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Abstract A Meshless approach based on a Reproducing
Kernel Particle Method is developed for metal forming
analysis. In this approach, the displacement shape func-
tions are constructed using the reproducing kernel ap-
proximation that satis®es consistency conditions. The
variational equation of materials with loading-path de-
pendent behavior and contact conditions is formulated
with reference to the current con®guration. A Lagrangian
kernel function, and its corresponding reproducing kernel
shape function, are constructed using material coordinates
for the Lagrangian discretization of the variational equa-
tion. The spatial derivatives of the Lagrangian reproducing
kernel shape functions involved in the stress computation
of path-dependent materials are performed by an inverse
mapping that requires the inversion of the deformation
gradient. A collocation formulation is used in the dis-
cretization of the boundary integral of the contact con-
straint equations formulated by a penalty method. By the
use of a transformation method, the contact constraints
are imposed directly on the contact nodes, and conse-
quently the contact forces and their associated stiffness
matrices are formulated at the nodal coordinate. Numer-
ical examples are given to verify the accuracy of the pro-
posed meshless method for metal forming analysis.

1
Introduction
The ®nite element formulations of metal forming pro-
cesses can be classi®ed into three categories: the La-

grangian formulation, the Eulerian formulation, and the
Arbitrary Lagrangian Eulerian (ALE) formulation. The
Lagrangian formulation employs a solid mechanics ap-
proach for metal forming processes, and the method is
more effective for sheet metal forming processes [Wi®
et al. (1976), Wang and Budiansky (1978), Oh and Kobayashi
(1980), Nakamachi et al. (1988), and Keck et al. (1990)].
For rolling and extrusion typed metal forming problems,
the Lagrangian approach becomes ineffective due to severe
mesh distortion. Eulerian methods have been proposed to
resolve the mesh distortion dif®culty [Zienkiewicz et al.
(1974, 1984), Dawson (1978), and Hwu and Lenard
(1988)]. The alternative ALE approaches combine the ad-
vantages of Lagrangian and Eulerian methods [Donea et al.
(1977), Belytschko et al. (1978), Liu et al. (1988, 1991,
1992), Hu et al. (1993), Haber and Hariandja (1985), Ghosh
and Kikuchi (1988), and Benson (1989)]. However, several
drawbacks still exist in the ALE formulation. For example,
controlling the mesh motion in an ALE computation to
minimize the convective transport effect and the mesh
distortion is tedious; especially when dealing with complex
geometries. The numerical treatment of the convective
transport effect also requires an additional effort.

The earliest and simplest approximation method de-
veloped for meshless computation is the kernel estimate
(KE) employed in the Smooth Particle Hydrodynamics
(SPH) [Lucy (1977), Monaghan (1982, 1988), Randles and
Libersky (1996)]. In KE, the kernel function is normalized
to assure the zero-th order consistency condition, and the
use of the symmetric kernel function meets the ®rst order
consistency. However, the discretization of KE assures
neither zero-th nor the ®rst order consistency in a ®nite
domain, unless the lumped mass (or lumped volume) is
carefully selected, which is dif®cult to accomplish with the
irregular boundary shape and arbitrary particle distribu-
tion. The ®rst detailed investigation of the accuracy and
convergence properties of meshless methods for structural
analysis was due to Nayroles et al. (1992) and Belytschko
et al. (1994). The Element Free Galerkin (EFG) method pro-
posed by Belytschko et al. (1994) is based on a Moving
Least-Squares approximation [Lancaster (1981)]. EFG was
successfully applied to the simulation of crack propagation
[Belytschko et al. (1994, 1995, 1996a, 1996b), Lu et al.
(1994)]. A Reproducing Kernel Particle Method (RKPM)
was introduced by Liu et al. (1995a, 1995b) to improve the
accuracy of the SPH method for ®nite domain problems.
Duarte and Oden (1995, 1996) developed the HP Cloud
method for hp-adaptivity based on the Partition of Unity
Method (PUM) [Melenk and Babuska (1996), Babuska and
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Melenk (1996)]. In these meshless methods, the domain of
interest is discretized by a set of points that are not in-
terconnected by the structured mesh. The domain parti-
tioning can be made independent of the nodal
distributions if the Gauss integration method is used to
perform domain integration. A very detailed and com-
prehensive overview of meshless methods can be found in
Belytschko et al. (1996b).

The essential idea of RKPM [Liu et al. (1995a, 1995c,
1996a)] was to restore the discrete consistency in SPH. In
this approach, a reproducing kernel (RK) approximation
is introduced to impose a consistency condition to a de-
sired order. In the continuous form of RK approximation,
the imposition of the zero-th order consistency, through
the correction function, is in fact equivalent to the nor-
malization of kernel function in KE. The higher order
consistency in RK approximation is achieved by the en-
richment of the local polynomial basis functions to meet
the completeness requirement. Through this development,
the discrete consistency can be accomplished easily by a
proper discretization of the moment matrix involved in
the construction of the correction function. The D'Alem-
bert's principle was recently introduced to impose essen-
tial boundary conditions [GuÈnther et al. (1997)]. The later
development of RKPM [Liu et al. (1995b, 1996b, 1996c,
1996d) and Li et al. (1996, 1997a, 1997b)] further intro-
duced the wavelet function into RKPM formulation to
construct a multiple-scale hierarchy for multiple-resolu-
tion analysis. By choosing different combinations in the
wavelet series expansion, the desirable synchronized
convergence properties in the interpolation can be
achieved. Recent work by Li et al. (1997b) introduced a
fairly simple procedure to construct a cluster of wavelet
functions using the differential consistency conditions.

Chen et al. (1996, 1997a±c, 1998) extended RKPM to
large deformation analysis, and demonstrated that the
method is effective in dealing with large material distor-
tion. A Lagrangian RK shape function was introduced to
approximate the ®eld variables in hyperelastic problems,
formulated by the total Lagrangian formulation [Chen
et al. (1997a)], and in elasto-plasticity problems formulated
by the updated Lagrangian formulation [Chen et al.
(1996)]. A transformation method was introduced to deal
with the essential boundary conditions. With the em-
ployment of the Lagrangian RK shape function, the
transformation matrix can be formed at a pre-processing
stage. A nodal lumped mass was formed using the con-
sistency condition of the transformed RK shape functions.
Chen et al. (1996, 1997a) also observed that RKPM re-
quires the use of a large kernel support to obtain an ac-
curate solution in incompressible problems. They then
proposed a pressure projection procedure [Chen et al.
(1997b)] to resolve volumetric locking without the need of
employing large kernel support to enhance computational
ef®ciency and accuracy of RKPM. The method also elim-
inates the pressure oscillation induced from the RKPM
analysis of incompressible problems. Grindeanu et al.
(1996, 1997) applied RKPM to design sensitivity and op-
timization of hyperelastic solids.

