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An assessment of the spectral properties of the matrix G
used in the boundary element methods

N. A. Dumont

Abstract This paper outlines the correct boundary ele-
ment formulation concerning the fact that arbitrary rigid
body displacements, which are inherent to any funda-
mental solution, should actually have no influence on the
accuracy of the final results. A related, and most im-
portant, aspect is that, in such an improved formulation,
the forces described along the boundary are always in
balance, independently of approximation. Implementation
of the proposed modifications in the traditional equations,
for the sake of achieving spectral consistency of the ma-
trices involved, is always simple and possibly inexpensive,
depending on the application. The formulation is generally
valid for any static elasticity or potential problem in two or
three dimensions, for either finite or infinite domains and
considering body forces. It is demonstrated that this for-
mulation yields a constrained equation system, which is
mathematically equivalent to the problem proposed and
solved by Bott and Duffin (1953) for electrical networks, in
the frame of the theory of generalized inverses. The
present paper proposes adequately and solves exactly a
problem that has been hanging for decades. The author
suggests that its main achievements be incorporated into
the fundamentals of the boundary element methods.

1

Introduction

The results obtained in a two-dimensional (traditional)
boundary element formulation vary with the scale chosen
to describe a problem. The researchers relate this fact to
the presence of the logarithm term in the fundamental
solution. This is only the more conspicuous aspect of the
fact, which is also verified in a three-dimensional for-
mulation, that adding a constant to a fundamental solution
does affect the final results and could even contribute to
some ill-conditioning. It is also well known that, differ-
ently from the finite element method and independently of
computational precision the (traditional) boundary ele-
ment formulation yields non-equilibrated solutions for
both two-dimensional and three-dimensional problems,
unless the results coincide with the analytical ones. A
number of research works have been done on these sub-
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jects in the last years, with no concludent results (the most
complete investigation to date is possibly the one by Telles
and De Paula, 1991; see also Phan-Thien and Fan, 1995).

The author introduced in the year 1987 a hybrid stress
boundary element formulation based on the Hellinger-
Reissner potential (Dumont, 1987, 1989). The key to the
developments started by the author was the assumption
that the flexibility matrix F one arrives at in the formu-
lation is singular. This occurs as a consequence of some
physical interpretations. But this assumption, or, better
expressed, this physical substantiation, is still not well
accepted or understood by many researchers.

In the present paper, which is a continuation of a short
communication (Dumont, 1996), the author does not at-
tempt to convince his colleagues that the singularity of the
flexibility matrix F is not such an undesirable feature. On
the contrary, a matrix singularity (or, expressing it in a
more suitable way, a well established and understood
matrix spectral property — that may arise in a formulation
independently of the fact that the underlying fundamental
solution or the consequent boundary integral equation
may involve some singularity) is a welcome property to be
taken advantage of, as it notoriously occurs in case of the
matrix H of the conventional boundary element method.
Properly obtained, the matrix G of a consistently formu-
lated boundary element method is or should be also sin-
gular. This is a conceptually welcome feature, as it will be
demonstrated presently.

2

Some basic considerations on the fundamental solutions
Consider the fundamental solution of a generic two- or
three-dimensional elasticity problem (particularization to
potential problems is straightforward), expressed in terms
of displacements u; measured at a given point and at a
given coordinate direction “7” of the domain, caused by
some arbitrary, (not necessarily) singular force p;, acting
according to a given degree of freedom “m” (the index
“m” characterizes both a point and a direction in the
domain):

4} = i} + e = (1, + 1.Con)p W

This fundamental solution is usually given in the literature
by the function u}, alone, implicitly related to unitary
forces p},. The complete representation of eq. (1) is both
mathematically and physically more adequate, since it is
stated for an arbitrary (not unitary) singular force p;, (in
which the symbol “+” means “fundamental solution”) and
a term is added to take into account the arbitrary rigid



body displacements, as characterized by the superscript
“r”. In the rigid body displacement functions u},“s” refers
to the rigid body displacement being interpolated (there
may be 1 “rigid body displacement” for potential prob-
lems and 3 or 6 for 2D or 3D problems, respectively). The
quantities r are arbitrary constants, which may be cor-
related to the arbitrary singular forces p;, through some
arbitrary matrix C,, of constants. In this paper, subscripts
“m” and “n” refer to degrees of freedom of discretized
quantities; subscripts “s” and “#” refer to rigid body dis-
placements; and subscripts “i” and “j” are related to the
coordinate directions.

The stresses at a given point of the domain are obtained
from eq. (1) as
T = TijmPrm (2)
One may verify that, as a property of a fundamental so-
lution,

5ij = OiimiPm =0 (3)

everywhere in the domain, except in a vicinity Q, of the
point of application of the singular force p;,, where

1 if “” and “m” refer to
/ Tjim; dQ = { the same degree of freedom
% 0 otherwise
(4)
From the stresses in eq. (2) one may derive the traction
forces along a given boundary I' of the domain as

t; = PimPm (5)

3

The traditional boundary element equation

The matrix equations of the traditional boundary element
method may be stated, starting from minimum residual
considerations and making use of egs. (1) and (5), as

p:n (/rp?mui” dI' — /Qaz;'m,juin dQ) dn
=P (/ U tin dF) th + P, </ ComUitin dl“) t,
r r
+ P (/ u;,bi dQ) +p;, (/ Comu; bi dQ) (6)
Q Q

in which u;, and t;, are interpolation functions for dis-
placements u;, in terms of some nodal parameters d,, and
traction forces t;, in terms of some nodal parameters f,,
respectively (usually u;, = t;,):

} along T (7)

The domain integrals at the right-hand side in eq. (6) take
body forces b; into account.

