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Abstract A multi-time step integration algorithm is
developed based on the trapezoidal rule time integration
method for ®nite element equations of motion. This
algorithm uses nodal groups to partition the mesh into
subdomains that are updated with different time steps.
A stability analysis of the method shows that the scheme
retains the unconditionally stable behavior of the trape-
zoidal rule and conserves the same pseudo energy as the
parent algorithm. Several numerical examples are used to
verify the stability of the method and to investigate the
accuracy of the scheme.

1
Introduction
Mixed-time integration and multi-time step integrations
are two variations of standard time integration methods.
With mixed-time integration (Hughes and Liu 1978; Liu
and Belytschko 1982, Liu and Lin 1982, Liu 1983, Park
1980) different integration algorithms are used in different
subdomains of the mesh. Multi-time step integration
methods (Belytschko and Mullen 1977; Belytschko 1980;
Neal and Belytschko; Smolinski, Sleith and Belytschko
1996), also referred to as subcycling, use different time
steps to update spatial subdomains in a ®nite element
mesh. Such methods are most often used with condition-
ally stable integration algorithms with the subdomain time
step being determined by local stability criterion. In this
way, as opposed to single time step integration, the
properties of an element or a small group of elements do
not dictate the time step for the entire mesh. Multi-time
step integration is also useful for unconditionally stable
time integration methods in that it can be advantageous to
use different time steps in different spatial regions of the
mesh for improved accuracy while avoiding the expense of
updating the entire mesh with a small time step.

For structural dynamics problems, most of the work on
multi-time step algorithms has focused on the explicit
central difference method (Belytschko and Mullen 1977;

Belytschko 1980; Neal and Belytschko 1989; Belytschko
and Lu 1993), but despite the fact that these algorithms
have existed for some time, little progress has been made
in the stability analysis of these methods. The work that
has been done on the stability of such methods has been
based upon making simplifying assumptions or has con-
sisted of numerical studies of model problems. It should
be noted that stability is the critical issue with explicit
integration and that some of these methods have been
shown to have weak instabilities which become apparent
only after a very long time period (Belytschko 1996). Only
recently has an explicit multi-time step algorithm has been
proposed (Smolinski, Sleith and Belytschko 1996) for
which a rigorous stability analysis has been derived. The
issue of stability is also important for implicit multi-time
step algorithms since it may not be the case that the
method retains the unconditionally stable behavior of the
parent algorithm. The questions regarding stability may be
one reason why such methods have yet to gain widespread
use and as these questions are answered it is believed that
they will ®nd increased popularity.

In this paper an implicit multi-time step algorithm is
developed for linear structural dynamics problems based
on the trapezoidal rule integration method. This algorithm
uses a nodal partition for the de®nition of mesh sub-
domains. Employing a similar procedure as that used in
for a central difference subcycling algorithm (Smolinski,
Sleith and Belytschko 1996), the eigenvalues and eigen-
vectors of the updates are found and expanding the solu-
tion in terms of the eigenvectors an energy-like quantity
is evaluated. If the energy-like quantity remains bound
over time then so does the solution. It is shown that the
proposed algorithm retains the unconditionally stable
behavior of the strandard trapezoidal rule and that the
method conserves the same energy-like quantity as the
single step algorithm. Several numerical examples are
evaluated to verify the stability analysis and to examine the
accuracy of the multi-time step algorithm.

2
Governing equation and integration algorithm
In this paper the equation of motion for linear, undamped
structural dynamics will be considered which is

Ma� Kd � f �1�
where M is the mass matrix, K is the stiffness matrix and a,
d, and f are the vectors of nodal accelerations, displace-
ments and external forces, respectively. It will be assumed
that M is diagonal and positive de®nite and that K is
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symmetric and positive semi-de®nite. The initial value
problem consists of ®nding d�t� for t 2 �0;T� satisfying (1)
and subject to the initial conditions

d�t � 0� � d0 �2�
v�t � 0� � v0 �3�
where v is the nodal velocity vector and d0 and v0 are given
initial data.