In this paper, we employ RK approximation to formu-
late the discrete nonlinear equilibrium equations, and

frictional contact conditions, with speci®c application to
the metal forming problems. In Sect. 2, the basic theory of
RKPM is reviewed. The Lagrangian formulation of RKPM
for path-dependent materials is discussed in Sect. 3. The
treatment of contact constraints in a meshless formulation
is presented in Sect. 4. Section 5 gives numerical study of
the solution accuracy and demonstrates the applicability
of RKPM for metal forming analysis. Finally, the conclu-
sions are outlined in Sect. 6.

2
Reproducing kernel approximation

2.1
Kernel estimate
The earliest development of the meshless methods is the
Smooth Particle Hydrodynamics (SPH) [Lucy (1977),
Monaghan (1982, 1988)] based on kernel estimate. The
kernel estimate of a function f is an integral transforma-
tion through a kernel function Ua which has a compact
support, as measured by a parameter a, in the following
form:

f k�x� �
Z

X
Ua�xÿ y�f �y�dy �2:1�

where f k is the kernel estimate of f . The discrete kernel
estimate is

f k�x� �
XN

I�1

Ua�xÿ xI�f �xI�DVI �2:2�

In SPH, a lumped mass m
_

I is assigned to the particle I and
Eq. (2.2) is usually written as:

f k�x� �
XN

I�1

Ua�xÿ xI�f �xI� m
_

I

q�xI� �2:3�

where q�xI� is the density at particle I. If one considers
f � q, then Eq. (2.3) becomes

qk�x� �
XN

J�1

Ua�xÿ xJ�m_J �2:4�

As recently reported by Randles and Libersky (1996),
using Eq. (2.4) for the calculation of density leads to a
greater accuracy. By introducing Eq. (2.4) to Eq. (2.3), one
obtains the following kernel estimate:

f k�x� �
XN

I�1

Ua�xÿ xI� m
_

IPN
J�1 m

_
JUa�xI ÿ xJ�

h i f �xI�

�2:5�
Unfortunately, the kernel estimate of Eq. (2.5) does not
exactly reproduce a unity, i.e., if f � 1,

f k�x� �
XN

I�1

m
_

IUa�xÿ xI�PN
J�1 m

_
JUa�xI ÿ xJ�

" #
6� 1 �2:6�

Belytschko et al. (1996a) also showed that in a one-di-
mensional case, the discretized equation (Eq. (2.2)) does
not reproduce a unity for a non-uniform arrangement of
nodes. This leads to a violation of zero-th order consis-
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tency condition, or the partition of unity, and therefore the
convergence of the solution is not guaranteed.

2.2
Continuous reproducing kernel approximation
Liu et al. (1995a, 1995c) investigated the reproducibility of
kernel estimate using a Taylor series expansion of the
function f . Consider here a one-dimensional kernel esti-
mate for simplicity, and let

f �y� �
X1
n�0

�yÿ x�n
n!

f �n��x� �2:7�

where f �n� � dnf =dxn. Substituting Eq. (2.7) into the ker-
nel estimate Eq. (2.1) yields

f k�x� � m0�x�f �x� �
X1
n�1

�ÿ1�n
n!

mn�x�f �n��x� �2:8�

where mn�x� is the moment de®ned by

mn�x� �
Z

X
�xÿ y�nUa�xÿ y�dy �2:9�

To exactly reproduce a unity, letting f �x� � 1 in Eq. (2.8)
leads to the following requirement:

m0�x� �
Z

X
Ua�xÿ y�dy � 1 �2:10�

Equation (2.10) corresponds to the continuous form of the
zero-th order consistency condition. One can also show
that for the kernel estimate to reproduce a linear function
f �x� � a0 � a1x, the kernel function needs to satisfy the
following conditions:

m0�x� �
Z

X
Ua�xÿ y�dy � 1

m1�x� �
Z

X
�xÿ y�Ua�xÿ y�dy � 0

8>><>>: �2:11�

Consequently, in order for the kernel estimate to exactly
reproduce an N-th order polynomial, the following con-
ditions are required:

m0�x� �
Z

X
Ua�xÿ y�dy � 1

m1�x� �
Z

X
�xÿ y�Ua�xÿ y�dy � 0

..

.

mN�x� �
Z

X
�xÿ y�NUa�xÿ y�dy � 0

8>>>>>>>>>><>>>>>>>>>>:
�2:12�

Liu et al. (1995b) called Eq. (2.12) the reproducing con-
ditions. It is noted that Eq. (2.12) leads to the following
conditions:Z

X
Ua�xÿ y�dy � 1Z

X
yUa�xÿ y�dy � x

..

.Z
X

yNUa�xÿ y�dy � xN

8>>>>>>>>>><>>>>>>>>>>:
�2:13�

In fact, a zero-th consistency condition (Eq. (2.10)) can be
easily satis®ed by the normalization of the kernel function.
However, the higher-order consistency conditions are
dif®cult to meet, and most of the kernel functions do not
satisfy these reproducing conditions. To formulate the
reproducing kernel approximation, we rewrite Eq. (2.12)
in the following form:Z

X
H�xÿ y�Ua�xÿ y�dy � H�0� �2:14�

HT�xÿ y� � 1; xÿ y; . . . ; �xÿ y�N� � �2:15�
Liu et al. (1995a, 1995c) proposed a reproducing kernel
approximation by introducing a correction function to the
kernel estimate:

f R�x� �
Z

X
C�x; xÿ y�Ua�xÿ y�f �y�dy �2:16�

where f R�x� is the ``reproduced'' function of f �x�, and Eq.
(2.16) is the reproducing kernel approximation, or the
reproducing equation. The function C�x; xÿ y� is the
correction function de®ned by

C�x; xÿ y� � b0�x� � b1�x��xÿ y� � � � �
� bN�x��xÿ y�N � bT�x�H�xÿ y�

�2:17�
bT�x� � b0�x�; b1�x�; . . . ; bN�x�� � �2:18�
and bi�x�'s are determined by the satisfaction of the
reproducing conditions, i.e.,Z

X
C�x; xÿ y�Ua�xÿ y�H�xÿ y�dy � H�0� �2:19�

Substituting Eq. (2.17) into Eq. (2.19) leads toZ
X

H�xÿ y�Ua�xÿ y�HT�xÿ y�dy

� �
b�x� � H�0�

�2:20�
and the unknown vector b�x� is solved by

b�x� � M�x�ÿ1H�0� �2:21�
M�x� �

Z
X

H�xÿ y�HT�xÿ y�Ua�xÿ y�dy �2:22�

Introducing Eqs. (2.17) and (2.21) into Eq. (2.16) results in
the following reproducing kernel approximation:

f R�x� �
Z

X
C�x; xÿ y�Ua�xÿ y�f �y�dy

� HT�0�Mÿ1�x�
Z

X
H�xÿ y�Ua�xÿ y�f �y�dy

�2:23�
A multi-dimensional extension of Eq. (2.23) is straight-
forward, simply by setting x! x � x1; x2; x3� �, y! y �
y1; y2; y3� �, and dy! dXy � dy1 dy2 dy3; Ua�xÿ y� !
Ua�xÿ y�; and letting H be a vector of monomial basis
functions,
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HT�xÿ y� � 1; x1 ÿ y1; x2 ÿ y2; x3�
ÿy3; �x1 ÿ y1�2; . . . ; �x3 ÿ y3�N