Considering that p}, is arbitrary, eq. (6) leads to the
known matrix equation

Hd =Gt + b (8)

In equation above,

u; = uind
ti = tinty

H=H,, = /p;fmuin dI" — / Gijuin dQ (9)
r Q

is given by the expression in the first brackets in eq. (6),
supposing that the singularities and quasi-singularities of
the boundary integral have been properly dealt with and
observing eqs. (3) and (4) for the correct interpretation of
the domain integral.

The matrix

G = Gy — / it dT (10)
I

is given by the boundary integral in the second brackets of
eq. (6), an improper integral that may also present some
quasi-singularities (Dumont, 1994).

The terms d = d,, and t = ¢, in eq. (8) are vectors
corresponding to boundary displacement and traction
parameters, respectively. Their elements may be either
prescribed or taken as unknowns, according to the
boundary conditions.

Finally, the vector of nodal displacements equivalent to
the body forces b in eq. (8) are expressed as

b=b, = / u;,b; dQ (11)
Q

Although this is not the subject of the present article, the
author presents in Appendix I a simple way of expressing
vector b in terms of boundary integrals alone, by means of
a virtual work statement, as developed in the frame of the
hybrid boundary element formulation (Dumont, 1994;
Carvalho, 1990).

However, eq. (6) can only lead to eq. (8) if the terms
related to the rigid body displacements u}; vanish, for ar-
bitrary p;, and C,,, that is, if

/ u?stin drl'z, —|—/ Ll?sb,' dQ=0 (12)
T Q

This equation means that the assumed traction forces
along the boundary should be in equilibrium with the
body forces as a premise (the total work done by the
traction forces and the body forces on the virtual rigid
body displacements u}; along the boundary and in the
domain, respectively, is equal to zero). It seems that this
fact has not been adequately dealt with in the literature,
since a premise can only be taken for granted if it is ac-
tually satisfied.

4
Constructing a spectrally admissible matrix G

4.1
Some preliminary considerations
Equation (12) may be represented in matrix notation as

R't+b" =0 (13)

in which

R =R, = / Uty AT (14)
r

b'=b, = / uib; dQ (15)
Q
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are a rectangular matrix with as many columns as the
number of rigid body displacements u}; and a vector of
equivalent nodal displacements obtained in terms of the
(mixed) virtual work done by the body forces on u},
respectively.

One may define a rectangular matrix Z, the columns of
which are an orthogonal basis of the columns of R, that is,
such that

72 =1 (16)

where I is an identity matrix, and 777 is idempotent, that
is,

(22")(22") = 21" (17)

The idempotent matrix ZZ" is the orthogonal projector on
the space of the inadmissible, unbalanced traction force
parameters t (see Ben-Israel and Greville (1980) for the
definition of orthogonal projector, specially the footnote on
page 51). For elasticity problems, the rigid body dis-
placement functions u}, may be defined in infinite ways.
Moreover, the orthogonal basis Z may be obtained from R
in more than one way. However, the resulting idempotent
matrix ZZ" is unique, as demonstrated in Appendix II. It
follows from the definition of Z that
R=2ZA (18)
in which A is a non-singular square matrix readily ob-
tained from egs. (16) and (18) as

L=Z"R (19)

If the traction force parameters t satisfy eq. (13), a con-
dition for eq. (8) to be valid, it follows from egs. (18) and
(19) that

Z't+ 17T =0 (20)

Pre-multiplying equation above by Z and subtracting t
from both sides yields the condition that t must satisfy to
ensure the validity of eq. (8):

t=(1—Z2Z")t—Z0L "b" (21)

If this relationship is valid, then eq. (8) should be re-
written as

Hd = G(I - ZZ")t + (b — GZL D)

(22)
or Hd=G,t+b,
in which
G, = G(I—-2Z") (23)

is the admissible part of the matrix G, obtained through
the orthogonal projection given by (I — ZZ") and b, is
what might be called the vector of admissible nodal dis-
placements related to the body forces.

The admissible matrix G,, as defined in eq. (23), is
obviously singular. It is worth establishing that

Rank(G,) = rank(I — ZZ") (24)

a feature that cannot be demonstrated mathematically. The
matrix G is a flexibility-type transformation matrix, which
must always yield some non-trivial equivalent nodal dis-

placement vector to any set of traction force parameters t,

if one is dealing with an elastic body. Owing to this
physical property, G is always non-singular. However,
depending on the set of rigid body displacement functions
u’, that appear in the definition of the fundamental solu-
tion, as given in eq. (1), G may become singular or ill
conditioned (this may happen even if one explicitly sets
ul, = 0 in eq. (1), unless u},, in this equation is also set as
orthogonal to uf, for each degree of freedom). Regardless
the condition of matrix G, the rank of matrix G, is always
well defined according to eq. (24), since G, is by con-
struction independent of the rigid body displacement
functions u}. The conventional boundary element for-
mulation relies on the fact that the matrix G is non-sin-
gular and hopefully not ill conditioned. All considerations
of the present paper are based on the effectively reliable
premise expressed by eq. (24).