The trapezoidal rule time integration algorithm (Bel-
ytschko and Hughes 1983) is the most popular integration
method for linear structural dynamics problems and is
given by the equations

Man�1 � Kdn�1 � fn�1 �4�

vn�1 � vn � Dt

2
an � an�1
ÿ � �5�

dn�1 � dn � Dtvn � Dt2

4
an � an�1
ÿ � �6�

where Dt is the time step and a superscript is used to
denote the time, for example dn � d�Dnt�. Multiplying (6)
by K and noting from (4) that Kd = f ) Ma, d can be
eliminated from (6) to give

M� Dt2

4
K

� �
an�1 � Mÿ Dt2

4
K

� �
an

ÿ DtKvn � fn�1 ÿ fn �7�
where an�1 is computed from this relation and v and d are
updated using (5) and (6). From the above equation it can
be seen that a system of linear equations must be solved to
compute an�1 and for this reason the trapezoidal rule is
referred to as an implicit integration method.

The multi-time step trapezoidal algorithm is based on a
nodal partition in which the mesh is partitioned into nodal
groups which are updated with different time steps. Here,
to simplify the presentation, the two group case will be
considered, however, the method can be extended to a
greater number of groups. For a two partition system the
nodal groups will be labelled A and B are integrated with
time steps, Dt and rDt, respectively, where the time step
ratio, r, is an integer such that r > 1. Vectors of nodal
quantities can be partitioned according to the nodal
groups in the form

d � dA

dB

� �
�8�

where dA is a vector of dimension NA, dB is a vector of
dimension NB and N � NA � NB is the total number of
nodes in the mesh. The vector partition is used to de®ne
a matrix partition as

Kd � KA

KB

� �
dA

dB

� �
� KAA KAB

KBA KBB

� �
dA

dB

� �
�9�

or

Ma � MA 0
0 MB

� �
aA

aB

� �
: �10�

With this notation double subscripts are used to denote
particular rows and columns of a matrix while a single
subscript refers to particular rows of a matrix.

In this algorithm the two nodal groups are updated
separately; ®rst group A is updated 2r times with the time
step Dt and then group B is updated twice with the time
step rDt. This set of updates advances the solution from
step n to step n� 2r in both nodal subdomains and is
referred to as a total cycle. The ¯ow of information during
the total cycle for r � 2 is shown in Fig. 1 and the total
cycle is repeated until the desired time history has been
computed. Equations for the update of each nodal group
will be developed in the following.

Nodal group A update
The equations for the group A update are derived by as-
suming a constant velocity in nodal group B, vn�1

B � vn
B,

which from (5) can be achieved if an�1
B � ÿan

B. The change
in vB and aB is termed a ®ctitious update in that these
altered values are only used for the update of group A and
the actual updated values will be calculated in the group B
update. Given these approximations (5) and (7) can be
reduced to

MA � Dt2

4
KAA

� �
an�1

A � MA ÿ Dt2

4
KAA

� �
an

A

ÿ DtKAvn � fn�1
A ÿ fn

A �11�

vn�1
A � vn

A �
Dt

2
an

A � an�1
A

ÿ � �12�

and the displacement in group B is kept ®xed so that (6) is
rewritten as

dn�1
A � dn

A � Dtvn
A �

Dt2

4
an

A � an�1
A

ÿ �
: �13�

After group A is updated 2r times using (11±13), the
concomitant ®ctitious updates of group B results in
dn�2r

B � dn
B; vn�2r

B � vn
B and an�2r

B � an
B so that in fact the

nodal variables are unchanged.

Nodal group B update
The update of nodal group B is derived in a similar
fashion to that of group A and by changing the subscript
to B and replacing Dt by rDt in (11±13) the update
equations are

Fig. 1. Flow of information for the case r � 2
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MB � �rDt�2
4

KBB

 !
an�r

B

� MB ÿ �rDt�2
4

KBB

 !
an

B ÿ rDtKBvn � fn�r
B ÿ fn

B

�14�

vn�r
B � vn

B �
rDt

2
an

B � an�r
B

ÿ � �15�

dn�r
B � dn

B � rDtvn
B �
�rDt�2

4
an

B � an�r
B

ÿ � �16�
and for the corresponding ®cticious updates of group A:
dn�r

A � dn
A; vn�r

A � vn
A and an�r

A � ÿan
A. This update is

performed twice in succession and after the ®cticious
updates the nodal quantities of group A are unchanged.