�
; �2:24�

Equation (2.23) can be recast into the following form,

f R�x� �
Z

X

�Ua�x; xÿ y�f �y�dXy �2:25�

where �Ua�x; xÿ y� � C�x; xÿ y�Ua�xÿ y� is called the
reproduced kernel, and Ua�xÿ y� is the multi-dimensional
kernel function. Since Eq. (2.25) exactly reproduces N-th
order monomial, the method ful®lls the N-th order con-
sistency conditions, i.e.,Z

X

�Ua�x; xÿ y� yi
1 y

j
2 yk

3 dXy � xi
1 x

j
2 xk

3;

i� j� k � 0; . . . ;N

�2:26�

2.3
Discrete reproducing kernel approximation
To construct an approximation function for a ®nite di-
mensional solution of the partial differential equations, the
domain X is discretized by a set of nodes fxI ; . . . ; xNPg,
where xI is the position vector of node I, and NP is the
total number of points (nodes). By performing nodal in-
tegration with unit weights of Eq. (2.23), the continuous
reproducing equation is discretized into

f h�x� �
XNP

I�1

C�x; xÿ xI�Ua�xÿ xI�fI

�
XNP

I�1

WI�x�fI

�2:27�

where

WI�x� � C�x; xÿ xI�Ua�xÿ xI� �2:28�
C�x; xÿ xI� � HT�0�Mÿ1�x�H�xÿ xI� �2:29�
where WI�x� and fI are the shape function and the corre-
sponding coef®cient of the reproducing kernel approxi-
mation. Note that since WI�xJ� 6� dIJ , and the coef®cient fI

is not the nodal value of f h�x�, i.e., fI 6� f h�xI�. Using Eqs.
(2.28) and (2.29) one can obtain the derivative of WI�x� as

WI;i�x� � HT�0� Mÿ1
;i �x�H�xÿ xI�Ua�xÿ xI�

h
�Mÿ1�x�H;i�xÿ xI�Ua�xÿ xI�
�Mÿ1�x�H�xÿ xI�Ua;i�xÿ xI�

� �2:30�
where � �;i � o� �

oxi
and Mÿ1

;i is computed by Mÿ1
;i �x� �ÿM�x�ÿ1 M�x�;iM�x�ÿ1: As discussed in Chen et al. (1996),

in order to preserve the consistency condition in a dis-
cretized reproducing equation, Eq. (2.27), the moment
matrix M�x� needs to be discretized with the same dis-
cretization method as was used in the Reproducing
equation, i.e.,

M�x� �
XNP

I�1

H�xÿ xI�HT�xÿ xI�Ua�xÿ xI� �2:31�

For example, the reproducing kernel shape function cor-
responding to a constant basis function H � �1� is:

M�x� �
XNP

I�1

Ua�xÿ xI� ! WI�x� � Ua�xÿ xI�PNP
J�1 Ua�xÿ xJ�

�2:32�
Equation (2.32) is called the Shepard function that satis®es:XNP

I�1

WI�x� � 1 �2:33�

Equation (2.33) corresponds to Eq. (2.27) with f �x� � 1,
which is the zero-th consistency condition, or the Partition
of Unity. For a general consideration of N-th order mo-
nomial basis function, one can show that:XNP

I�1

WI�x�HT�xÿ xI�

�
XNP

I�1

HT�0�Mÿ1�x�H�xÿ xI�
�

�Ua�xÿ xI�HT�xÿ xI�
�

� HT�0�

�2:34�

and Eq. (2.34) leads to the N-th order consistency condi-
tion:XNP

I�1

WI�x�HT�xI� � HT�x� �2:35�

orXNP

I�1

WI�x�xi
1I x

j
2I xk

3I � xi
1 x

j
2 xk

3;

i� j� k � 0; . . . ;N �2:36�
To compute WI;i�x�, the term M�x�;i also needs to be
formed numerically. The differentiation of Eq. (2.31) leads
to

M;i �
XNP

I�1

H;i�xÿ xI�HT�xÿ xI�Ua�xÿ xI�
�

�H�xÿ xI�HT
;i�xÿ xI�Ua�xÿ xI�

�H�xÿ xI�HT�xÿ xI�Ua;i�xÿ xI�
� �2:37�

The use of Eq. (2.37) in Eq. (2.30) yields the following
differential consistency condition:XNP

I�1

WI;i�x�HT�xI� � HT
;i�x� �2:38�

Figure 1(a) illustrates that the KE shape functions (Eq.
(2.28) without correction function) do not satisfy the
constant consistency condition (or Partition of Unity) near
the boundaries, and particle re®nement reduces the error
near the boundaries. Similarly, the KE shape functions do
not satisfy the x-linear consistency condition near the
boundaries, and the boundary errors can be reduced by a
particle re®nement as shown in Fig. 1(b). As expected, RK
shape functions satisfy constant and x-linear consistency
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conditions using the linear basis functions HT � �1; x�.
Similarly, KE shape functions do not meet the differential
consistency conditions near the boundaries, whereas RK
shape functions exactly satisfy differential consistencies as
shown in Figs. (2a) and (2b).

3
Lagrangian reproducing kernel formulation
for elasto-plasticity

3.1
Governing equations
In a Lagrangian (or material) formulation, we follow the
motion of all the material particles in the body from its
original con®guration XX with the boundary CX , to the

current con®guration Xx with the boundary Cx. The mo-
tion of a material particle originally located at a position
X 2 XX is described by a mapping x � u�X; t�
�xi � ui�X; t��, where x 2 Xx is the spatial location of the
material particle X at time t, and ui is the mapping
function. For loading path-dependent material behavior,
the constitutive equations are expressed in the current
con®guration, and therefore it is more convenient to ref-
erence the kinematic and kinetic variables to the current
con®guration in the variational equation (updated La-
grangian formulation). In Lagrangian formulation, the
primary unknown variable is the material displacement
which is de®ned by

u�X; t� � u�X; t� ÿ X �3:1�

Fig. 1a,b. Constant and linear consistency conditions of KE and RK shape functions