4.2

An alternative way of arriving at equation (22)

Starting from eq. (6), one could think in obtaining the
matrix C = C,,, in such a way that, in absence of body
forces, the nodal displacements equivalent to any set of
traction force parameters defined by the basis Z be equal
to zero:

(G+CRNZ=0 (25)

Making use of eq. (18), this equation may be transformed
into

(G+cr'zhz =0 (26)
from which follows the expression for the constants C:
C=—-GZn " (27)

Substitution of C in eq. (6), according to its expression in
eq. (27), yields the same eq. (22).

4.3

Solving equation (22)

Equation (22) seems to be useless for the sake of arriving
at an equation system of the shape

(28)

with a vector y that gathers the known displacement and
traction force parameters, besides the body force param-
eters, since the boundary conditions should be expressed
in terms of the admissible parameters (I — ZZ")t, which
are completely unknown unless all the elements of t are
known (Section 7 of this paper brings some more con-
siderations on this specific subject).

However, one might attempt to solve eq. (22) for the
admissible traction parameters t:

t=G{"V(Hd - b,)

An apparent difficulty in obtaining eq. (29) lies in the fact
that G,, as introduced in eq. (22), is singular. Fortunately,
the equation system (22) corresponds mathematically to
the problem that Bott and Duffin (1953) have proposed
and solved (Ben-Israel and Greville, 1980), as outlined in
Appendix III. According to that, and based on the expe-
rience gained in the development of the hybrid boundary

Ax =y

(29)



element method (Dumont, 1987, 1989), the author pro-
poses following restricted inverse for G,:
GV = (1-22")(G, + Zyz") ™!

a (30)
which is more general than the Bott-Duffin inverse, since it
involves an in principle arbitrary symmetric matrix 7y, that
may be chosen in order to ensure that the elements of
ZyZ" and G, are of the same magnitude, thus avoiding
round-off errors during the numerical computations.
Since G, and ZyZ" are complementary matrices
(G.ZVZT = 0),G, + ZyZ" is always well conditioned (see
eq. (24) and subsequent considerations).

Instead of the equation above, one might express

GV = (1-2z"G™! (31)

but the matrix G, as defined in eq. (10), may become ill
conditioned, as already discussed, whereas G, + ZyZ" is
always well conditioned, for adequate y.

It is evident from the definition of G(a’1> in eq. (30) that
Rank(G{ ™) = rank(I — ZZ") (32)
> rank(Gg_l)H) < rank(H)

However, in order to demonstrate that eq. (29) is both
physically and mathematically consistent one has to suc-

ceed in demonstrating that, in fact,
Rank(G{ ™) = rank(I — ZZ") (33)
= rank(Gg_l)H) = rank(H)

This demonstration is not straightforward and shall be
accomplished as a consequence of the considerations
made at the end of the next section.

5

A spectrally consistent stiffness-type matrix

One may define a vector p of nodal forces that are
equivalent in terms of virtual work to the traction force
parameters t on the boundary

p=Lt (34)
in which

L=L,,= / Uimtin AT
r

Then it follows from eqs. (29) and (34)

(35)

p = LG "VHd - LG\ Vb, (36)
in which
LG VH =K (37)

is a stiffness-type matrix. There is no reason to believe that
this matrix should be symmetric, or at least less non-
symmetric, in general, than the stiffness-type matrix

LG 'H. The criticisms expressed by Dumont (1986, 1987)
are still valid in case of an admissible matrix G,. However,
the matrix K, as given in eq. (37), has improved spectral
properties that make sure that, in the equilibrium eq. (36),
the equivalent nodal forces p are always in balance. This
shall be demonstrated in the following.

Let the columns of a rectangular matrix W = W, be a
basis of the nodal displacements d related to rigid body
displacements. For the moment, one can only say that W
and Z have the same dimension. For a finite domain, it
follows from eq. (8) that, necessarily,

HW =0 (38)

which is a feature related to the physical nature of the
fundamental solution. On the other hand, the rigid body
displacement functions uj, may be described along the
boundary I' as a linear combination of the displacement
interpolation functions u;,, introduced in eq. (7), and

Wt
u;‘s = Uim Wit s (39)

in which w = wy, is a non-singular square matrix that
transforms W,,, into the nodal displacements related to
ul.. Then, it follows from egs. (14), (35) and (39) that

R=L"Wo (40)
and, according to eq. (18),
L'W = Z o ™! (41)

that is, the columns of LTW lie in the space spanned by the
rows of Z and, as a consequence,

WILI - 22" = 0o "ATZY(1- 22" =0 (42)

It may be noticed that, since L, as given in eq. (35), is by
construction a nonsingular matrix, it follows from eq. (41)
that

Rank(I — WWT) = Rank(I — ZZ") (43)

This is in conformity with the assertion, made before, that
W and Z have the same dimension. Then, given the defi-
nitions of Gg’l) in eq. (30) and K in eq. (37), one gets from
the orthogonality conditions expressed in egs. (38) and

(42) that
WIK=KwW!' =0 (44)

As a consequence, the equivalent nodal forces p of eq. (36)
are always self-equilibrated.

