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Abstract The ®nite element alternating method is ex-
tended further for analyzing multiple arbitrarily curved
cracks in an isotropic plate under plane stress loading.
The required analytical solution for an arbitrarily curved
crack in an in®nite isotropic plate is obtained by solving
the integral equations formulated by Cheung and Chen
(1987a, b).

With the proposed method several example problems
are solved in order to check the accuracy and ef®ciency of
the method. Curved cracks emanating from loaded fas-
tener holes, due to mixed mode fatigue crack growth, are
also analyzed. Uniform far ®eld plane stress loading on the
plate and sinusoidally distributed pin loading on the fas-
tener hole periphery are assumed to be applied. Small
cracks emanating from fastener holes are assumed as
initial cracks, and the subsequent fatigue crack growth
behavior is examined until long arbitrarily curved cracks
are formed near the fastener holes under mixed mode
loading conditions.

1
Introduction
The ®nite element alternating method (FEAM) has been
known to be an effective method for obtaining accurate
stress intensity factors. The method has been applied
successfully to two dimensional cracks as well as three
dimensional cracks (Atluri 1986, 1997). However, until
now, in the case of plane problems, the method was lim-
ited to the case of multiple arbitrarily oriented straight line
cracks. In this paper the FEAM is extended further in
order to analyze multiple curved cracks in a ®nite isotropic
plate under plane stress. With the newly proposed method,
we can obtain SIF values for general multiple curved
cracks, and also can simulate fatigue crack growth of

multiple curved cracks in plane sheets under mixed mode
loading conditions.

In the FEAM, an analytical solution for a curved crack
in an in®nite isotropic plate under plane stress is required.
The required solution is obtained here by solving the in-
tegral equations formulated by Cheung and Chen (1987a,
b, 1993). In this formulation, cracks are modeled as con-
tinuous distributions of dislocations. Integral equations
can be derived, under the given tractions or resultant
forces on crack surfaces, for the unknown dislocation
density function. Cheung and Chen (1987a, b, 1993)
showed that several types of integral equations, such as
Cauchy singular, weakly singular or hypersingular integral
equations, can be derived. In this paper we use the weakly
singular integral equations, because of the convenience in
manipulating the integrals (Zang and Gudmundson 1991).
After solving for the dislocation density functions, stress
intensity factors and stress ®elds can be calculated.

In order to check the accuracy and ef®ciency of the
proposed method several example problems are solved
and compared with the previously published results.
Curved cracks emanating from loaded fastener holes in
plane stress sheets, representative of aircraft lap joints, are
also analyzed. Uniform far ®eld plane stress loading on the
plate and sinusoidally distributed pin loading on the fas-
tener hole periphery are assumed to be applied. Small hole
cracks are assumed as initial cracks, and fatigue crack
growth behavior is examined until long curved cracks are
formed near the fastener holes under mixed mode loading
conditions.

From several sample problems presented here, we
conclude that the FEAM is as convenient a method for
analyzing curved cracks as previously found for analyzing
straight cracks. Since the crack con®guration can be cho-
sen independently of the FEM mesh, the remeshing pro-
cedure is not necessary during the arbitrarily curved
growth of cracks in a fatigue analysis. So FEAM can be
used conveniently in arbitrarily curved crack growth
simulation. Indeed, in the simulation of arbitrarily curved
crack growth, the FEAM is more convient than the Ele-
ment Free Galerkin Methods (Belytschko et al. 1994).

2
Formulation
Consider the problem of a curved through-thickness crack
embedded in an in®nite isotropic plate under plane stress/
strain conditions. Arbitrary surface tractions are assumed
to be applied on the crack surface. In order to obtain the
proper stress functions for the problem, we treat the
curved crack as a distribution of dislocations.
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The complex stress functions for a dislocation located at
z � z0 are given as (Santare and Keer 1986):

/�z� � c log zÿ z0� � ;
w�z� � �c log zÿ z0� � ÿ c

z0

zÿ z0
;

�1�

where c � G�bx � iby�=ip�j� 1�, G is shear modulus and
j � 3ÿ 4m for plane strain and j � �3ÿ m�=�1� m� for
plane stress, here m is Poisson's ratio. Also bx and by are
the Cartesian components of the Burgers vector. The re-
lations between the stresses and the complex stress func-
tions are given as (Muskhelishvili 1953):

rx � ry � 2 /0�z� � /0�z�
h i

;

ry ÿ rx � 2isxy � 2 �z/00�z� � w0�z�� � :
�2�

The resultant force X and Y acting on an arc AB are ex-
pressed as (Muskhelishvili 1953):

X � iY � ÿi /�z� � z/0�z� � w�z�
h i

� c1 ; �3�
where the point A is a ®xed point on the given arc, and the
point B is an arbitrary point on the arc. z denotes the
coordinate of the point B, and c1 is a complex constant.