Fig. 2a,b. Differential consistency conditions of KE and RK shape functions
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Note that Eq. (3.1) is the measure of displacement fol-
lowing a ®xed material point X. This identi®cation of
material displacement is important since the later devel-
opment of reproducing kernel shape functions for dis-
placements will be based on the material coordinates
(material quantity). Consequently, the material velocity m
and material acceleration a are de®ned by

m�X; t� � ou�X; t�
ot

����
�X�
� ou�X; t�

ot

����
�X�
� _u�X; t� �3:2�

a�X; t� � o2u�X; t�
ot2

����
�X�
� o2u�X; t�

ot2

����
�X�
� �u�X; t� �3:3�

The statement of variational equation is then given as the
following: Given the body force bi in the domain Xx, the
surface traction hi on the natural boundary Chi

x , the pre-
scribed boundary displacement gi on the essential boun-
dary Cgi

x , the initial displacement u0
i and the initial velocity

m0
i in the domain XX , ®nd ui 2 H1

g�H1
g � fu : u 2 H1; ui �

gi on Cgi
x g�, such that for all dui 2 H1

0 �H1
0 � fw : w 2 H1;

wi � 0 on Cgi
x g�, the following equation is satis®ed [Atluri,

(1980)]:

dP �
Z

Xx

duiq�ui dX�
Z

Xx

dui;jsij dX

ÿ
Z

Xx

duibi dXÿ
Z

Chx
x

duihi dC � 0 �3:4�

with initial conditions

ui�X; 0� � u0
i �X� �3:5�

_ui�X; 0� � m0
i �X� �3:6�

where H1 is the Sobolev space of degree one,
� �;i � o� �=oxi denotes the spatial derivative, and sij is the
Cauchy stress obtained from constitutive equations.
Equation (3.4) is a Lagrangian description formulated in
the current con®guration. It should be realized that in the
Lagrangian description the ``current'' integration domain
Xx and boundary Cx moves with the material particles and
are not ®xed in space. Consequently the Cauchy stress is
evaluated at a spatial coordinate x � u�X; t� of a ®xed
particle X, and therefore the stress update is processed
with respect to the same material particle in the La-
grangian setting.

The linearization of Eq. (3.4) requires the employment
of stress rate. Many frame indifference stress rates can be
used [Atluri (1984)], and the linearized equation, in gen-
eral, can be written in the following form [see Atluri (1980)
and Atluri and Cazzani (1994) for details]:

DdP �
Z

Xx

duiqD�ui dX�
Z

Xx

dui;j�Dijkl � Tijkl�Duk;l dX

ÿ
Z

Xx

duiDbi dXÿ
Z

C
hi
x

duiDhi dC �3:7�

where Dijkl and Tijkl are the material response and the
geometric response (initial stress) tensors that are closely
related to the stress rate employed in the linearization of
Cauchy stress. For example, if Jaumann stress rate is used

Dijkl � Cc
ijkl �3:8a�

Tijkl � sijdkl ÿ 1
2 sildik � 1

2 sjldik ÿ 1
2 sikdjl ÿ 1

2 sjkdil

�3:8b�
and Cc

ijkl is the constitutive tensor that relates Jaumann
stress rate to velocity strain. Whereas if Truesdell stress
rate is used,

Dijkl � Ct
ijkl �3:9a�

Tijkl � sjkdil �3:9b�
where Ct

ijkl is the constitutive tensor that relates Truesdell
stress rate to velocity strain. The incrementally objective
algorithm proposed by Hughes and Winget (1980), Rub-
instein and Atluri (1983), and Reed and Atluri (1985) can
be used to integrate the elastic response of Cauchy stress
due to rotational effect, and the algorithmic tangent op-
erator consistent to the return mapping algorithm pre-
sented by Simo et al. (1985) is employed to form the
elasto-plastic material response tensor. Alternatively, if the
yield surface is an isotropic function, Simo et al. (1988)
established a hyperelastic-based stress-strain relation (to-
tal form) for stress and internal variable computations
based on the principle of maximum plastic dissipation and
the multiplicative decomposition of deformation gradient.
The consistent tangent operator of this approach formu-
lated by Simo et al. (1988, 1992) should be used in the
incremental equation to ensure the quadratic rate of
convergence.

3.2
Lagrangian and Eulerian reproducing kernel
shape functions
To describe the motion of a body, one can consider a
material description of a kinematic variable GX�X; t�, or its
spatial description Gx�x; t� � GX�X; t� where x � u�X; t�.
Choosing one over another depends entirely on the se-
lection of a reference con®guration. The material time
derivative of GX�X; t� is

oGX�X; t�
ot

�����
�X�
� oGx�x; t�

ot

�����
�x�

� mx � �rGx�x; t�� � DGx�x; t�
Dt

�3:10�
where mX�X; t� � mX�X; t� is the spatial description of the
material velocity mX�X; t� with x � u�X; t� (the material
velocity de®ned in Eq. (3.2) is denoted here more precisely
by mX�X; t��. Consequently, the material acceleration is
de®ned by the material time derivative of the material
velocity

aX
i �X; t� �

ovX
i �X; t�
ot

�����
�X�
� omx

i �x; t�
ot

�����
�X�

� omx
i �x; t�
oxj

mx
j �

Dmx
i �x; t�
Dt

�3:11�

To introduce the reproducing kernel approximation of
displacements, one can ®rst consider a Lagrangian kernel
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function expressed in a material description, UX
a . Take a

cubic B-spline kernel function for example:

and the spatial description of the Lagrangian kernel
function, Ux

a, is

Ux
a�x; xI ; t� � UX

a �uÿ1�x; t� ÿ uÿ1�xI; t�� �3:13�
The value of the Lagrangian kernel function is determined
on the distance between material points X and XI . Thus
the support radius of this Lagrangian kernel function a is
de®ned in the initial con®guration, and the support covers
the same set of material points throughout the course of
deformation. One can also consider an Eulerian kernel
function expressed in a spatial description:

and the material description of this Eulerian cubic B-spline
kernel function, /X

a , is

/X
a �X;XI; t� � /x

a�u�X; t� ÿ u�XI; t�� �3:15�
The value of the Eulerian kernel function is determined by
the distance between spatial points x and xI . Thus the
Eulerian kernel function has a support radius of a de®ned
in the current con®guration, and the support covers dif-
ferent material points at a different time t.

The next step is to construct the reproducing kernel
shape function for large deformation. The material de-
scription of the Lagrangian reproducing kernel shape
function, WX

I �X�, is constructed using the Lagrangian ker-
nel function UX

a �Xÿ XI� with the discrete reproducing
conditions imposed at the initial con®guration to yield

WX
I �X� � HT�0�Mÿ1�X�H�Xÿ XI�UX

a �Xÿ XI� �3:16�

M�X� �
XNP

I�1

H�Xÿ XI�HT�Xÿ XI�UX
a �Xÿ XI� �3:17�

HT�Xÿ XI� ��1;X1 ÿ X1I ;X2 ÿ X2I ;

X3 ÿ X3I ; . . . ; �X3 ÿ X3I�N � �3:18�
This set of Lagrangian reproducing kernel shape functions
WX

1 ;W
X
2 ; . . . ;WX

NP

� 	
satis®es the following consistency

conditions:XNP

I�1

WX
I �X�Xi

1I X
j
2I Xk

3I � Xi
1 X

j
2 Xk

3 ;

i� j� k � 0; . . . ;N �3:19�

Similarly, the spatial description of the Eulerian repro-
ducing kernel shape function, Wx