The verification of the properties of the stiffness-type
matrix K, as given in eq. (37), is not complete, since its
rank is still not determined. From eqs. (42), (30) and (38)
one may express the matrix K in eq. (37) as

K= (I- WWHLG VH(I - wwT)
= (1 - WWHL(G{ ™V + ZzZ")H(I — WW")
= (I1—-WWHA(I - wwT) (45)

in which A = L(G{") 4 ZZ")H is a matrix such that
A(I— WWT) + WWT is nonsingular. Then, according to
item “c” of the theorem demonstrated in Appendix III,

Rank ((I — WWT)A(I— WWT)) = rank((I - WWT))
(46)
and, as a consequence,

Rank(K) = rank(I — WWT) (47)
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Considering the definition of K in eq. (37), eq. (47) also
demonstrates the equalities stated in eq. (33), which had
remained unproved.

6

Spectral properties for an infinite domain

For a cavity in an infinite domain, it may be demonstrated
(Brebbia, Telles and Wrobel, 1984) that the boundary el-
ement matrix equation (8) could be expressed as

(H+Hy)d = (G+ Gux)t+ (b +by) (48)

in which the matrices with upper bars are the result of
integration along the inner boundary (or multiple
boundaries) of the infinite domain and are related to the
matrices given in the main body of the paper, for the
complementary interior problem, in the following way:

H=I1-H (49)
G=-G (50)

One is assuming that the domain integrals required in the
evaluation of both body forces vectors b of eq. (48), above,
and b, of eq. (60), below, are expressible in terms of
boundary integrals. The matrices with an “co” as a sub-
script are the result of integration carried out along the
boundary placed at infinite and should, owing to physical
reasons, (almost! - see considerations below) always sat-
isfy the identity

H,.d = Gt + by (51)

for any applied body forces and any set of nodal dis-
placements and traction forces, as (not so) well explained
in the technical literature (Brebbia, Telles and Wrobel,
1984).

Then, for a cavity in an infinite domain, the boundary
element matrix equation may be expressed simply as

Hd=Gt+b (52)

The matrix, H, as given in eq. (49), is no longer singular,
since, for a basis W of the rigid body displacements, one
gets from eq. (38)

HW =W (53)

As a consequence, there seems to be a paradox in eq. (52),
since rigid body displacements in the cavity are trans-
formable into traction forces along its boundary (the
matrix G is also nonsingular), causing a state of stresses
around the cavity. Conversely, application of unbalanced
forces in a cavity provokes general (not only rigid body)
displacements in the domain, according to eq. (52). The
most surprising of all that is the fact that these uncon-
trollable results vary with the rigid body displacement
function uj, of the fundamental solution, eq. (1).

There is only one way out of this apparent paradox. It
consists in stating that eq. (52) is valid only for admissible
displacements,

d, = (1-wwhd (54)

which are orthogonal to rigid body motions and are
therefore the only ones capable or yielding a stress field,
and admissible, or balanced traction forces,

t, = (I — GG")t

the only ones capable of yielding deformation.

This assertion is based on the fact that eq. (51) - a
premise for expressing eq. (52) - does not hold for rigid
body displacements, since, no matter how H, is obtained,
it is the result of an integral along a closed boundary that
envelopes all source points and, as a consequence,

H. W =-W (56)
According to that, following cases are to be considered.
a) Prescribed mixed (Cauchy) boundary conditions.

This is the general case. The same concepts that gave rise
to eq. (22) apply to eq. (52):

(55)

H.d = G,t +b, (57)
where

H, =HI-ww") (58)
G, = G(I—2z") (59)
b, =b — GZL b, (60)

in which b and b, may be obtained as explained in Ap-
pendix I. Rigid body displacements and unbalanced trac-
tion forces, as they are canceled out in eq. (57), are
meaningless quantities in this static formulation. The re-
sults at internal points are obtained as usual, by means of
Somigliana’s displacement and stress identities.

b) Prescribed displacements along the whole boundary
(Dirichlet boundary conditions). Equation (57) still holds.
The vector of the balanced traction forces is obtained from
this equation by making use of the Bott-Duffin inverse
G{™Y, according to eq. (30). A rigid body displacement
field corresponding to the inadmissible vector WW'd,
which has been canceled out in eq. (57), may be added to
the displacement results obtained at internal points.

c) Prescribed traction forces along the entire boun-
dary (Neumann boundary conditions). Equation (57) is
also applicable in this case, as part of the complete so-
lution. The rigid body displacement field remains un-
known (only relative displacements are evaluated, as
usual). Now, the equation system (57) is solved by means
of the Bott-Duffin inverse of H,. The unbalanced part
ZZ™t of the traction forces cannot be transformed into
any displacements. However, the stress field it generates
may be evaluated directly using Somigliana’s stress id-
entity. Summarizing, in this case an admissible displace-
ment vector d, is obtained by solving the constrained
system (57) for the given traction forces vector t and af-
terwards the results at internal points are evaluated con-
sidering the known parameters d, and t (and eventual
body forces).

7
An alternative development

71

Preliminary considerations

In this paper, the subject in question seems to have been
theoretically covered to exhaustion. However, one or two
more manipulations of the matrices G and G{~") may be of
academic interest.



