we observe that I0 is analytic, but K0 is not.
In fact (Abramowitz and Stegun 1965),

K0�kr� �
X1
k�0

lkr2k ÿ
X1
k�0

k2k

�2k�!! r2k log r �57�

where �2k�!! � 2 � 4 � 6 � � � 2k � 2kk!,

l0 � log
2

k

� �
ÿ c �58�

and

lk � log
2

k

� �
ÿ c�

Xk

j�1

1

j

� �" #
k2k

��2k�!!�2 ; k � 1 :

�59�
To obtain maximum differentiability, we choose fckg in
(56) to cancel the log terms in (57). Doing this gives

ck�1 � Bk2k

��2k�!!�2 ; 0 � k � n : �60�

To determine fdkg; we use the fact that W must satisfy
LÿW � r2n log r. Since LÿI0 � LÿK0 � 0, it suf®ces to have
Lÿw � r2n log r. Using the fact that Dr�r2k� � k2r2kÿ2,
Dr�r2k log r� � 4k2r2kÿ2 log r � 4kr2kÿ2 and Dr log r � 0,
gives

Dr ÿ k2
ÿ �

w�r� �
Xn

k�1

4k2ck�1 ÿ k2ck

ÿ �
r2kÿ2

ÿ k2cn�1r2n log r

�
Xn

k�1

4kck�1 ÿ k2dk � k2dk�1

ÿ �
r2kÿ2

ÿ k2dn�1r2n : �61�
At ®rst glance, it seems that the available equations would
not be suf®cient for evaluation of the unknown coef®-
cients. Fortunately, using (60), we observe that

4k2ck�1 ÿ k2ck � 4k2Bk2k

��2k�!!�2 ÿ
k2Bk2kÿ2

��2kÿ 2�!!�2 � 0 : �62�

So (61) becomesXn

k�1

4kck�1 ÿ k2dk � 4k2dk�1

ÿ �
r2kÿ2

ÿ k2dn�1r2n ÿ k2cn�1r2n log r � r2n log r : �63�
Comparing coef®cients gives

ÿk2dn�1 � 0�) dn�1 � 0 ; �64�

ÿk2cn�1 � 1�) cn�1 � ÿ1

k2 ; �65�
and

4kck�1 ÿ k2dk � 4k2dk�1 � 0; 1 � k � n : �66�
From (60) and (65),

cn�1 � Bk2n

��2n�!!�2 �
ÿ1

k2 �67�

so that

B � ÿ ��2n�!!�2
k2n�2 : �68�

Also from (60),

c1 � B : �69�
It remains to solve (66).

From (60) and (68)

ck�1 � Bk2k

��2k�!!�2 � ÿ
��2n�!!�2
��2k�!!�2 k2kÿ2nÿ2 : �70�

It follows that

ck � ÿ ��2n�!!�2
��2kÿ 2�!!�2 k2kÿ2nÿ4 : �71�

Substituting (71) into the left hand side of (66) and mul-
tiplying by ��2kÿ 2�!!�2=k2k�2 it becomes

ÿ��2n�!!�2
k2n�4k

ÿ ��2kÿ 2�!!�2dk

k2k
� �2k�!!dk�1

k2k�2
� 0 : �72�

Let

dk � ��2kÿ 2�!!�2dk

k2k
; 1 � k � n� 1 ; �73�

then from (64), dn�1 � 0 and

ÿ��2n�!!�2
kk2k�4

ÿ dk � dk�1 � 0 :

Thus,

dk � dn�1 �
Xn

j�k

dj ÿ dj�1

ÿ �
; 1 � k � n �74�

so that

dk � ÿ ��2n�!!�2
k2n�4

Xn

j�k

1

j

� �
�75�

and

dk � ÿ ��2n�!!�2
��2kÿ 2�!!�2 k2kÿ2nÿ4

Xn

j�k

1

j

� �
; 1 � k � n :

�76�
From (71) and (76)

dk � ck

Xn

j�k

1

j

� �
; 1 � k � n : �77�
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To complete our derivation, we need to solve Lÿv � pn. It
can be shown that

v�x; y� � ÿ
X�n=2�

k�0

1

k2k�2
Dkpn�x; y� �78�

which can be veri®ed by direct differentiation.
Summarizing, a particular solution to