I �x�, is constructed using

the Eulerian kernel function /x
a�xÿ xI� with the discrete

reproducing conditions imposed at the current con®gu-
ration to yield

Wx
I �x� � hT�0�mÿ1�x�h��xÿ xI�Ux

a�xÿ xI� �3:20�

m�x� �
XNP

I�1

h�xÿ xI�hT�xÿ xI�Ux
a�xÿ xI� �3:21�

hT�xÿ xI� � �1; x1 ÿ x1I; x2 ÿ x2I ;

x3 ÿ x3I; . . . ; �x3 ÿ x3I�N � �3:22�

and this set of Eulerian reproducing kernel shape func-
tions Wx

1;W
x
2; . . . ;Wx

NP

� 	
satis®es the following consis-

tency conditions:XNP

I�1

Wx
I �x� xi

1I x
j
2I xk

3I � xi
1 x

j
2 xk

3;

i� j� k � 0; . . . ;N �3:23�
In Lagrangian formulation, it is more convenient to em-
ploy the Lagrangian reproducing kernel shape functions
with material description for the approximation of mate-
rial displacement:

uX
i �X; t� � ui�Xi; t� ÿ Xi �

XNP

I�1

WX
I �X�diI�t� �3:24�

where diI�t�0S are the time-dependent coef®cients of
WX

I �X�0S, and the material velocity and material accelera-
tion are obtained by

mX
i �X; t� �

oui�X; t�
ot

����
�X�
�
XNP

I�1

WX
I �X� _diI�t� �3:25�

aX
i �X; t� �

o2uX
i �X; t�
ot2

����
�X�
�
XNP

I�1

WX
I �X��diI�t� �3:26�

If an Eulerian reproducing kernel function is used for the
approximation of material displacement,

ux
i �x; t� � xi ÿ uÿ1

i �x; t� �
XNP

I�1

Wx
I �x�niI�t� �3:27�

UX
a �Xÿ XI� � 1

a

2
3ÿ 4 kXÿXIk

a

� �2�4 kXÿXIk
a

� �3
for 0 � kXÿXIk

a � 1
2

4
3ÿ 4 kXÿXIk

a

� �
� 4 kXÿXIk

a

� �2
ÿ 4

3
kXÿXIk

a

� �3
for 1

2 <
kXÿXIk

a � 1

0 otherwise

8>><>>: �3:12�

/x
a�xÿ xI� � 1

a

2
3ÿ 4 kxÿxIk

a

� �2 � 4 kxÿxIk
a

� �3
for 0 � kxÿxIk

a � 1
2

4
3ÿ 4 kxÿxIk

a

� �
� 4 kxÿxIk

a

� �2
ÿ 4

3
kxÿxIk

a

� �3
for 1

2 <
kxÿxIk

a � 1

0 otherwise

8>><>>: �3:14�
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where niI�t�0S are the time-dependent coef®cients of
Wx

I �x�0S, and the spatial description of the material velocity
is obtained by

oux
i �x; t�
ot

����
�X�
� oux

i �x; t�
ot

����
�x�
� oux

i �x; t�
oxj

mx
j �x; t�

�
XNP

I�1

Wx
I �x� _niI�t� � mx

j �x�
oWx

I �x�
oxj

niI�t�
� �

�3:28�

An additional convective term is involved in Eq. (3.28)
when Eulerian reproducing kernel shape functions are
used for the approximation of ®eld variables, and this
complicates the computation as compared to the use of the
Lagrangian reproducing kernel shape functions. On the
other hand, the updated Lagrangian formulation of the
variational equation (Eq. (3.4)) requires a spatial deriva-
tives on the displacements. Taking the spatial derivatives
of the Eulerian reproducing kernel shape functions is
straightforward, but taking the spatial derivatives of the
Lagrangian Reproducing shape functions requires the
following computation:

oWX
I �X�
oxi

� oWX
I �X�

oXj

oXj

oxi
� oWX

I �X�
oXj

Fÿ1
ji �3:29�

To avoid taking the spatial derivatives of WX
I �X� involved

in Fÿ1, Fÿ1 is computed indirectly by taking the inversion
of F, i.e.,

Fÿ1 �
XNP

I�1

dI 
 oWX
I �X�
oX

� I

" #ÿ1

�3:30�

where I is the second order identity tensor.

3.3
Coordinate transformation and the reproducing
kernel matrix equation
Since the meshless shape functions such as the repro-
ducing kernel shape functions or Moving Least-Square
shape functions do not have Kronecker delta properties,
the essential boundary conditions need to be imposed by
the Lagrange multiplier method [Belytschko et al. (1994),
Lu et al. (1994)], or by the transformation method (Chen
et al. (1996, 1997a). The ®rst approach requires the solution
of independent kinematic variables as well as Lagrange
multipliers at each incremental step. Further, one needs to
consider the stability condition, the Babuska-Brezzi con-
dition [Babuska (1973), Brezzi (1974)], when more than
one independent variables are used in the variational
equation. The second approach transforms the generalized
coordinates to nodal coordinates to allow a direct treat-
ment of the essential boundary conditions. Since the sec-
ond approach can be easily applied to contact problems
(discussed in the next section), the method is used here to
establish the discrete RKPM equation for general elasto-
plasticity problem.

Using the Lagrangian reproducing kernel shape func-
tions, the kinematic admissible displacement uh

i �X; t� of
the variational equation, Eq. (3.4), needs to satisfy the
following conditions:

uh
i �XJ ; t� �

XNP

I�1

WX
I �XJ�diI�t� � gi�XJ ; t�

duh
i �XJ ; t� �

XNP

I�1

WX
I �XJ�ddiI�t� � 0

9>>>>=>>>>; 8J 2 ggi

�3:31�
where ggi

denotes a set of particle numbers in which the
associated particles are located on Cgi

X . Equation (3.31)
represents two sets of constraint equations that are needed
to be solved simultaneously, with the equation of motion.
Using the transformation method, the transformation
matrix is formed by establishing the relationship between
the nodal value uh

i �XJ ; t� � d̂iJ�t� and the ``generalized''
displacement diJ�t�:

d̂iJ�t� �
XNP

I�1

WX
I �XJ�diI�t� �

XNP

I�1

LIJdiI�t� �3:32�

or

d̂1

d̂2

..

.

d̂N

26664
37775 �

L11I L21I � � � LN1I
L12I L22I � � � LN2I

..

. ..
. . .

. ..
.

L1N I L2N I � � � LNN I

26664
37775

|������������������������{z������������������������}
KT

d1

d2

..

.

dN

26664
37775�N � NP�

�3:33�
LIJ � WX

I �XJ� �3:34�
where K is the coordinate transformation matrix and I is
the identity matrix. The shape functions can also be
transformed by

ŴJ�X� �
XNP

I�1

Lÿ1
JI WI�X� �3:35�

and

uh
i �X; t� �

XNP

I�1

WX
I �X�diI�t� �

XNP

I�1

Ŵ
X

I �X�d̂iI�t� �3:36�

Note that ŴI�XJ� � dIJ , and with this transformation, the
essential boundary conditions of Eq. (3.31) are imposed by

d̂iI�t� � gi�XI; t�
dd̂iI�t� � 0

)
8I 2 ggi

�3:37�

Using the Lagrangian reproducing kernel shape functions,
the transformation matrix is formed only once and that
can be performed at the undeformed con®guration or even
at a pre-processing stage.