Both egs. (30) and (31) may be generic expressed as
GV =(1—-zz")G{ (61)

a
in which G, stands for either the nonsingular, well-con-
ditioned matrix (G, + ZyZ") or the nonsingular, but pos-
sibly not so well conditioned matrix G. Then, one may
obtain from eq. (61)

GV = Gé*” -G, VG,zz"G[ Y

V(1 - GyZZ' Gy >) (©2)

in which (I — G,ZZ"G{ ") is an idempotent matrix, al-
though not an orthogonal projector (it is generally non-
symmetrical). As a consequence, eq. (29) may be re-
written as

— GUU(1 Ta(-1)
t= Gg (I— - G,ZZ' G g )(Hd b,) (63)
which yields, since G(’ ) is nonsingular,
Gt = (I— GgZZ"G{ ")(Hd — b,) (64)

Since the matrix G, is non-singular, equation above is
valid only if t is a vector of balanced forces. As a con-
sequence, it is possible to rearrange eq. (64), for mixed
boundary conditions, as in eq. (28), and still get balanced
traction forces (note that, since H is singular, one cannot
obtain from eq. (28) a vector d which is orthogonal to rigid
body displacements, except in some particular cases). In
this sense, eq. (64) might be considered as an improve-
ment of eq. (22), for G, = (G, + ZyZ").

Unfortunately, however, establishing eq. (64) requires
the complete computation of the matrix G, and at least the
solution of a system of the type GTX Z. As a conse-
quence, eq. (64) does not seem more promising than eq.
(29), in terms of both computat1onal time and storage
allocation. If one is aiming at expressmg a stiffness-type
matrix, such as in eq. (37), then G ), as given in eq. (30)
is definitely better than eq. (62).

7.2

Another way of building a constrained system

Although the expression (62) of the Bott-Duffin inverse is

not practical, as compared with the standard one, it may

be academically interesting to obtain it in a different way

than according to the steps presented in items 4.1 and 4.2.
Disregarding the body forces, for the sake of brevity,

one may express the boundary element eq. (6) as

Gt = Hd + residuum (65)

in which the residuum is to be expressed in terms of the
unbalanced forces Z't. Considering eqgs. (25-27), it is ev-
ident that eq. (65) might look like

Gt, = Hd — GZyZ™t, (66)

in which t; is an improved solution, y is a matrix of un-
knowns to be determined in some way and t, is a first
approximation, obtained from eq. (65) by disregarding the
residuum:

t() - GilHd (67)

According to that, the improved solution is given by

Gt, = Hd — GZyZ"G 'Hd = (1 — GZyZ"G ")Hd

(68)
from which follows
t, = (1—-ZyZ")G 'Hd (69)

If one imposes that 4 = I in eq. (69), the traction forces t;
turn out to be already in balance. As a consequence, one
may express eq. (65) according to eq. (68) for y =1I:

Gt=(1-GZZ'G ")Hd (70)

which coincides with what was expressed in eq. (64) for
G, =G.

73

An approximation of equation (70)

Telles and De Paula (1991) used a similar procedure for
dealing with the subject of this paper (actually, the pro-
cedure just outlined above was motivated by this refer-
ence). However, they considered, for some unexplained
reason, the basis W of the rigid body displacements in the
expression of the residuum, obtaining as starting point.

Gt; = Hd — WyR™t, (71)

instead of eq. (66). Then, following steps similar to the
ones outlined in egs. (67-70), they arrived at

Gt = (I1-WR'G'W) 'RTG )Hd (72)
in which (I - W(R'G'W) 'RTG™") is also an idempotent
matrix (not an orthogonal projector). The equation above
is an approximation of eq. (70) and, as a consequence, the
stiffness-type matrix obtained by Telles and De Paula

K = LG !(1- WR'G'W) 'RTG )H (73)

is also an approximation of the matrix given in eq. (37).
Fortunately, one may demonstrate, according to the
achievements of the present paper, that

Rank(K“) = rank(I - WWT)

that is, K* is also spectrally consistent.

(74)

8
Final considerations

8.1

Preliminaries

It was demonstrated that the rigid body displacement
functions, which are part of the fundamental solution of a
boundary element method, cannot be left out of the for-
mulation, if one is aiming at establishing a consistent
system of equations involving balanced forces.

All achievements of the present paper started from
sound well established physical principles — which are the
basis of the traditional boundary element formulation -
and were developed according to demonstrated mathe-
matical statements.

As a consequence, egs. (22), (30) and (37) are to be
considered as definitive achievements in terms of a con-
sistent boundary element formulation - a formulation that
adequately takes into account the spectral properties of the
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matrices involved as well as the equilibrium of the re-
sulting forces.

It was demonstrated through three different ways (items
4.1, 4.2, and 7.2) that an adequate treatment of the matrix
G in the boundary element method leads unavoidably to
one and the same constrained system, the mathematical
expression of which had been already established and dealt
with by Bott and Duffin (1953). Notwithstanding, all Bott
and Duffin’s mathematical accomplishments that are rel-
evant to this paper have been re-investigated and con-
firmed.

