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Abstract The procedure proposed herein is to the au-
thors' best knowledge the only mathematically consistent
technique for dealing with general quasi-singularities that
occur in the boundary integral equation formulations. Its
implementation results in a robust code and implies in no
additional computational effort.

1
Introduction
The integrals obtained in the frame of a boundary integral
equation formulation generally involve some kind of sin-
gularity. This fact has been perceived from the very begin
of the developments on the subject and, as a consequence,
a series of research works has been undertaken with the
aim of handling the problem adequately. The ®rst papers
dealt with singular and hypersingular integrals, but since
recently more attention is being given to quasi-singular
integrals, which occur when the singularity pole (source
node) is close to (but not on) the boundary segment over
which the integral is being evaluated. A quasi-singularity is
a more subtle issue than an actual singularity, particularly
because its effects are more dif®cult to be assessed.
Moreover, while an actual singularity may be dealt with
indirectly, either by means of some spectral properties of
the matrices involved in the formulation (use of rigid body
motions or of constant stress states, for instance) or as a
consequence of some reformulation (non-singular boun-
dary integral representations), there are no alternatives in
case of quasi-singularities other than applying a suitable
integration scheme. An inadequate numerical treatment of
quasi-singular integrals may increase substantially the
global computational effort, in practical applications, and
still not result in a satisfactory improvement of the accu-
racy. The quasi-singular effect depends upon many fac-
tors, like geometric shape, discretization, boundary
element formulation (resulting in singular or hypersin-
gular formulations, for instance) and fundamental solution
used. The usual discretization of thin-shaped structures

almost unavoidably leads to integrals with quasi-singu-
larity problems, since some nodes may be placed too close
to some boundary segments.

Some research works done at PUC-Rio (Dumont and de
Souza, 1992; Dumont, 1994; Noronha, 1994; Noronha and
Dumont, 1995) suggest that, independently of the kind of
singularity or quasi-singularity and of the dimensionality
of an integral that appears in a boundary element for-
mulation, all integration cases may be advantageously
dealt with semi-analytically, as a sum of a simple, ade-
quately chosen singular or quasi-singular integral, which
can only be evaluated analytically, and a general, but
regular, integral, which may be evaluated numerically.
Differently from previous quadrature schemes, this nu-
merical evaluation is to be accomplished exclusively along
abscissas given as roots of Lagrangean polynomials, in-
dependently from the kind and the degree of the singu-
larity or quasi-singularity.

The present paper may be seen as a continuation of
(Dumont, 1994), in the sense that it re-investigates the
general integration scheme proposed for integrals with a
complex pole of quasi-singularity and represents it in a
closed, ready to apply form based on a novel generalized
series expansion that is so easy to obtain as a conventional
Taylor series (which, by the way, plays no rule herein).
After this presentation, it becomes evident that all inte-
gration schemes proposed by other authors are to be
viewed as unnecessary, rough approximations of the pro-
posed technique, since they are also less effective in terms
of both code robustness and computational effort.

One shall be restricted to two-dimensional problems.
Generalization to three-dimensional problems is not
straightforward, since it requires a transformation to a
polar coordinates system. Besides that, however, it in-
volves the same considerations done herein (Dumont,
1995, 1996).

2
General singularity types
The effectiveness of a boundary integral equation formu-
lation relies on some singularity function that is present in
the required fundamental solution. Depending on the type
of differential equation that is being dealt with in a
problem, this singularity function may assume different
shapes, such as ln�q�; 1=q or 1=q2, in which q is the dis-
tance between the source point and a ®eld point over a
boundary segment.

Consider an integration interval, properly normalized
(see (Dumont, 1995, 1996) for the case of ®nite-part inte-
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grals), expressed in terms of an integration variable n (in a
local coordinate system also used to describe the element),
which spans from 0 to 1 (Fig. 1). According to the relative
position between the source pole and the boundary seg-
ment, following singularity cases may occur:

1. If the source point is located on the integration inter-
val, it gives rise to an actual singularity (point A in Fig.
1).
1.1 If the singularity is related to 1=qm (in which the

exponent m is a positive number greater than or
equal to 1), the corresponding integral must be
dealt with as a ®nite-part integral, in general
(possibly as part of a Cauchy principal value, if
m � 1).

1.2 If the singularity is related to either ln�q� or 1=qm,
in which m is a positive number smaller then 1,
one is dealing with an improper integral.