LÿW�r� � r2n log r is given by

W�r� � AI0�kr� � BK0�kr�

�
Xn�1

k�1

ckr2kÿ2 log r �
Xn

k�1

dkr2kÿ2 �79�

where

B � ÿ ��2n�!!�2
k2n�2

ck � ÿ ��2n�!!�2
��2kÿ2�!!�2 k2kÿ2nÿ4; 1 � k � n� 1 ,

dk � ck

Pn
j�k

1
j

� �
; 1 � k � n .

8>>>><>>>>: �80�

Since A is arbitrary, it can be chosen as zero as done in
Chen and Rashed (1998a). Hence, up in (49) is given by
using Wj � W kPÿ Qjk

ÿ �
where W is given by (80) and v

by (78).
The remaining cases for L� in R2 and L� in R3 can be

obtained using an analysis similar to that above. We quote
the results which the reader can verify by differentiation.

For L� in R2 we have

W�r� � AJ0�kr� � BY0�kr� �
Xn�1

k�1

ckr2kÿ2 log r

�
Xn

k�1

dkr2kÿ2 �81�

where

B � p
2
�ÿ1�n�1��2n�!!�2

k2n�2 ;

ck � �ÿ1�n�k�1��2n�!!�2k2kÿ2nÿ4

��2kÿ2�!!�2 ; 1 � k � n� 1,

dk � ck

Pn
j�k

1
j

� �
; 1 � k � n ,

8>>>><>>>>: �82�

where Y0 is the Bessel function of second kind of order 0.
Again, since A can be chosen arbitrarity, it is convenient to
set A � 0.

5
Particular solutions in R3

To calculate the particular solutions for L� in R3 we have
to solve Dr � k2

ÿ �
v � 0 and Dn�1

r w � 0, since
Dn�1

r r2nÿ1 � 0. It is easily shown that the solution to
Dr ÿ k2
ÿ �

v � 0 is (Golberg et al. 1999)

v�r� � A
cosh �kr�

r
� B

sinh �kr�
r

�83�
and that for Dr � k2

ÿ �
v � 0 is

v�r� � A
cos �kr�

r
� B

sin �kr�
r

: �84�

As in R2, the remaining problem is to solve Dn�1
r w � 0.

Again one can show that this is a multiple of an Euler
equation so we look for solutions of the form w � rp. Since
Drrp � �p� 1�prpÿ2 we ®nd on repeated differentiation
that the characteristic polynomial is

�p� 1�p�pÿ 1� � � � �pÿ 2n� � 0 : �85�
Thus, the characteristic exponents are p � ÿ1; 1; 2; . . . ; 2n
so the solution space W is spanned by frkg, ÿ1 � k � 2n.
Hence, W, the particular solution of Dr ÿ k2

ÿ �
W � r2n�1, is

of the form

W�r� � A
cosh �kr�

r
� B

sinh �kr�
r

�
X2n

k�ÿ1

akrk : �86�

To obtain solutions which are regular at r � 0 we use the
Taylor series expansions of cosh �kr� and sinh �kr� at r � 0
and comparing coef®cients gives

B � 0; A � �2n�!
k2n�2 ; a2k � 0;

a2kÿ1 � ÿ�2n�!
�2k�!k2n�2k�2

; 0 � k � n : �87�

Thus,

W�r� � �2n�! cosh �kr�
rk2n�3 ÿ

Xn

k�0

�2n�!
�2k�!

r2kÿ1

k2nÿ2k�2
: �88�

Hence, up in (49) is given by using Wj � W kPÿ Qjk
ÿ �

where W is given by (88) and v by (78) with �x; y� replaced
by �x; y; z�.

A similar argument for L� gives

W�r� � �ÿ1�n�1�2n�!
rk2n�2 cos �kr� �

Xn

k�0

�2n�!
�2k�!

�ÿ1�n�kr2kÿ1

k2nÿ2k�2

�89�
and up as in (49) where v is given by (78) with �x; y�
replaced by �x; y; z�.