3
Stability analysis
To analyze the stability of a time integration algorithm it is
suf®cient to consider the homogeneous form of the
equation of motion �f � 0�. In which case the update
equations of a and v for the single time step algorithm can
be written in matrix form from (5) and (7) as

I ÿ Dt
2 I

0 M� Dt2

4 K

" #
v

a

� �n�1

� I Dt
2 I

ÿDtK Mÿ Dt2

4 K

" #
v

a

� �n

�17�

or

Bun�1 � Aun �18�
where

B � I ÿ Dt
2 I

0 M� Dt2

4 K

� �
�19�

A � I Dt
2 I

ÿDtK Mÿ Dt2

4 K

� �
�20�

and

u � v
a

� �
: �21�

The generalized eigenvalue problem associated with (18) is
given by

Ax � k Bx �22�
where k is the eigenvalue and x is the eigenvector. Sub-
stituting the matrices A and B given by (19) and (20) into
(22), it can be shown that there is a set of 2N eigenvectors
of the form

xj �
i

xj
zj

zj

� �
; j � 1;N �23�

�xj �
ÿi
xj

zj

zj

� �
; j � 1;N �24�

where the overbar denotes a complex conjugate, i is the
imaginary number and zj and xj are given by the gener-
alized eigenvalue problem

Kzj � x2
j Mzj : �25�

Since the matrices K and M are symmetric the eigenvectors
zj have the orthogonality properties

zT
j Mzk � djk �26�

zT
j Kzk � x2

j dajk �no sum on j� �27�
for j; k � 1;N and span RN . The complex conjugate ei-
genvalues, kj and �kj, can be found from the relation

x2
j �
ÿ4�kj ÿ 1�2
Dt2�kj � 1�2 �28�

and it can be shown that regardless of the time step

kj
�kj � 1 �29�

in which case kj can be taken as

kj � cos hj � i sin hj : �30�
Since the eigenvectors xj and xj span R2n, vn and an can

be expanded in the form

v
a

� �n

� ajxj � �aj�xj �31�

and substituting the above equation into (18) and using
(22) gives the result

v
a

� �n�1

� ajkjxj � �aj
�kj�xj : �32�

Writing the complex coef®cient aj as

aj � Aj�cos /j � i sin /j� �33�
and substituting the above into (31) and (32) and simpli-
fying gives the results

an � 2Aj cos /jzj �34�

vn � 2
Aj

xj
sin /jzj �35�

an�1 � 2Aj cos�/j � hj�zj �36�

vn�1 � 2
Aj

xj
sin�/j � hj�zj : �37�

To examine the stability of the integration algorithm a
pseudo energy of the form

E � aTMa� vTKv �38�
will be considered. It has been shown (Belytschko and
Hughes 1983) that this quantity does not grow over a time
step, i.e. En�1 � En, which means that it invariant for all
time. Given the properties of M and K, this implies that a
and v remain bounded over time and hence the algorithm
is stable. To show this, E is calculated at time steps n and
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n� 1 by substituting (34±37) into (38) and with the use of
the orthogonality properties given in (26, 27) yields

En � En�1 �
XN

j�1

4A2
j �39�

and thus the pseudo energy remains unchanged after the
update. Since this is true for any Dt, the algorithm is un-
conditionally stable.

The stability analysis of the multi-time step algorithm
will be done in a similar fashion, however, it is necessary
to show that this psuedo energy is conserved for both
nodal group updates. This will be examined separately for
the updates of the individual nodal groups as follows.