From Eq. (1) the stress functions for a distribution of
dislocations along an arc L can be expressed as follows [3]:

/�z� �
Z

L

D�s� log�zÿ t� ds ;

w�z� �
Z

L

D�s� log�zÿ t� dsÿ
Z

L

�tD�s�
�zÿ t� ds :

�4�

Where,

D�s� � D1�s� � iD2�s� �
G Bx�s� � iBy�s�
� �

ip�j� 1� : �5�

Here s is the distance from a ®xed point to a point t along
the arc; and Bx�s� and By�s� are the x and y components of
the dislocation density function at s on the arc. Substi-
tuting Eq. (4) into Eq. (3) and letting z approach the point
t0 on the arc, we can obtain:

i X t0� � � iY t0� �� � �
Z

L

2 log jt ÿ t0jD�s� ds

�
Z

L

t ÿ t0

t ÿ t0
D�s� ds� c1 : �6�

By letting t ÿ t0 � r�t; t0� exp�ih�t; t0��, we can obtain the
following integral equations from Eq. (6), as in Cheung
and Chen (1987b):Z

L

2 log r t; t0� �� �D1�s� ds�
Z

L

�
D1�s� cos 2h t; t0� �� �

� D2�s� sin 2h t; t0� �� �	 ds� Re c1� � � ÿY t0� �Z
L

2 log r t; t0� �� �D2�s� ds�
Z

L

�
D1�s� sin 2h t; t0� �� �

ÿ D2�s� cos 2h t; t0� �� �	 ds� Im c1� � � X t0� �

�7�

In addition, in order to satisfy the single valuedness of
displacements, we have:

Z
L

Di�s� ds � 0 �i � 1; 2� : �8�
In order to solve the Eqs. (7) and (8), the curved crack L is
divided into n line segments L1; L2; . . . ; Ln and also each
line segment is assumed to be straight. Let the end points
of the kth line segment be tk and tk�1. Also we assume that
the dislocation density value at an internal point of each
line segment can be expressed in terms of the values at the
end points by using suitable interpolation functions. Since
the dislocation density function has a 1=

��
r
p

singularity at
the crack tips, we can assume the dislocation density
functions as follows. For the ®rst and the last line seg-
ments,

Di�n� �
�����������

2

1� n

r
1ÿ n

2
Di� �1�

1� n
2

Di� �2
� �

�i � 1; 2�

�9�

Di�n� �
�����������

2

1ÿ n

r
1ÿ n

2
Di� �n�

1� n
2

Di� �n�1

� �
�i � 1; 2�

�10�
And for the kth line segment excluding the ®rst and the
last segments,

Di�n� � 1ÿ n
2

Di� �k�
1� n

2
Di� �k�1 �i � 1; 2� �11�

Here n is the local coordinate in each line segment, and
ÿ1 � n � 1. �Di�k represents the dislocation density
function value at the kth point �k 6� 1; k 6� n� 1�. Dislo-
cation distributions assumed here are the same as those
used by Zang and Gudmundson (1991) for kinked cracks.

After substituting Eqs. (9), (10) and (11) into Eqs. (7)
and (8) and integrating each terms for t0 � tk �k �
1; . . . ; n� 1�, we can obtain �2n� 4� simultaneous alge-
braic equations for �2n� 4� unknowns. The unknowns are
D1 and D2 values at tk �k � 1; . . . ; n� 1� and real and
imaginary part of c1.