6
Computational aspects
Even though general formulas for particular solutions are
given in the previous sections, for convenience we give a
list of W explicitly for Helmholtz-type equations for the
two dimensional case as shown in Tables I and II. In
Table III, particular solutions for polynomial basis func-
tions are also given.

From the theoretical point of view, we prefer to use as
high order splines as possible due to their higher con-
vergence rate. However, from a computational point of
view, numerical round-off errors may pose some limita-
tion for implementing the higher order splines. As a result,
within machine precision, we try to push the order of the
splines as high as possible.

We have observed that the singularities in Eq. (77),
(81), (88) and (89) have been nicely canceled out. To be
more speci®c, (77) can be expanded and rewritten as
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W�r� � B
X1
k�0

akr2k ÿ B
X1

k�n�1

k2k

��2k�!!�2 r2k log r

�
Xn

k�1

dkr2kÿ2 �90�

From (90), we notice that W 2 C2n�1. Furthermore, for
computational purposes, we prefer to use (90) for small r,
since only a few terms in the summation are required. For
larger r, we switch to Eq. (77) by using a library subrou-
tine to compute K0.

Similarly, for L� in the two dimensional case, we have
the expansion

W�r� � B
X1
k�0

akr2k � 2B

p

X1
k�n�1

�ÿ1�kk2k

��2k�!!�2 r2k log r

�
Xn

k�1

dkr2kÿ2 : �91�

For Lÿ, in the three dimensional case,

W�r� �
X1

k�n�1

�2n� 1�!
�2k� 1�!

r2k

k2nÿ2k�2
: �92�

For L�, in the three dimensional case,

W�r� �
X1

k�n�1

�2n� 1�!
�2k� 1�!

�ÿ1�n�k�1r2k

k2nÿ2k�2
: �93�

7
Numerical examples
To demonstrate the effectiveness of the higher order
splines, we give an example of the modi®ed Helmholtz
equation with Dirichlet boundary conditions and another
one for the diffusion equation.
Example 1. Consider the following interior Dirichlet
problem for the modi®ed Helmholtz equation

Table I. W corresponding to given u for a modi®ed Helmholtz operator Lÿ in R2

u W

r2 log r
ÿ 4

k4 �K0�kr� � log r� ÿ r2 log r

k2 ÿ 4
k4 ; r > 0

4
k4 c� log k

2

ÿ �ÿ �ÿ 4
k4 ; r � 0

(

r4 log r
ÿ 64

k6 �K0�kr� � log r� ÿ r2 log r

k2
16
k2 � r2
� �

ÿ 8r2

k4 ÿ 96
k6 ; r > 0

64
k6 c� log k

2

ÿ �ÿ �ÿ 96
k6 ; r � 0

(

r6 log r

ÿ 2304
k8 �K0�kr� � log r� ÿ r2 log r

k2
576
k4 � 36r2

k2 � r4
� �

ÿ 12r2

k4
40
k2 � r2
� �

ÿ 4224
k8 ; r > 0

2304
k8 c� log k

2

ÿ �ÿ �ÿ 4224
k8 ; r � 0

8>><>>:
r8 log r

ÿ 147456
k10 �K0�kr� � log r� ÿ r2 log r

k2
36864

k6 � 2304r2

k4 � 64r4

k2 � r6
� �

ÿ r2

k4
39936

k4 � 1344r2

k2 � 16r4
� �

ÿ 307200
k10 ; r > 0

147456
k10 c� log k

2

ÿ �ÿ �ÿ 307200
k10 ; r � 0

8>><>>:
r10 log r

ÿ 14745600
k12 �K0�kr� � log r� ÿ r2 log r

k2
3686400

k8 � 230400r2

k6 � 6400r4

k4 � 100r6

k2 � r8
� �

ÿ r2

k4
4730880

k6 � 180480r2

k4 � 2880r4

k2 � 20r6
� �

ÿ 33669120
k12 ; r > 0

14745600
k12 c� log k

2

ÿ �ÿ �ÿ 33669120
k12 ; r � 0

8>><>>:

Table II. W corresponding to a given u for the Helmholtz operator L� in 2D

u W

r2 log r
2
k4 �pY0�kr� ÿ 2 log r� ÿ r2 log r

k2 ÿ 4
k4 ; r > 0

ÿ 4
k4 c� log k

2

ÿ �ÿ �ÿ 4
k4 ; r � 0

(

r4 log r
ÿ 32

k6 �pY0�kr� ÿ 2 log r� � r2 log r

k2 ÿ 16
k2 � r2

� �
ÿ 8r2

k4 � 96
k6 ; r > 0

ÿ 64
k6 c� log k

2

ÿ �ÿ �� 96
k6 ; r � 0

(

r6 log r

1152
k8 �pY0�kr� ÿ 2 log r� ÿ r2 log r

k2
576
k4 ÿ 36r2

k2 � r4
� �

� 12r2

k4
40
k2 ÿ r2
� �

ÿ 4224
k8 ; r > 0

ÿ 2304
k8 c� log k

2

ÿ �ÿ �ÿ 4224
k8 ; r � 0

8>><>>:
r8 log r

ÿ 73728
k10 �pY0�kr� ÿ 2 log r� ÿ r2 log r

k2 ÿ 36864
k6 � 2304r2

k4 ÿ 64r4

k2 � r6
� �

� r2

k4 ÿ 39936
k4 � 1344r2

k2 ÿ 16r4
� �

� 307200
k10 ; r > 0

ÿ 147456
k10 c� log k

2

ÿ �ÿ �� 307200
k10 ; r � 0

8>><>>:
r10 log r

7372800
k12 �pY0�kr� ÿ 2 log r� ÿ r2 log r

k2
3686400

k8 ÿ 230400r2

k6 � 6400r4

k4 ÿ 100r6

k2 � r8
� �

� r2

k4
4730880

k6 ÿ 180480r2

k4 � 2880r4

k2 ÿ 20r6

k4

� �
ÿ 33669120

k12 ; r > 0

ÿ 7372800
k12 c� log k

2

ÿ �ÿ �ÿ 33669120
k12 ; r � 0

8>><>>:
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�Dÿ k2�u�x; y� � �ex � ey��1ÿ k2�; �x; y� 2 D; �94�
u�x; y� � ex � ey; �x; y� 2 oD; �95�
where D [ oD � f�x; y� : 0 � x; y � 1g.

The solution to (94) and (95) is given by

u�x; y� � ex � ey; �x; y� 2 D [ oD : �96�
First, we ®nd an approximate particular solution ûp of (94)
by using higher order splines. We choose a 36 point uni-
form grid on the unit square to interpolate the forcing
term in (94). In this example we also choose k2 � 25. After
®nding ûp, we let

û � v� ûp �97�
and Eqs. (94) and (95) reduce to the following homoge-
neous equation

�Dÿ k2�v�x; y� � 0; �x; y� 2 D ; �98�
v�x; y� � ex � ey ÿ ûp; �x; y� 2 oD : �99�
Equations (98) and (99) can be solved by various boun-
dary methods (Golberg and Chen 1997). Here we choose
the method of fundamental solutions (MFS) due to its
exponential convergence rate. In the MFS we choose 16
uniformly distributed collocation points on oD and the
same number of source points on the ®ctitious boundary
which is a circle with center at (0, 0) and radius 8. For the
MFS, we refer readers to references (Golberg et al. 1998b

and Golberg et al. 1996) for details. Once v is computed, û
can be found from (97).

We observe the absolute errors of approximate solu-
tions û along the line on y � 0:4; i.e.,
f�x; 0:4� : 0 � x � 1g. In Fig. 1, we show the results of the
absolute errors of û in a logrithamic scale using splines
with order 1 through 5. Here we denote S� as splines of
order �. The numerical results in Fig. 1 show the accuracy
of the higher order splines which improve on TPS up to
three orders of magnitude. In Fig. 2, we show the pro®le of
the overall relative errors using S4. As one can see, the
maximum relative error is within 7� 10ÿ7. Comparing
with TPS, the results are remarkable with very little ad-
ditional computational cost.
Example 2. Consider the following boundary value prob-
lems for the heat equation

ut�x; y; t� � 1

k
Du�x; y; t�; �x; y� 2 D � R2; t > 0

u�x; y; t� � 0; �x; y� 2 oD;

u�x; y; 0� � 1; �x; y� 2 D;