Group A update
The matrices A and B in (18) for the group A update will
be denoted AA and BA and from (11) and (12) can be
shown to be

BA �
IA 0 ÿ Dt

2 IA 0
0 IB 0 0
0 0 MA � Dt2

4 KAA 0
0 0 0 IB

2664
3775 �40�

AA �
IA 0 Dt

2 IA 0
0 IB 0 0

ÿDtKAA ÿDtKAB MA ÿ Dt2

4 KAA 0
0 0 0 ÿIB

2664
3775 :

�41�
Substituting the above matrices into (22) and simplifying
gives the eigenvalues and eigenvectors

xj �

i
xj

zAj

0
zAj

0

8>><>>:
9>>=>>;; kAj j � 1;NA �42�

�xj �

ÿi
xAj

zAj

0
zAj

0

8>><>>:
9>>=>>;; �kAj j � 1;NA �43�

x0I �
ÿKÿ1

AAKABzBI

zBI

0
0

8>><>>:
9>>=>>;; kI � 1 I � 1;NB �44�

x00I �
0
0
0

zBI

8>><>>:
9>>=>>;; kI � ÿ1 I � 1;NB �45�

where kAj; zAj and xAj are given by

x2
Aj �

ÿ4�kAj ÿ 1�2
Dt2�kAj � 1�2 �46�

KAAzAj � x2
AjMAzAj �47�

and the vectors zBI are arbitrary but assumed to span RNB .
The matrices KAA and MA are symmetric and the eigen-
vectors zAj have the orthogonality properties

zT
AjMAzAk � djk �48�

zT
AjKAAzAk � x2

Ajdjk � no sum on j� �49�
for j; k � 1;NA and span RNA . Since from (46) it can be
shown that kAj

�kAj � 1, then kAj can be written as

kAj � cos hAj � i sin hAj : �50�
If the velocities and accelerations are written in terms of

the eigenvectors (42±45) as

v
a

� �n

� ajxj � �aj�xj � bIx0I � cIx00I �51�
then from (18) and (22) the updated values are given by

v
a

� �n�1

� ajkjxj � �aj
�kj�xj � bIx0I � cIx00I sum on j, I

�52�
and substituting v and a given in (51) and (52) into (38)
and using the orthogonality conditions (48, 49) yields

En � aj � �aj

ÿ �2�cIcpzT
BIMBzBp � iaj

xAj
ÿ i�aj

xAj

� �2

� bIbpzT
BI�K0BB�zBp �53�

En�1 � ajkj � �aj
�kj

ÿ �2�cIcpzT
BIMBzBp

� iajkj

xAj
ÿ i�aj

�kj

xAj

� �2

�bIbpzT
BI�K0BB�zBp �54�

where

K0BB � KBB ÿ KBAKÿ1
AAKAB: �55�

The expressions in (53) and (54) can be further reduced by
using (50) and taking aj as given in (33) to

En � 4A2
j � cIcpzT

BIMBzBp � bIbpzT
BI�K0BB�zBp �56�

En�1 � 4A2
j � cIcpzT

BIMBzBp � bIbpzT
BI�K0BB�zBp �57�

and comparing the above two expression it is seen that
En�1 � En for the group A update.

Group B update
The update matrices for the group B are given by (11) and
(19) as

BB �
IA 0 0 0
0 IB 0 ÿ rDt

2 IA

0 0 IA 0

0 0 0 MB � �rDt�2
4 KBB

2664
3775 �58�

AB �

IA 0 0 0

0 IB 0 rDt
2 IA

0 0 ÿIA 0

ÿrDtKAA ÿrDtKAB 0 MB ÿ �rDt�2
4 KBB

266664
377775
�59�

340



and substituting the above matrices into (22) and with
some algebra gives

xj �
0

i
xBj

zBj

0
zBj

8>><>>:
9>>=>>;; kBj j � 1;NB �60�

�xj �
0

ÿ i
xBj

zBj

0
zBj

8>><>>:
9>>=>>;; �kBj j � 1;NB �61�

x0I �
zAI

ÿKÿ1
BB KBAzAI

0
0

8>><>>:
9>>=>>;; kI � 1 I � 1;NA �62�

x00I �
0
0

zAI

0

8>><>>:
9>>=>>;; kI � ÿ1 I � 1;NA : �63�

In the above expressions the vectors zAI are arbitrary and
kBj; zBj and xBj are given by