2. If the source point is given by n � n0 located outside
the integration interval, but on the ideal curve ob-
tained as an extension of the integration interval, there
is a real quasi-singularity pole (point B in Fig. 1).

3. Otherwise, the source point can only be expressed
as n0 � a� bi: It is the case of a complex quasi-sin-
gularity pole (point C in Fig. 1), the subject of this
paper.

The denomination ``complex quasi-singularity pole'' was
introduced by Dumont (1994). It is of paramount impor-
tance to recognize the existence of a complex quasi-sin-
gularity pole, since usual procedures for dealing with real
singularities or quasi-singularities cannot be applied
herein. The effect of a complex quasi-singularity may be
stronger than that of a real quasi-singularity (Dumont,
1994). However, since an adequate numerical treatment of
a complex quasi-singularity demands less integration
points to achieve a given accuracy, it is always more ef-
fective than the treatment of a real quasi-singularity.

In practical applications, all singularity cases outlined
above may appear combined in double or even multiple
poles of singularity and quasi-singularity (Noronha, 1998;
Dumont and Noronha, 1996). This occurs explicitly in the
evaluation of the ¯exibility matrix [F] of the hybrid
boundary element method (Dumont, 1989), but may also
occur implicitly and inadvertently in the conventional
boundary element formulation, in case of curved elements.
Moreover, complex quasi-singularities may arise arti®-
cially, as a consequence of the introduction of some co-
ordinates transformation, in case of strongly distorted
elements, and even in the conventional ®nite element
formulation, owing to a Jacobian in the denominator.

3
Problem proposition
For the sake of brevity, one shall be restricted, in this
paper, to the case of a single complex quasi-singularity
pole, for integrals of the kindZ 1

0

1

q2m
f �n� dn �

Z 1

0

1

�wq2�m f �n� dn �
Z 1

0

1

wm
g�n� dn

�1�
In this equation, the second-degree polynomial in the
denominator of the last integral

w � �nÿ a� bi��nÿaÿ bi� � n2ÿ 2an� a2� b2 �2�
appears in the de®nition of the distance q from the pole of
quasi-singularity n0 � a� bi to a point n of the integration
interval on the boundary:

q2 � wq2 �3�
in which q is also a polynomial, the (generally complex)
roots of which, in terms of n, are very far from the inte-
gration interval (q is a constant in case of a straight
boundary segment). The expressions outlined in equation
(1), in terms of the square of the distance q, always occur
in case of complex quasi-singularities, for some positive
integer number m, both in the evaluation of the elements
of the matrix H and in the determination of displacements
and stresses at internal points (in which case m may be
equal to 3 in some integrals (Dumont, 1994)). In eq. (1),
g�n� � f �n�=q2m is an analytical function (a density
function), in the sense that it may be well represented by a
low-degree polynomial (in other words, g�n� itself is not a
source of quasi-singularity), as it generally occurs in the
boundary element methods (Dumont, 1994; Noronha,
1994). For integrals such as the one that occurs in the
matrix G, the singularity would be given by ln�w�, instead
of 1=wm. However, the knowledge one gains in dealing
with equation (1) may be easily generalized for singulari-
ties given by non-algebraic kernels (Dumont and de Souza,
1992; Dumont, 1994; Noronha, 1994; Noronha and Du-
mont, 1995). The article by Noronha and Dumont (1995) is
specially worth being consulted, since it illustrates that
singularities related to Bessel functions and general curved
boundaries may be dealt with elegantly and ef®ciently.

4
On the accurate quadrature scheme
for complex quasi-singularities
Since g�n� is analytical both in the integration interval and
in its vicinity (it does not involve quasi-singularities), it
may be well approximated by a polynomial p�n� of degree
2nÿ 1� 2m; the values of which coincide with the values
of g�n� not only at each of the n integration points (since
one shall end up with a quadrature scheme) but also at n0.
Moreover, the mÿ 1 ®rst derivatives of p�n� equal the
corresponding derivatives of g�n� at the singularity point.
Then, one may writeZ 1

0

g�n�
wm

dn �
Z 1

0
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wm

dn

�
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0

gser�w; n;m�
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dn �4�
Fig. 1. General singularity poles
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orZ 1