8.2
On the feasibility of an equation of the type Ax =y
Establishing an equation of the type

Ax=y (28)

in which the vectors y and x gather the known and un-
known quantities, respectively, is not a straightforward
step starting from the system

Hd = G(I - ZZ")t + (b — GZA™'b")

(22)
or Hd =G,t+Db,

if one is looking for balanced forces, but can be accom-
plished from the alternative formulation

Gyt = (I — G,ZZ"G{ V) (Hd — b,) (64)

at the expense of some additional computational effort.
Using either equation

Hd=Gt+b (8)

or eq. (64) for arriving at eq. (28) is a matter of choice and
depends on what the analyst is aiming at. One may think
of examples in which the blind application of eq. (8) leads
to very bad results, as compared to the consistent for-
mulation. However, it is not methodologically correct to
choose an impractical example to illustrate how relatively
good a formulation might be. In terms of arriving at an
equation of the type of eq. (28), for a reasonably formu-

u=x(1-x)

1.0

Fig. 1. Rectangular domain and discretization with eight constant
elements for the solution of the Laplace equation.

lated and discretized problem, the present formulation
does not mean a breakthrough: it suffices that the analyst
knows that eq. (8) generally leads to unbalanced forces and
that one has to be careful in which concerns ill-condi-
tioning of the system.

Nonetheless, a simple illustration is given in the fol-
lowing item (Dumont, 1996).

8.3

A simple numerical example

Consider the solution of the Laplace equation on a rect-
angular domain, according to Fig. 1. The boundary is
discretized with a total of 8 constant elements for both
potential u and gradient t. The applied boundary condi-
tions are u = 0 along the edges x =0and y =0, u, =0
along the edge x = .5 and u = x(1 — x) along y = 1.
The results obtained according to eqs. (8) and (22) are
represented in Fig. 2 (crosses and circles, respectively),
as compared with the analytical solution u(x,y) =
.02234116360 sinh(my) sin(nx) + .1542330835 10>
sinh(3my) sin(3nx) +.6221263291 10~ sinh(5my)sin(5nx)+
1543617478 107" sinh(2ny)sin(2nx) + . ... The first part
of the graphic represents gradients across the edge

y = 0; then follow potentials along x = .5 and gradients
across y =1 and x = 0. This example was repeated for
different scales. The results obtained with eq. (22) pre-
sented always the same degree of approximation and
were always self-equilibrated. The same kind of results
was observed for different boundary elements and dis-
cretization meshes. The results of Fig. 2 are reproduced
in Table 1. Two extra columns are added with the re-
sults obtained for the dimensions of the problem out-
lined in Fig. 1 multiplied by 1000. An accuracy of eight
figures was used in all calculations.

8.4
On a consistent stiffness-type matrix
A stiffness-type matrix

LG VH =K

(37)
1.00 -
0.80 &
0.60 -
0.40

0.20

0 e T | T ] T '
0 1.00 2.00 3.00

Fig. 2. Results obtained along the boundary for the solution of the
Laplace equaiton: —u, aty =0, uatx = .5, u, at y = 1 and —u,
at x = 0.



Table 1. Values of potentials and gradients calculated at the nodal points for example of Fig. 1

Analytical values

Values acoording to eq. (8)

Values according to eq. (22)

Sides x 1 Sides x 1000 Sides x 1 Sides x 1000
Gradients —.268727E-01 —.632023E-02 —.161494E-04 —.383530E-02 —.383503E-05
along y=0 —.648386E-01 —.772419E-01 —.943112E-04 —.880434E-01 —.880431E-04
Potentials .193991E-01 .182500E-01 .198856E-01 .212514E-01 .212514E-01
along x = .5 .115934E 00 .121802E 00 .123438E 00 .124804E 00 .124804E 00
Gradients .704797E 00 .833699E 00 .816630E-03 .822898E 00 .822898E-03
along y=1 .424514E 00 .291004E 00 .281175E-03 .293489E 00 .293489E-03
Gradients —.376110E 00 —.436932E 00 —.444930E-03 —.451610E 00 —.451611E-03
along x=0 —.610455E-01 —.459658E-01 —.539645E-04 —.606441E-01 —.606441E-04

is obtained at the expense of almost negligible additional
computational effort, as compared with the traditional,
inconsistent formulation. Telles and De Paula (1991)
suggested a matrix

* = LG I - WRT'G'W) 'RTGHH (73)

which is to be considered as an approximation of K in
eq. (37), although it is more complicated and less reliable
(owing to the questionable conditioning of matrix G). Use
of eq. (37) is strongly recommended, since K has been
obtained according to sound physical and mathematical
bases.

A numerical illustration of the advantages of using
eq. (37) is not methodologically adequate, since, for a well
formulated and discretized problem, a remarkable gain in
accuracy cannot be demonstrated, although convenient
examples may always be thought of. As a matter of fact,
one cannot agree that it is adequate to compare results
obtained through “symmetrized” consistent and incon-
sistent K-matrices (Telles and De Paula, 1991), since
“symmetrization”, as already demonstrated by Dumont
(1986, 1987), is a conceptual mistake (see also Li, Han,
Mang and Torzicky, 1986). As a consequence, an example
that shows that a big mistake yields bigger errors than a
lesser one is a tautology.