x2
Bj �

ÿ4�kBj ÿ 1�2
r2Dt2�kBj � 1�2 �64�

KBBzBj � x2
BjMBzBj �65�

where the eigenvectors zBI are orthogonal with respect to
the matrices KBB and MB such that

zT
BjMBzBk � djk �66�

zT
BjKBBzBk � x2

Bjdjk �no sum on j� : �67�
The nodal velocities and accelerations at time step n are

written in terms of the vectors given in (60±63) as

v
a

� �n

� ajxj � �aj�xj � bIx0I � cIx00I �68�

and from (18) and (22) the updated values are given by

v
a

� �n�1

� ajkjxj � �aj
�kj�xj � bIx0I � cIx00I sum on j, I

�69�
The pseudo energy at time steps n and n� r, before and
after the group B update, is calculated by substituting (68)
and (69) into (38) and with the orthogonality properties
from (66±67) reduces to

En � aj � �aj

ÿ �2� cIcpzT
AIMAzAp � iaj

xBj
ÿ i�aj

xBj

� �2

� bIbpzT
AI�K0AA�zAp �70�

En�r � ajkj � �aj
�kj

ÿ �2� cIcpzT
AIMAzAp

� iajkj

xBj
ÿ i�aj

�kj

xBj

� �2

� bIbpzT
AI�K0AA�zAp �71�

where

K0AA � KAA ÿ KABKÿ1
BB KBA : �72�

It can be shown from (64) that jkBjj � 1 and therefore can
be expressed as

kBj � cos hBj � i sin hBj �73�
and using the above equation together with aI given by
(33), both (70) and (71) can be simpli®ed to give

En � En�r � 4A2
j � cIcpzT

AIMAzAp

� bIbpzT
AI�K0AA�zAp : �74�

Thus, the pseudo energy is also unchanged by the group B
update.

Since the multi-time step algorithm consists of a series
of group A updates and group B updates, this stability
analysis leads to the result that E will always be constant
which implies that v and a must always remain bounded
for all time. This algorithm is also unconditionally stable
since the stability analysis is valid independent of the time
steps. In addition, it is interesting to note that the same
psuedo energy is conserved for both single time step
algorithm and the multi-time step algorithm. This was not
the case for the explicit multi-time step algorithm
(Smolinski, Sleith and Belytschko 1996) where different
psuedo energies were de®ned for the single and multi-time
step schemes.

4
Numerical results
Several example problems were solved using the multi-
time step algorithm to numerically verify the previously
derived stability analysis and also to examine the accuracy
of the scheme.

The example problems consisted of two different beam
models composed of C1 elements as shown in Figs. 2 and 3.
For problem 1 the initial displacement is given by
y � 9:76� 10ÿ5�24x2 ÿ x3� and for problem 2 is
y � 1:95� 10ÿ4�96x2 ÿ 16x3� for 0 � x � 4 and is sym-
metric about the center of the beam. For both problems
the density and elastic modulus were taken as,
q � 8000 kg/m3 and E � 210 Gpa, and the cross-sectional
area and moment of inertia were, A � 0:012 m2 and

Fig. 2. Problem statement for problem 1
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I � 1:44� 10ÿ5 m4, respectively. The different time inte-
gration cases that were examined for each problem are
given in Tables 1 and 2. The time steps for the nodal
groups are given in terms of the critical time step for the
central difference method as determined by

Dtc � 2

xe
max

�75�

where xe
max is the maximum element frequency. Standard

trapezoidal rule integration was used for a benchmark
and cases of the multi-time step method where the same
time step is used for both nodal groups is also consi-
dered.

For problem 1 the tip velocity and energy, (38), history
are shown in ®gure 4 for the four cases. From these results
it can be seen that the psuedo energy does not change as
predicted by the stability analysis. For the velocity there is
good agreement between cases 1, 2 and 4, however, case 3
showns considerable error. Comparing case 2, 3 and 4, it
seems that a signi®cant error is introduced when there is a
large time step ratio between the nodal groups and the
total cycle time is also large.