0
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n
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dn
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0
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in which GL
n R

means a Gauss±Legendre quadrature with n
points and gser�w; n;m� may be interpreted as either the
remainder polynomial of the synthetic division (as de®ned
by Hamming (1962) for m � 1) between the approximat-
ing polynomial p�n� and wm or a series expansion of the
function g�n� about the complex conjugate couple
n0 � a� bi with m terms. The general expression of gser is

gser�w; n;m� �
Xm

k�1

�R2kÿ1n� R2k�wkÿ1 �6�

The coef®cients R2kÿ1 and R2k may be determined recur-
sively (Dumont, 1994) by

R2kÿ1 � bkÿ1=b �7�
and

R2k � akÿ1 ÿ aR2kÿ1 �8�
in which a and b de®ne the singularity pole n0 � a� bi
whereas akÿ1 and bkÿ1 are respectively the real and
imaginary parts of the regular integrand in eq. (5) for
m � kÿ 1, evaluated at n0 � a� bi, that is,

akÿ1 � bkÿ1i � g�n� ÿ gser�w; n; kÿ 1�
wkÿ1

����
n�a�bi

�9�

For k > 1, the evaluation of eq. (9) has to be carried out by
applying L'Hospital's rule, since both numerator and de-
nominator vanish at n0 � a� bi.
The series gser�w; n;m� differs entirely from a Laurent
series, but it converges to a Taylor series as b tends to zero.
The success of the quadrature scheme (5) depends on the
possibility of obtaining the exact, analytical value of the
last integral at the right-hand side. The accuracy of the
quadrature scheme in equation (5) increases with the value
of m and the strongness of the singularity (that is, as b
tends to zero).
Equation (5) may be further transformed intoZ 1
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According to equation above one may evaluate the quasi-
singular integral at the left-hand side as it were regular and
then add 2m correction terms, all of them evaluated at the
quasi-singularity pole. In this equation, the constants Ri

depend on g�n� and its derivatives at n0, as indicated in
eqs. (7), (8) and (9). The constants Ci, however, depend
only on the geometry of the problem (Dumont, 1994):

C2kÿ1 �
Z 1

0

wkÿ1n dnÿ
Xn

i�1

niw
kÿ1�ni�hi �12�

C2k �
Z 1

0

wkÿ1 dnÿ
Xn

i�1

wkÿ1�ni�hi �13�

in which ni and hi are respectively abscissas and weights of
the Gauss±Legendre quadrature with n points and referred
to the interval (0, 1) ± there is of course no restriction for
using the interval �ÿ1; 1�. The evaluation of the constants
Ci, according to the equations above, is straightforward
(some cases involving non±algebraic singularities are dealt
with by Dumont (1994), Noronha (1994, 1998), Noronha
and Dumont (1995)).

In equation (5), the analytical function g�n� was sub-
stituted, for the sake of numerical integration, by a poly-
nomial of degree 2nÿ 1� 2m. This degree is an accuracy
measure of the proposed integration scheme for the reg-
ularized part of the quasi-singular integral, according to
equation (11). There is no approximation involved in the
correction terms, which account analytically for the sin-
gularity. In this sense, the proposed scheme cannot be
matched by any other procedure.

5
A Qualitative comparison of the proposed accurate
technique with some other approaches

5.1
Preliminary considerations
A general singularity or quasi-singularity owes its haz-
ardous effect to the fact that it cannot be adequately ap-
proximated by a polynomial. As a consequence, accuracy
of a Gauss±Legendre quadrature does not necessarily im-
prove with an increasing number of integration points
(Dumont, 1994). The only feasible way to overcome the
dif®culty presented by general singularities is ®rst to di-
agnose it and second to treat it with mathematical ade-
quacy. Unfortunately, the history of the still young
boundary integral equation formulations is prodigal in
bad examples of the mathematical treatment of singulari-
ties. The ®rst example was possibly the research work by
Kutt (1975), whose merit in ``rediscovering'' Hadamard's
®nite-part integrals (Hadamard, 1923) is unquestionable,
but who introduced a digression in terms of an adequate
quadrature scheme, as pointed out by Dumont and de
Souza (1992), since even in such a case the traditional
Gauss±Legendre scheme cannot be matched, if adequately
applied. As a logical continuation of the research work
reported by Dumont and de Souza (1992), the ®rst author
introduced in reference (Dumont, 1994) the concept of
``complex singularity'', which is of paramount importance
in which concerns dealing with the most inconspicuous,
though most frequent source of inaccuracies in any im-
plementation of a boundary element method. The idea of
subtracting and adding a term in order to regularize an
integrand is at least as old as Hadamard's achievements
and is being used since the beginning by almost all
boundary element researchers. The merit of reference
(Dumont, 1994) is to demonstrate that complex singular-
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ities have to be dealt with in a more general frame than
real singularities. Notwithstanding, it also demonstrates
that complex singularities may be dealt with exactly and at
the expense of negligible computational effort, no matter
the type of the singularity kernel, the geometry of the
boundary and the distance from the singularity pole to the
boundary segment over which the integral is to be evalu-
ated.