9

Conclusions

This paper outlines the correct boundary element formu-
lation in respect to the role played by the rigid body
displacements that are present in any fundamental solu-
tion. It is not expected a remarkable improvement of the
numerical results obtained in the frame of the present
achievements, as compared with the results of either the
traditional, inconsistent formulation or any other formu-
lation, for any well formulated and discretized example.
Since the present paper proposes adequately and solves
exactly a basic pending problem, the author suggests that
the main achievements outlined herein - concerning

egs. (22), (30) and (37) - be incorporated in the textbooks
on boundary elements.

Appendix | - a simple way of expressing the contribution of
domain forces in terms of boundary integrals

The last two terms involving domain integrals in eq. (6)
represent the work done by the body forces b; on the
fundamental displacement solution:

/ u'b; dQ (L1)
Q

One may start by finding a particular solution of the
equilibrium differential equation

ob,+bi=0 in Q (1.2)

in which ¢, is an arbitrary (as simple and convenient as
possible) particular solution, whenever it exists analyti-
cally. Then, one may substitute b; by — ﬂ jin eq. (L1) and,
after application of integration by parts, arrive at

ob . dQ

/Qu;‘b,-dQ:—/Q uiob,
_ p
__/Q( u; ]1) dQ—l—/uz]G]z dQ

p

(1.3)

For an elastic med1um, the stresses o;; are related to a

displacement field u! such that a = C,Jkluk ;- Then, the

integrand of the last integral in eq (1.3) may undergo the

transformations

u;jop = ujCiauy | = Oy = 03UL; (1.4)
J ]1 YrRE= ke 1 k™K1 jivij

which involve no approximations, since both particular

and fundamental solutions are analytical in Q. Considering

that, one may carry out further transformations in eq. (I.3),

by applications of integration by parts:

/Qufb,' dQ = — /(ul Tji ,]dQ+/
/(uz ]z dQ—l—/(]zl j dQ

o’ .uf) dQ 1.5
/QM» (15)

The next step consists in applying Gauss’ theorem to the
first two integrals at the right-hand side of equation above,
thus yielding

/u:-‘bi dQ——/aﬁ.nju;‘ dF+/ amu; dT
Q r
/Qaﬂjuf’ dQ (L6)

in which #; are the cosine directors of the outward normal
to the elementary surface dI'.

P
oiul; dQ

39
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Finally, one makes use of egs. (1) and (2) to relate eq.
(1.6) to the arbitrary singular forces p;, of the fundamental
solution:

/ u:b; dQ
Q
= —p (/ T Ui dF) - p, </ i Com dF)
r
P £ P
+pm</pzm U; dI’ — / Oiim jUi dQ) (1'7)

The arbltrary 1ntegrat10n constants that arise in the pas-
sage from u}, to u in eq. (I.5) do not affect the terms in
the last brad](ets of eq. (1.7), since, as a property of a
fundamental solution,

/F p;, dl’ — / b Q=0 (L.8)

As a consequence of the development above, the last two
terms of eq. (6) may be substituted by the terms of eq. (1.7),
which involve only boundary integrals, considering eq. (4).
According to that, egs. (11) and (15) may be re-written as

— _ p
b:bm——/ oy lmdl“+/plm dr
- /Qa;}m,jjuf dQ (1.9)
r__ _ P r
b = bs = —/Gjinjuis dr (IIO)

For a cavity in an infinite domain (item 6), one may obtain
vectors b and b" in the same way as outlined above, just
considering that the outward normal vector to I" is now

reversed.

The formulation just outlined in this Appendix is
strictly speaking not original. It serves the only purpose of
demonstrating that rigid body terms, which may be pre-
sent 1n the expression of the dlsplacement functions uj,,
and #, do not influence the expression of the equlvalent
nodal d1splacements b and b", as given by egs. (1.9) and
(1.10). A thorough treatment of body forces in the
boundary element methods may be found in (Partridge et
al, 1992), for instance.

Appendix Il — a simple theorem on orthogonal projectors
Consider two arbitrary rectangular matrices Z and X, the
columns of which represent two different orthogonal bases
of a given space, that is, such that

2'7 =X"X =1

Theorem: XX" = ZZ'.

Proof: The matrix X may be obtained from Z through a
linear transformation represented by a nonsingular square
matrix A:

(IL1)

X =7\ (I1.2)
Since
XX =1 (I1.3)

it follows from eqgs. (I1.2) and (II.1) that also

AT =1 (11.4)
Then, using eq. (IL.2), one may conclude that
XX = z0"Z2" = 727 (IL.5)

since the square matrix A is also orthogonal according to
eq. (IL.4), and, as a consequence, wmI =1

Appendix Il — some features

of the bott-duffin inverse

Consider a square matrix G, an arbitrary vector y with the
same dimension of G, and a subspace S, represented by an
orthogonal projector

P,=1-27" (IL.1)
The boundary element equation (22) may be expressed as
Gt—ZZ't=y (II1.2)

or, exactly as Bott and Duffin formulated for the first time
[10], as the constrained system

Gt+t, =y with t€S, and t, €S, (II1.3)

which may be further transformed into the system

(GP,+ P, )x =y (II1.4)
thus yielding
t=P,xand t, =P.x=y—GPx (IIL.5)

If the matrix (GP, + P,.) is nonsingular, the solution

=P,(GP,+P,.) 'y, t,=y—Gt (II1.6)
is unique. The matrix
GV =P,(GP, +P,.)" (I11.7)

is the Bott-Duffin inverse of G. The superscript “a” of
GV stands in this paper for admissible, meaning the
constrained, admissible part of an otherwise arbitrary
inverse matrix of the transformation indicated in eq.
(22), for a singular matrix G,. The solution t,
according to eq. (IIL6), is the admissible part of the
solution one is looking for in eq. (IIL.3). In the
present paper, it corresponds to the part of the
traction forces, which are in equilibrium along the
boundary.