The incremental matrix equation is obtained by intro-
ducing reproducing kernel shape function and coordinate
transformation to the variational equation Eq. (3.4) and its
linearization Eq. (3.7) to yield

M̂D�̂
d � K̂Dd̂ � �f̂ext�n�1 ÿ �f̂ int�vn�1 �3:38�

where n and v are the time step and iteration counters,
respectively, Dd � dv�1

n�1 ÿ dv
n�1 is the displacement incre-

ment, and M̂, K̂, f̂
ext

, and f̂
int

are the mass matrix, stiffness
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matrix, external force vector, and internal force vector at

the nodal coordinates. Note that the matrices M̂, K̂, f̂
ext

and f̂
int

can be constructed directly by using the trans-
formed Lagrangian reproducing kernel shape functions

Ŵ
X0S
I , or by constructing their generalized coordinate

counterparts using the untransformed Lagrangian repro-
ducing kernel shape functions WX0S

I and then performing
matrix transformation to the nodal coordinates [see Chen
et al. (1996) for details]. For example, K̂ � Kÿ1KKÿT

where K is the stiffness formulated at the generated co-
ordinates.

4
Frictional contact conditions

4.1
Preliminaries
In this development, we restrict the scope to the numerical
treatment of contact conditions of a classical Coulomb
friction law. For a general description of contact condi-
tions, the two potential contact surfaces are arbitrarily
designated by slave surface CS

x and master surface CM
x as

shown in Fig. 3. At each point x 2 CS
x, a normal gap gn is

de®ned by

gn � �xÿ xC� � n �4:1�
where xC is the closest projection point of x onto CM

x , i.e.,
kxÿ xCk � min kxÿ x?k : x? 2 CM

x

� 	
and n is the unit

outward normal vector of CM
x at xC . The contact constraint

does not allow the interpenetration to occur between CS
x

and CM
x . When two surfaces CS

x and CM
x are in contact, the

following constraint condition needs to be imposed

gn � �xÿ xC� � n � 0 �4:2�
The friction between the contact surfaces are accounted
for by the Coulomb law

if j ht j� l j hn j gt � 0 �stick�
otherwise j ht j� l j hn j �slip�

�
�4:3�

where ht is the tangential traction with the direction op-
posite to the relative motion, l is the coef®cient of friction,
and gt is the tangential relative displacement increment
during a load increment. The contact constraints are ap-
proximately furnished by a penalty formulation reduced
from a perturbed Lagrange formulation (Saleeb et al.
(1994)):

dP�u� �
Z

CC
x

�kndgn � ktdgt�dC � 0; CC
x � CS

x \ CM
x

�4:4�

where dP�u� is the virtual work without the contribution
from the contact traction, and

kn � ÿxngn �4:5�

kt � ÿxtgt if j xtgt j�j lkn j �stick�
ÿlknsgn�gt� otherwise (slip)

�
�4:6�

where xn and xt are the penalty numbers, and Eq. (4.6) is
the penalized version of the classical Coulomb law.

4.2
Discretizations
To employ the slave-master slideline contact algorithm
(Hallquist et al. (1985)), the master surface is represented
by the union of master segments, and the slave surface is
discretized by a set of slave nodes as shown in Fig. 4. In
this work, we consider a piecewise linear discretization of
the master segment. A typical situation is shown in Fig. 4,
in which xS � XS � d̂S de®nes the current position of a
slave node, and xM1 � XM1 � d̂M1 and xM2 � XM2 � d̂M2

de®ne the current position of a master segment, where d̂S,
d̂MI , d̂M2 are the RKPM nodal displacements of the slave
node S and master nodes M1 and M2. Note that in the
search of contact conditions, the nodal kinematic infor-
mation is required and therefore the nodal displacements
are used here to de®ne the kinematics for contact analysis.
To de®ne the contact geometry, the length l, the tangential
unit vector t, and the normal unit vector n of the linear
master segment are de®ned as

l � kxM2 ÿ xM1k; t � 1
l �xM2 ÿ xM1�; n � e3 � t

�4:7�
where e3 is the base vector normal and pointing outward
of the plane. The natural coordinate of a closest projection
point xC of xS on the master segment M1ÿM2 is de-
scribed by the natural coordinate

aC � �xS ÿ xM1� � t=l �4:8�
and the location of xC on the master segment is

xC � �1ÿ aC�xM1 � aCxM2 �4:9�
The normal and tangential gaps associated with the slave
nodes S and master segment M1ÿM2 are de®ned as

gn � �xS ÿ xM1� � n �4:10�
gt � �xC ÿ x0

C� � t �4:11�

Fig. 3. Contact geometry and kinematics Fig. 4. Discretization of contact surfaces
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where x0
C � �1ÿ a0

C�xM1 � a0
CxM2 is the closest projection

point of the slave node at the last converged increment and
a0

C is its corresponding natural coordinate computed by
Eq. (4.8). Note that in Eq. (4.11), the master segment refers
to the last converged stage. The collocation discretization
of Eq. (4.4) leads to

dU�u� �
X

A

�kndgn � ktdgt�A � 0 �4:12�

where A is summed over all the closest projection points of
the slave nodes on the master segments, and
�kndgn � ktdgt�A denotes the evaluation of kndgn � ktdgt at
the closest projection point xA. Using the property
Ŵ

X

I �XA� � dIA, the reproducing kernel particle discretiza-
tion of the term �kndgn � ktdgt�A is

�kndgn � ktdgt�A � dd̂
T

A�f̂
C�A �4:13�

where d̂A is the composite nodal displacement vectors
associated with the slave particle xS and the two end points
of the master segment xM1 and xM2,

d̂
T

A � d̂
T

S ; d̂
T

M1; d̂
T

M2

h i
�4:14�

and the corresponding nodal contact force vector at the
closest projection point xA is

�f̂C�A � �knCn � l0

l
ktCt�A �4:15�

where

CT
n � nT;ÿ�1ÿ aC�nT;ÿaCnT

� � �4:16�
CT

t � tT;
ÿgn

l
nT ÿ �1ÿ aC�tT;ÿ gn

l
nT ÿ aCtT

h i
�4:17�

and xA is the projection of xS onto the M1ÿM2 line. With
the use of the transformation method, the RKPM contact
force vector f̂

C
in Eq. (4.15) does not involve the repro-

ducing kernel shape functions.
Taking the collocation form of D

R
Cc�kndgn � ktdgt�dC in

conjunction with the Kronecker delta property of trans-
formed Lagrangian reproducing kernel shape functions
fŴX

I

RNP
I�1 : yields the following RKPM discretized tangen-

tial operator associated with the contact constraints:

D�kndgn � ktdgt�� �A� dd̂
T

A�K̂
C�ADd̂A �4:18�

where �KC�A is the contact stiffness matrix with the com-
ponent ordering consistent with �d̂�A:

�K̂C�A �
�

xnCnCT
n �

kn

l
�PTT � TPT � gn

l
PPT�

ÿ kt l
0

l2

�
CnPT � PCT

n ÿ
gn

l
�PQT � QPT�

ÿ CtQ
T ÿ QCT

t

��
A

� �K̂f �A

�4:19�

and

�K̂f �A �
l0

l xt�CtC
T
t �A if j xtgt j�j lkn j

ÿ l0

l lxn�sgn�gt�CtC
T
n �A otherwise

(
�4:20�

PT � 0T;ÿnT;nT
� � �4:21�

QT � �0T;ÿtT; tT� �4:22�
TT � �tT;ÿ�1ÿ aC�tT;ÿaCtT� �4:23�
Combining Eqs. (3.38), (4.13), and (4.18), the ®nal incre-
mental reproducing kernel matrix equation of a contact
problem is

M̂D�̂
d� �K̂� K̂C�vn�1Dd̂

� �f̂ ext�n�1 ÿ �f̂ int � f̂C�vn�1 �4:24�
where K̂ and f̂ int are global tangential stiffness matrix and
internal force vector associated with the non-contact
conditions.

4.3
Degeneration to quasi-static rigid-to-flexible body
frictional contact
Many metal forming processes are slow in motion, and the
problems can be treated as quasi-static in which the inner
effect is neglected:

�K̂� K̂C�vn�1Dd̂ � �f̂ ext�n�1 ÿ �f̂ int � f̂C�vn�1 �4:25�
If one further assumes that the master surfaces are
rigid (for example, punch and die) with prescribed rigid
body motion, then the degrees of freedom associated
with the master segments can be eliminated from the
system of algebraic equations. In this case, the compos-
ite contact nodal displacement vector of Eq. (4.14) reduces
to

d̂T
A � d̂T

S �4:26�
and the corresponding nodal contact force vector at the
closest projection point xA is

�f̂C�A � �knnT � ktt
T�A �4:27�

Consequently, the contact stiffness matrix �KC�A corre-
sponding to d̂A reduces to:

�K̂C�A � �xnnnT�A � �K̂f �A �4:28�
and

�K̂f �A � xt�ttT�A if jxtgtj � jlknj
ÿlxn�sgn�gt�tnT�A otherwise

�
�4:29�

5
Numerical examples
Lagrangian reproducing kernel shape functions con-
structed by the cubic B-splice kernel function with linear
basis functions HT � �1;X ÿ XI ;Y ÿ YI � are used to
analyze the numerical examples. In the following prob-
lems, the metal forming processes are considered to be
quasi-static, and punch and die are assumed to be per-
fectly rigid.
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5.1
Sheet metal stretch by a cylindrical punch
This problem is advocated as a benchmark test [Choudhry
and Lee (1994)] of sheet metal forming processes. A plane-
strain sheet metal is stretched by a cylindrical punch as
shown in Fig. 5, where the geometrical parameters are
Rp � 50:8 mm, Cd � 59:18 mm, Rd � 6:35 mm, and h � 1
mm. The material constants of the sheet metal are as fol-
lows: Young's modulus E � 69 GPa, Poisson's ratio
m � 0:3, isotropic hardening R��ep� � 589�10ÿ4 � �ep�0:216

MPa, and coef®cient of friction l � 0. Because of sym-
metry, only half of the sheet metal is modeled with 3� 51
particles and 2� 50 integration zones, and Gauss inte-
gration order of 4� 4 is used. Normalized dilation pa-
rameter (dilation parameter ``a'' in Eq. (3.12) divided by
the nodal distance) of 1.4 is employed in both membrane
and thickness directions. Relative dense particles are dis-
tributed around the die where the sharp corner is expected
to cause stress concentrations. In this analysis, the end of
the sheet metal is ®xed, and the rigid punch is moved
downward with a vertical displacement of 30 mm in 50
incremental steps.

The RKPM prediction is compared with the membrane
analytical solution [Choudhry and Lee (1994)] and good
agreement is observed in Fig. 6. Figure 7 shows the ex-
cessive deformation that occurs near the contact with the
die at various deformation stages. The ®nal deformation of
the sheet metal is shown in Fig. 8, and local neckings are
observed near the die contact areas. In this analysis, the
tolerance for the residual force norm is 10ÿ6. A typical
residual force norm information during the iteration
process at the punch depth of 27 mm is shown in Tables 1,
and a quadratic convergent rate is observed. An average of
12 iterations is required in each incremental step. In this
analysis, the RKPM solution is not sensitive to the dila-
tational parameters.

5.2
Sheet metal stretch by a hemispherical punch
This problem is the axisymmetric version of the
preceding one, and the same analysis model and con-
ditions are used. In this problem, frictionless (l � 0)
and frictional (l � 0:3) conditions are considered, and
the predicted punch force-displacement curves are

plotted in Fig. 9. Stiffer response of the frictional case
occurs only at a deeper punch depth. The longitudinal
true strain distributions are shown in Figs. 10 and 11,
and the friction shifts the strain peak away from the
center line.

Fig. 5. Geometric description of cylindrical punch stretch

Fig. 6. Cylindrical punch stretch: comparison with membrane
solution

Fig. 7. Cylindrical punch stretch: longitudinal true strain distri-
bution

Fig. 8. Cylindrical punch stretch: deformation at punch depth of
30 mm
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In this analysis the tolerance of the residual force norm
is chosen to be 10ÿ6, and an average of 9 iterations is
required for both frictionless and frictional cases. A typical
residual force norm information at punch depth of 27 mm
is shown in Table 2, and the quadratic convergent rates are
observed.

5.3
Ring compression analysis
The ring compression test is often used to estimate the
friction coef®cient in metal forming operations [Male and
Cockcroft (1965)]. The test consists of compressing a ring
at different compression ratios with ¯at tools and mea-
suring the deformed height and deformed internal diame-
ter. The setup of the ring test is shown in Fig. 12, where the
initial ring geometry is: internal diameter = 6.0 cm, height =
4.0 cm, and external diameter = 12.0 cm. The ring is made
of a cold forging steel 16MnCr5 with yield stress ry � 100
MPa, Young's modulus E � 288 GPa, Poisson's ratio
m � 0:3, and the material is assumed to be perfectly plastic.