Besides the fact that the proposed technique involves no
approximation in dealing with the singularities and is
generally applicable, it is highly ef®cient, since the Gauss±
Legendre quadrature with n points evaluates exactly an
integrand approximated by a polynomial of degree
2nÿ 1� 2m. As a consequence, general elasticity and
potential problem formulations only require 1 integration
point for the exact evaluation of all kinds of integrals over
straight boundaries (Dumont, 1994; Noronha, 1994). On
the other hand, if the normalized integral (1) refers to a
curved boundary segment, the function g�n� can only be
approximated by a polynomial of a not so low degree,
because it now involves a non-quasi-singular part q of the
radius q. However, this just means that one should in-
crease the number of integration points for an adequate
evaluation of the regularized part of equation (1), ac-
cording to equation (11) (if one is a perfectionist, one
might consider dealing with multiple complex singularity
poles ± the poles of both w and q2 ± which results in g�n�
being represented by a very low-degree polynomial at the
expense of some more analytical manipulation (Dumont,
1994; Noronha, 1998; Dumont and Noronha, 1996).

In the following one shall brie¯y discuss the disadvan-
tages of the most important alternatives of dealing with
complex singularities available in the technical literature
(only a few key articles are referred to), as compared with
the accurate technique proposed [See also Zhang(1992)].

5.2
Element subdivision (Lachat and Watson, 1976)
In which respects both real and complex quasi-singulari-
ties, this is the only possible panacea, since it always work
and may be generally implemented, unregarded the nature
of the quasi-singularity kernel. The reason for that is quite
simple: through element subdivision one may choose an
integration interval as small as necessary for the distance q
to the quasi-singularity pole to become relatively large.
Then, this is not a technique of dealing with quasi-sin-
gularities, but rather a technique of avoiding the singu-
larity. Its main disadvantage is that it may become too
time consuming, especially if the imaginary part of
n0 � a� bi tends to zero.

5.3
Coordinate transformation (Telles, 1987)
This technique consists in ®nding a way of directly can-
celing the quasi-singularity. However, it is not guaranteed
that the resulting integrand becomes a regular function, in
the sense that it may be well represented by a polynomial
of reasonably low degree. This technique also may become
too time consuming, since convergence with increasing
number of integration points (the abscissas of which are

no longer the roots of a Legendre polynomial) may be very
bad, particularly if the imaginary part of n0 � a� bi tends
to zero.

5.4
Use of spectral properties of the matrices involved
in the formulation
It consists in avoiding some numerical evaluations in-
volving quasi-singularities by applying the matrix formu-
lation to some simple displacement states of the elastic
body, such as rigid body motions and constant stress
states. It was called a ``superposition'' procedure by Crotty
Sisson (1990), who refers to Ushijima's thesis (1993), and
has been applied in combination with the element subdi-
vision technique. This is an approach with limited ad-
vantages, as one may deprehend by trying to apply it to
calculate either stresses or displacements at the internal
point p of Fig. 2. Since p is a complex singularity pole close
to point B, the integral that involves a shape function
based on point B (with unitary value thereon and zero
value at any other nodal point) could be obtained by
means of some spectral property of the matrices involved,
provided that the integrals involving the shape functions
based on all other nodal points are known with suf®cient
accuracy. But this is exactly what does not happen in
general, as in case of Fig. 2, in which p is also a remarkable
source of quasi-singularity for integrals involving the
shape functions related to the nodes A and C. A still worse
case is represented in Fig. 2 by the internal point q, which
is simultaneously close to several nodal points and
boundary segments.

5.5
Regularization by means of ``tangent planes''
and Taylor-series expansions
The ®rst work on this subject was probably done by Ha-
yami (1988). Among other researchers, Cruse and Aithal
(1993) also present some contribution on this kind of
techniques. This and other related schemes of subtracting
and adding a term are just approximations of the proposed
accurate technique presented herein: otherwise they would
coincide with the achievements of reference (Dumont,
1994).