Theorem (Bott-Duffin [9], apud Ben-Israel [8]): Let
(GP, + P,.) be nonsingular. Then
a) The Equation

Gt+t, =y with t€S, and t, €S, (II1.3)
has for every t the unique solution

= GH)y and t; = (I- GG V)y (111.8)
in which G{~ 1s given by eq. (IIL.7).
b) G, P, and GV satisfy
P, =G YGP, = P,GG "V (I11.9)
Ge(;l) — Png’U = Ggq)Pz (II1.10)

c) Rank(P,GP,) = rank (P,).



Proof

a) This follows from the equivalence of eq. (II.3) and
eq. (II1.4) together with eq. (IIL.5), which is unique for a
nonsingular matrix (GP, + P,.).

b) From eq. (111.7), P,G{"Y = G{~Y). Postmultiplying
Ggfl)(GPz +P,.) =P, by P, gives Gg’l)GPz = P,. There-
fore G"VP,. = 0 and G{"VP, = G{~V. Multiplying the
expression of t; in eq. (IIL.8) by P, gives

(P, — P,GG{"V)y = 0 for all y, thus P, = P,GG{ V).
From these results it follows that the Bott-Duffin inverse
GV is a {1,2}-inverse of (P,GP,):

1-inverse: (P,GP,)G!"V(P,GP,) = (P,GP,)  (IIL11)

2-inverse: GV (P,GP,)G{ "V = "V (1IL.12)
¢) The matrices Gg’l) and (P,GP,) have the same rank, as
it may be verified by inspection of eqs. (II.11) and (III.12).
Then, since rank(G{"!) = rank (P,), according to

eq. (IIL.7), it follows that rank(P,GP,) = rank(P,).

References

Ben-Israel A, Greville TNE (1980) Generalized Inverses: Theory
and Applications. New York: Krieger

Bott R, Duffin RJ (1953) On the algebra of networks. Trans. Am.
Math. Soc. 74:99-109

Brebbia CA Telles JCF, Wrobel LC (1984) Boundary Element
Techniques: Theory and Applications in Engineering. Berlin:
Springer-Verlag

de Carvalho MTM (1990) Implementa¢des Computacionais no
Método Hibrido dos Elementos de Contorno. M.Sc. Thesis, PUC-
Rio, Brazil

Dumont NA (1986) Um Ensaio sobre as Possibilidades de Si-
metriza¢do da Matriz de ‘Rigidez’ do método dos Elementos de
Contorno. In: Proceedings of the VII Congresso Latino-Ameri-

cano sobre Métodos Computacionais para Engenharia, Sdo Car-
los-SP, Vol. I, pp. 97-112

Dumont NA (1987) The variational formulation of the boundary
element method. In: Brebbia and Venturini (ed): Boundary Ele-
ment Techniques: Applications in Fluid Flow and Computational
Aspects. Southampton: Computational Mechanics Publications,
Adlard and Son Ltd., pp. 225-239

Dumont NA (1987) The hybrid boundary element method. In:
Brebbia, Wendland and Kuhn (ed): Boundary Elements IX, Vol 1:
Mathematical and Computational Aspects, Southampton: Com-
putational Mechanics Publications, Springer-Verlag, pp. 125-138
Dumont NA (1989) The hybrid boundary element method: An
alliance between mechanical consistency and simplicity. Appl.
Mech. Rev. 42(11) Part 2:554-S63

Dumont NA, de Carvalho MTM (1990) Consideragdao de Forgas
de Massa no Método Hibrido dos Elementos de Contorno - Parte
A: Formulagdo Teérica. In: Proceedings of the XI Congresso La-
tino-Americano e Ibérico sobre Métodos Computacionais para
Engenharia, Rio de Janeiro, Brazil, Vol. II, pp. 935-945

Dumont NA (1994) On the efficient numerical evaluation of in-
tegrals with complex singularity poles. Eng. Anal. Bound. Elem.
13:155-168

Dumont NA (1996) On the spectral properties of the matrix G
used in the boundary element methods. In: Proceedings of the
Joint Conference of Italian Group of Computational Mechanics
and Ibero-Latin American Association of Computational Methods
in Engineering, Padova, Italy, pp. 117-120

Li HB, Han GM, Mang HA, Torzicky PA (1986) A new method for
the coupling of finite element and boundary element discretized
subdomains of elastic bodies. Comp. Meth. Appl. Mech. Eng. 54:
161-185

Partridge PW, Brebbia CA, Wrobel LC (1992) The dual re-
ciprocity boundary element method. New York: Elsevier
Phan-Thien N, Fan X-J (1995) Traction based completed adjoint
double layer boundary element method in elasticity. Comput.
Mech. 16:360-367

Telles JCF, De Paula FA (1991) Boundary elements with equi-
librium satisfaction - a consistent formulation for potential and
elastostatics problems. Int. J. Num. Meth. Eng. 32:609-621

41