Fig. 9. Hemispherical punch stretch: load-displacement curves of
l � 0:0 and 0.3

Fig. 10. Hemispherical punch stretch: longitudinal true strain
distribution at various punch depth with l � 0:0

Table 2. Sheet metal stretch by a hemispherical punch: force
residual norms at punch depth 27 mm

Iteration Force residual
norm (l � 0)

Force residual
norm (l � 0:3)

1 .29995E+05 .34642E+05
2 .16242E+05 .17483E+05
3 .27556E+04 .21240E+04
4 .11993E+04 .27415E+04
5 .47132E+02 .55116E+02
6 .83472E+00 .19323E+01
7 .53776E)03 .64199E)02
8 .62826E)07 .15286E)06

Table 1. Sheet metal stretch by cylindrical punch: force residual norms at punch depth 27 mm

Iteration 1 2 3 4 5 6
force residual norm .12087E+04 .94854E+03 .25455E+03 .14846E+03 .99999E+02 .44881E+02

7 8 9 10 11 12
.12087E+04 .94854E+03 .25455E+03 .14846E+03 .99999E+02 .44881E+02

13 14 15 16 17 18
.16754E+02 .16823R+02 .12630E+01 .12677E-01 .20761E-05 .31347E-09

Fig. 11. Hemispherical punch stretch: longitudinal true strain
distribution at various punch depth with l � 0:3
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Due to symmetry, only a quarter of the ring is dis-
cretized by 16� 11 nodes and 15� 10 integration zones
as shown in Fig. 12. The dilation parameters (``a'' in Eq.
(3.21)) is 0.6 cm in x- and y-directions and the Gauss

integration order is 4� 4. Several analyses were per-
formed with various friction conditions l � 0:0; 0:15; 0:3,
and with perfect stick conditions. The ring is compressed
to half of its original height in 1000 incremental steps.
Due to the frictional contact conditions, bulge deforma-
tion occurs, and the degree of bulging is proportional to
the level of friction on the interface. The ®nal deforma-
tions of the RKPM analysis for different frictional con-
ditions are shown in Fig. 13, and as expected the bulge
deformation is most severe in the stick condition. Figure
14 shows the ring progressive deformations of the stick
condition, and the effective plastic strain contour is
plotted in Fig. 15.

A re®ned model with h-adaptivity at the four corners is
introduced to better capture the strain concentration un-
der stick condition. The original and deformed geometries
of the re®ned model subjected to stick condition are
plotted in Fig. 16, and the corresponding effective plastic
strain is shown in Fig. 17.

Finite element analysis is also performed for the stick
condition using ABAQUS. Automatic time stepping is used
with an initial step size set to be 0.1% of the total com-
pression, and with the maximum increment speci®ed to be

Fig. 13a±d. Ring compression: ®nal deformed geometries associated with various frictional conditions: a l � 0:0, b l � 0:15,
c l � 0:3, d stick

Fig. 12. Geometric description of ring compression
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1000. Both 4-node and 8-node elements with various for-
mulations available in ABAQUS, including hybrid formu-
lation and displacement-based formulation with reduced
integration and hourglass control, are used to analyze this
ring compression problem under stick condition. All the
®nite element analyses failed when dealing with the stick
condition since it leads to a severe mesh distortion. Figure
18 shows the distorted meshes of 4-node and 8-node hy-
brid elements prior to the solution divergence.

5.4
Upsetting simulation
An upsetting process with the axisymmetric geometries of
the punch, die, workpiece, and their initial setup as shown
in Fig. 19 is analyzed using RKPM. The punch and die are
treated as rigid bodies, and only the workpiece is con-
sidered to be deformable. The material properties of the
workpiece are: Young's modulus E � 288 GPa, Poisson's
ratio m � 0:3, and the material is assumed to be perfectly

Fig. 14. Ring compression: progressive deformations associated with stick condition
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plastic with the yield stress ry � 100 MPa. The friction
between the punch/die and the workpiece was determined
based on lubrication conditions. In this problem the co-
ef®cient of friction is estimated to be l � 0:15 [Roque
(1996)]. During the upsetting operation, the die is totally
®xed, and the punch is compressed until the punch/die is
completely closed.

The workpiece model is created by MSC/PATRAN as
shown in Fig. 20, in which the ®nite element mesh is used
as the integration zones for RKPM computation. The
supports of the kernel function (Eq. (3.12)) cover about
®ve particles in each direction. All the particles on the
surface of the workpiece, except the ones on the line of
symmetry, are assigned as the slave particles since they
all have the possibility to contact with the punch or die.
The master segments on the die are completely ®xed,
and the master segments of the punch are moved down-
ward with a total travel of 1.68 cm to close the opening.
The progressive deformations of the workpiece are
shown in Fig. 21. The comparison of the predicted
deformation and the experimental data [Roque (1996)] as

Fig. 15. Ring compression: effective plastic strain distribution of
stick condition

Fig. 16. Ring compression: ®nal deformation of corner-re®ned model under stick condition

Fig. 17. Ring compression: effective plastic strain of corner-re-
®ned model under stick condition

Fig. 18. Finite element analysis of ring compression problem
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given in Fig. 22 demonstrates a satisfactory performance of
RKPM.

6
Conclusions
In this paper, a meshless formulation for loading path-
dependent material behavior and frictional contact con-
ditions is developed based on the Reproducing Kernel

Fig. 19. Geometric description of an upsetting process

Fig. 20. Upsetting process: RKPM analysis model and contact
surfaces

Fig. 21. Upsetting process: progressive deformations
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Particle Method (RKPM). Both Lagrangian (material) and
Eulerian (spatial) forms of the reproducing kernel shape
functions can be used to approximate the ®eld variables of
path-dependent materials. The employment of Lagrangian
reproducing kernel shape functions leads to a straight-
forward computation of the material time derivative of
displacements; however, performing the spatial derivative
of displacements requires the inversion of the deformation
gradient. Conversely, using the Eulerian reproducing
kernel shape functions allows direct computation of the
spatial derivatives of displacements, but it yields an ad-
ditional convective term when performing material time
derivative of displacements.

In this work, the Lagrangian reproducing kernel shape
functions are constructed for the discretization of the
variational equation expressed in the current con®gura-
tion. The generalized displacements are transformed to the
nodal coordinates to yield a direct treatment of essential
boundary conditions and concentrated loads. With the
employment of the Lagrangian reproducing kernel shape
functions, the transformation matrix, and its inversion,
can be computed at a pre-processing stage. The RKPM
computation requires that the support of the kernel
function covers enough particles, and the use of La-
grangian reproducing kernel shape functions assures this
kernel stability in large deformation analysis since they
cover the same set of particles throughout the deformation
processes.

This coordinate transformation method also leads
to a straightforward implementation of contact formula-
tion and contact algorithms in a meshless setting. To
maintain the consistency between the treatment of
contact constraints and essential boundary conditions, a
collocation discretization is employed to construct a
nodal contact force vector and a contact stiffness matrix.
Since in this formulation all the kinematic quantities
are computed at the nodes, using the transformed

reproducing kernel shape functions yields simple ex-
pressions in the RKPM matrix equation for contact
problems.

The numerical examples demonstrate the effective-
ness of Lagrangian RKPM for metal forming analysis.
The large plastic deformation induced in the metal form-
ing process can be dealt with easily by the proposed
method, and no mesh distortion dif®culties are encoun-
tered. Due to the use of the Lagrangian reproducing kernel
shape functions, the support size of the kernel functions
does not require re-adjustment during the contact com-
putation.
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