As a matter of fact, the use of a Taylor-series expansion
about n � a in equation (4), instead of gser, does not
guarantee a low-degree polynomial approximation for the
integrand of the ®rst integral at the right-hand side, unless
b � 0. This is illustrated in Fig. 3, for g�n� � x3,

Fig. 2. An illustration of internal points that are close to several
nodal points and boundary segments at same time
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a � 0:5; b � 0:1 and m � 2. The curves displayed are the
integrands 1) g�n�=wm; 2� g�n� ÿ gser�w; n;m��=wm; and
3) �g�n� ÿ taylor�g; a;m��=wm. The ®rst curve illustrates
the occurrence of a quasi-singularity. One may clearly note
that the third curve is as weird as the ®rst. The second
curve is a low-degree polynomial.

Another important consideration is related to curved
boundaries. In the technical literature, the Taylor-series
expansion is performed about a point n � at of the boun-
dary that is closest to the quasi-singularity pole �x0; y0�.
Given the radius q �

������������������������������������������������������
�x�n� ÿ x0�2 � �y�n� ÿ y0�2

q
, one

solves for n such that

oq�n�
on
� 0 �14�

However, the correct procedure is to look for the smallest
complex roots n0 � a� bi that satisfy the equation

q�n� � 0 �15�
It is true and trivial that at � a in case of straight boun-
dary segments, but not for curved ones. Figure 4 illustrates
this difference, for a boundary segment given by
�x � n; y � 0:2n2 ÿ 0:4n� and singularity pole

�x0 � 0:5; y0 � 0:6�: The roots of q�n� given according to
equation (15) are n0 � a� bi � 0:253875� 0:824678,
whereas equation (14) yields n � at � 0:304317, a value
that is close, but different from the real part of the ®rst
solution.

6
Numerical Examples
Many examples of application of the proposed technique
are displayed in references [2, 3, 4] (besides that, Dumont
and de Souza (1992) present some numerical examples for
singularities and real quasi-singularities). Following
academic examples also illustrate the excellency of the
results one may achieve.

6.1
An assessment of the accuracy of the matrix [H]
This ®rst example illustrates the accuracy one may achieve
in the evaluation of the elements of the matrix [H], as
given in the boundary element formulation (Noronha,
1994; Noronha and Dumont, 1995). Several matrices [H]
corresponding to two hollow plates were generated using a
code developed in language C. Eight straight linear ele-
ments were used in the ®rst model, with a total of eight
nodal points, as outlined in Fig. 5, whereas the example of
Fig. 6 corresponds to eight curved quadratic elements with

Fig. 3. Illustration of the poor performance of a regularization
scheme with a Taylor-series expansion (curve 3). Curve 1 is the
integrand with the original quasi-singularity. Curve 2 is the cor-
rectly regularized integrand

Fig. 4. Illustration that the point n � at of a boundary segment
closest to the singularity pole is not necessarily the real part of
n0 � a� bi

Fig. 5. Quasi-singularity errors
of the [H] matrix for a model
with straight elements
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a total of 16 nodes. Strong quasi-singularities are present
in both models.

The integrals required for the determination of matrix
[H] were ®rst evaluated by merely using a Gauss±Legendre
quadrature rule, as if they were well behaved, in which
regards quasi-singularities (integrals in terms of Cauchy
principal value were always properly evaluated). A series
of analyses considering 1 through 10 integration points
was undertaken with the aim of studying the convergence
of the results. Two error norms were considered in the
analysis: a local error norm, represented by circles in Figs.
5 and 6, related to the maximum relative error detected in
the evaluation of each element of the matrix [H]: and a
global error norm related to the average error of all ele-
ments of [H] (squares in Figs. 5 and 6). These results,
represented by solid lines in Figs. 5 and 6, are compared
with the results evaluated in the frame of the proposed
technique (dashed lines), obtained from the previous one
by just adding the adequate correction terms, according to
eq. (11). Target results were the best-calculated results
considering corrections, as given by a one-point rule in
Fig. 5 (exact) and a 10-point rule in Fig. 6.

One may observe in these examples that no satisfactory
convergence is obtainable in the frame of a usual Gauss±
Legendre quadrature. However, only one integration point
is required for arriving at the analytical results, in case of
straight boundary segments, using the proposed technique
(Fig. 5). The evaluation along curved boundary elements
(Fig. 6) demands more computational effort, due to the
presence of the (non-constant) polynomial term �q in the
denominator of the integrand, according to eq. (3) . Not-
withstanding, an accuracy of about 9 ®gures could be
achieved with as few as 3 or 4 integration points.