Fig. 1. Absolute errors of u along the line y � 0:4 using higher
order splines

Table III. Particular solution for polynomial terms

u W

1 ÿ 1
k2

x ÿ x
k2

y ÿ y

k2

x2 ÿ x2

k2 ÿ 2
k4

xy ÿ xy

k2

y2 ÿ y2

k2 ÿ 2
k4

x3 ÿ x3

k2 ÿ 6x
k4

x2y ÿ x2y

k2 ÿ 2y

k4

xy2 ÿ xy2

k2 ÿ 2x
k4

y3 ÿ y3

k2 ÿ 6y

k4

x4 ÿ x4

k2 ÿ 12x2

k4 ÿ 24
k6

x3y ÿ x3y

k2 ÿ 6xy

k4

x2y2 ÿ x2y2

k2 ÿ 2x2

k4 ÿ 2y2

k4 ÿ 8
k6

xy3 ÿ xy3

k2 ÿ 6xy

k4

y4 ÿ y4

k2 ÿ 12y2

k4 ÿ 24
k6

x5 ÿ x5

k2 ÿ 20x3

k4 ÿ 120x
k6

x4y ÿ x4y

k2 ÿ 12x2y

k4 ÿ 24y

k6

x3y2 ÿ x3y2

k2 ÿ 6xy2

k4 ÿ 2x3

k4 ÿ 24x
k6

x2y3 ÿ x2y3

k2 ÿ 6x2y

k4 ÿ 2y3

k4 ÿ 24y

k6

xy4 ÿ xy4

k2 ÿ 12xy2

k4 ÿ 24x
k6

y5 ÿ y5

k2 ÿ 20y3

k4 ÿ 120y

k6

Fig. 2. Pro®le of relative errors for u using splines of order 4
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where D � �ÿ0:2; 0:2� � �ÿ0:2; 0:2�. The analytical solu-
tion was given by Carslaw and Jaeger (1959).

To illustrate the effectiveness of higher order polyhar-
monic splines, we utilize the ®rst order time difference
scheme as shown in (9). To interpolate the source term in
(9), we chose 25 and 16 uniformly distributed interior
points and boundary points respectively. The DRM is then
used to ®nd the particular solutions. To evaluate the ho-
mogeneous solution for each time step, we apply the MFS
in which 16 uniformly distributed collocation points on
the boundary and the same number of source points on a
circle with center at the origin and radius r � 3:0 have
been selected. The numerical solutions were observed on
25 interior points at the ®nal time step T � 0:9 with
k � 5:8� 10ÿ3, s � 0:025, and 36 time steps. In Table IV,
we show the relative errors (% ) using various orders of
polyharmonic splines. Due to the symmetry, we only show
the numerical results of relative errors at seven different
interior points in �0; 0:2� � �0; 0:2�. In Table IV, S2, S3 and
S4 denote the polyharmonic splines of orders 2, 3 and 4
respectively.

The numerical results in Table IV show that we can
improve the accuracy by simply using higher polyhar-
monic splines instead of increasing the number of inter-
polation points.

8
Conclusions
We have generalized previous work using TPS for ®nding
particular solutions to Helmholtz-type operators by using
higher order splines. As the mathematical theory suggests,
substantially increased accuracy can be obtained using
higher splines with little additional work. These results are
ready to implement for solving nonlinear, diffusion, dif-
fusion-reaction and other types of partial differential
equations.
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Table IV. Relative errors (%) at seven interior points

x y TPS S2 S3 S4

0.00 0.00 3.93 1.70 1.35 1.01
0.10 0.00 8.00 1.71 0.83 0.40
0.10 0.10 11.50 2.07 0.34 0.39
0.05 0.05 6.04 1.69 1.09 0.68
0.05 0.15 13.00 2.44 0.11 0.58
0.15 0.15 13.47 0.53 1.44 0.49
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