In Fig. 5 the psuedo energy as a function of time is
shown for the four cases of problem 2. Again, this energy
remains constant which supports the derived stability
analysis. The velocity time histories for two locations in
the beam are given in Fig. 6. There is reasonable agreement
between cases 1, 2 and 4 with case 3 displaying the largest

Fig. 3. Problem statement for problem 2

Table 1. Time integration parameters for problem 1

Method Group A Group B Total cycle

node 1±9 10±13
case 1: standard 8Dtc 8Dtc 8Dtc

case 2: multi-time .25Dtc 4Dtc 8Dtc

case 3: multi-time 1.5Dtc 6Dtc 12Dtc

case 4: multi-time 6Dtc 6Dtc 12Dtc

Dtc Dtc = 20.3 ´ 10)5 4Dtc

Table 2. Time integration parameters for problem 2

Method Group A Group B Total cycle

node 1±9 10±13
case 1: standard 8Dtc 8Dtc 8Dtc

case 2: multi-time 0.25Dtc 6Dtc 12Dtc

case 3: multi-time 4Dtc 8Dtc 16Dtc

case 4: multi-time 8Dtc 8Dtc 16Dtc

Dtc Dtc = 20.3 ´ 10)5 4Dtc

Fig. 4. Numerical results for problem 1

Fig. 5. Energy time history for problem 2
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error. Again, it appears that for larger total cycle times the
larger the difference between the group time steps the
greater the error.

5
Conclusions
An implicit subcycling time integration method has been
developed based on the trapezoidal rule integration

algorithm. Using an energy analysis, the method has been
shown to be unconditionally stable and conserves the same
psuedo-energy as the standard algorithm. Numerical tests
have shown that the accuracy of the method can degrade if
the total cycle time or the time step ratio becomes too
large. These effects may be the result of the locally implicit
nature of the algorithm in that information can only ¯ow
between nodes in the nodal group being updated and
not throughout the entire mesh as with the standard
algorithm. Further work is being done to determine
appropriate criteria for the selection of time steps.

References
Belytschko T (1980) Partitioned and adaptive algorithms for

explicit time integration, In: Nonlinear Finite Element
Analysis in Structural Mechanics, W. Wunderlich, et al. Eds
572±584, Springer-Verlag

Belytschko T, Hughes TJR (1983) Computational Methods for
Transient Analysis. North Holland, Amsterdam

Belytschko T, Mullen R (1977) Explicit integration of structural
problems, In: Finite Elements in Nonlinear Mechanics,
P. Bergen, et al. Eds Vol. 2:697±720

Belytschko T, Lu YY (1993) Explicit multi-time step integration
for ®rst and second order ®nite element semidiscretizations,
Comp. Meth. Appl. Mech. Engrg. 108:353±383

Belytschko T (1996) Private communication
Hughes TJR, Liu WK (1978) Implicit-explicit ®nite elements

in transient analysis: stability theory. J. Appl. Mech.
45:371±374

Liu WK, Belytschko T (1982) Mixed-time implicit-explicit ®nite
elements for transient analysis. Comp. Struct. 15:445±450

Liu WK, Lin JI (1982) Stability of mixed-time integration schemes
for transient thermal analysis. Int. J. Numer. Meths. Heat
Trans. 5:211±222

Liu WK (1983) Development of mixed time partition procedures
for thermal analysis of structures. Int. J. Numer. Meths.
Engrg. 19:125±140

Neal MO, Belytschko T (1989) Explicit-explicit subcycling with
non-integer time step ratios for structural dynamics systems.
Comp. Struct. 31(6):871±880

Park KC (1980) Partitioned transient analysis procedures for
coupled ®eld problems: stability analysis. J. Appl. Mech.
47:370±376

Smolinski P, Sleith S, Belytschko T (1996) Stability of an explicit
multi-time step integration algorithm for linear structural
dynamics equations. Comp. Mech. 18(3):236±244

Fig. 6. Velocity time history at two locations for problem 2

343