6.2
Analysis of a thick-wall cylinder under internal pressure
This illustration consists in a plane-strain analysis of a
thick-wall cylinder (Fig. 7a), the dimensions of which are
a � 25:4 mm and b � 50:8 mm. It has a Young modulus
E � 34473:8 N/mm2, Poisson's ratio m � 0:3 and is sub-
mitted to an internal pressure pi � 3:447 N/mm2. Taking
advantage of symmetry, one quarter of the cylinder is
discretized using 26 nodal points and 13 quadratic ele-
ments (Fig. 7b): 5 and 4 curved elements along the exterior

and interior surfaces, respectively, and 2 straight elements
along each side. This example was analyzed by Shiue
(1991) exactly as outlined above. The analysis with the
proposed technique was carried out using an object-ori-
ented code in language C++ (BEMTECH) developed in the
frame of a cooperation program between the universities
PUC-Rio and Stuttgart (Wirnitzer, 1996; Noronha et al.,
1966).

Figure 8 shows the radial displacement and stress re-
sults evaluated at 11 interior points, all with the same
ordinate y � 0:0254 mm and equally spaced between ab-
scissas x � 25:654 mm and x � 50:546 mm. Some of these
points are outlined in Fig. 7b. The complex quasi-singu-
larity has a strong effect, in this case, since the distance
from the internal points to the boundary, as related to the
length of each horizontal element, is equal to 1/500.

The program BEMTECH used one Gaussian point along
each straight element and three Gaussian points along
each curved element, as it is required, in this case, ac-
cording to the results of the previous example, for a rea-
sonably accurate evaluation of all integrals ± not only the
integrals required in establishing the matrix equations, but
also the ones required for the evaluation of both dis-
placement and stress results at the internal points. As a
matter of comparison of the computational effort, Shiue
(1991) reported the use of 128 Gaussian points along each
element, for the evaluations at internal points.

Results of radial displacements at the internal points, as
obtained by Shiue, by using the proposed technique and
analytically, are displayed in Fig. 8a. It is worth noticing
that the analytical results cannot be considered as the

Fig. 6. Quasi-singularity errors
of the [H] matrix for a model
with curved elements

Fig. 7. (a) Thick-wall cylinder with internal pressure (b)
discretization
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correct ones, for the sake of comparing the exactness of
the numerical evaluations, since they are referred to a
circular cylinder, whereas the numerical analyses have
been performed for a cylinder with an only approximately
circular shape.

Figure 8b displays the results of radial stresses at the
same internal points obtained with BEMTECH, using an-
alytical results as the target ones (these results are not
given by Shiue). The jumps in these results are due to the
approximations involved in the boundary element for-
mulation, not to integration errors.

Conclusion
The proposed technique is a two-step procedure, as it is
unavoidably usual in the literature. In the ®rst step, which
is the core of the technique, a mathematically exact
transformation is performed. This yields a well-behaved
integral to be evaluated, in a second step, by means of a
Gauss±Legendre quadrature, for the sake of both practi-
cality and generality. As a consequence of the mathemat-
ical exactness of the ®rst step, the higher the effect of a
quasi-singularity, the fewer are the number of quadrature
points required in the second step for achieving a given
accuracy. It is a very dif®cult task to assess objectively the
computational costs involved in the present technique, as
compared to other techniques or to no technique at all. In
the academic examples illustrated by Figs. 5 and 6, for
instances, the additional computational effort for consid-
ering the correction terms is negligible in all cases (less
than one percent, in terms of time). However, such a
comparison is not objective, since one is confronting high
accurate results with very bad ones. As a rule of thumb,
one may say that, in general, for an expected accuracy, the
relative additional computational effort decreases with a)
the increasing strongness of the (quasi-) singularity, b) the
increasing number of quadrature points (required in the
second step), and c) the increasing number of boundary
elements (integration intervals). A more ef®cient integra-
tion technique would be only conceivable in terms of
trying to improve the numerical quadrature of the well-

behaved part of the quasi-singular integral. In some sim-
plecases, as for undistorted boundary elements, an ana-
lytical integration may be performed instead of a Gauss±
Legendre quadrature. However, a Gauss±Legendre quad-
rature is always easier to implement and is as accurate as
the analytical integration, for an adequate number of
points. In case of very distorted boundary elements, the
so-called well-behaved part of the quasi-singular integral
may contain itself some non±negligible quasi-singularity.
This could be dealt with ef®ciently either by extending the
present technique for multiple poles of singularity (Du-
mont, 1994; Dumont and Noronha, 1996; Noronha, 1998)
or by adequately re®ning the boundary element mesh.
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