During the integration for each term of integral equa-
tions, the following integrals are evaluated in closed form.
For the next integral:

Ik �
Z

Lk

2 log r t; t0� �� �Di�s� ds �12�

the integration values are as follows:

I1 � 4l1

9
2 3 log l1 ÿ 8� � Di� �1� 3 log l1 ÿ 2� � Di� �2
� �

�when t0 � t1�
I1 � 4l1

9

�
2 3 log l1 � 6 log 2ÿ 5� � Di� �1

� 3 log l1 � 6 log 2ÿ 8� � Di� �2
� �when t0 � t2�

In � 4ln

9

�
3 log ln � 6 log 2ÿ 8� � Di� �n

� 2 3 log ln � 6 log 2ÿ 5� � Di� �n�1

� �when t0 � tn�
In � 4ln

9
3 log ln ÿ 2� � Di� �n�2 3 log ln ÿ 8� � Di� �n�1

� �
�when t0 � tn�1� �13�
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If k is not equal to 1 or n,

Ik � lk log lk ÿ 3

2

� �
Di� �k� log lk ÿ 1

2

� �
Di� �k�1

� �
�when t0 � tk� �14�

Ik � lk log lk ÿ 1

2

� �
Di� �k� log lk ÿ 3

2

� �
Di� �k�1

� �
�when t0 � tk�1�

Here lk is the length of the kth line segment. Also for the
next integral:

Jk �
Z

Lk

Di�s� ds �15�

the integration values are:

J1 � 2

3
l1 2 Di� �1� Di� �2
� �

Jn � 2

3
ln Di� �n�2 Di� �n�1

� �
Jk � 1

2
lk Di� �k� Di� �k�1

� � �k 6� 1; k 6� n�

�16�

Other integral values are obtained from numerical in-
tegration. Suitable Gaussian type integration formulas are
used in the presence of 1=

��
t
p

type singularity (Abramowith
and Stegun 1972).

Once �Di�1 and �Di�n�1 are known at the crack tips, the
stress intensity factors can be calculated from the follow-
ing relations:

KI � �2p�3=2
��
l
p

D1� �ccos a� D2� �csin a
� �

;

KII � �2p�3=2
��
l
p

D1� �csin aÿ D2� �ccos a
� �

:
�17�

Here l is the length of the line segment which includes
crack tip. So l can be l1 or ln. And a is the angle determined
as follows. Let tc be crack tip point and ta be the other end
point in the corresponding line segment. So tc can be t1 or
tn�1 and ta can be t2 or tn. a is the argument of tc ÿ ta, so
tc ÿ ta � l exp�ia�. And the subscript c denotes the values
at crack tip.

3
Finite element alternating method
A general and detailed description of the ®nite element
alternating method can be found in Atluri (1986, 1997).
The basic steps in the FEAM for curved cracks are the
same as the usual FEAM for straight cracks. The basic
steps are described here brie¯y.

(1) Using the ®nite element method, to model only the
uncracked sheet, obtain the stresses at the locations of
the cracks in a ®nite sheet subjected to given boundary
tractions and/or pin loading on fastener hole periph-
eries. Here cracks are not included in the FEM model,
but the fastener holes are included in the FEM model,
when we consider cracks near fastener holes.

(2) To create the traction free crack surfaces, erase the
stresses on the crack surfaces, that are computed in

Step (1), using the analytical solution for a curved
crack given in section 2 in this paper. Determine the
SIF at each of the crack tips. Note that the resultant
forces, instead of tractions, are used in the formulation
for analytical solutions. Here, numerical integration is
carried out along the crack to obtain resultant forces
from the tractions obtained at Gaussian integration
points.

(3) Corresponding to the solutions in Step (2), determine
the residual tractions at the surfaces of all the fastener
holes as well as the outer boundaries of the ®nite body.
For the case of multiple curved cracks, obtain the re-
sidual traction on each crack surface, caused by the
presence of the other cracks.

(4) In order to satisfy the given traction boundary condi-
tions at the outer boundaries of the ®nite sheet as well
as at the surfaces of all the fastener holes, reverse the
residual tractions at these surfaces. Using the ®nite
element method, calculate the equivalent nordal forces
at the ®nite element nodes on these surfaces.

(5) Using the ®nite element method to obtain the stresses
at the location of the cracks corresponding to the nodal
forces as calculated in Step (4).

(6) Add the residual stresses on the crack surfaces ob-
tained from Step (3) from the other cracks, and from
Step (5). Erase the residual stresses on crack surfaces
by repeating Step (2).

(7) Continue the iteration until the increments in SIF re-
sulting from Step (6) are vanishingly small.

(8) By summing all the appropriate contributions, com-
pute the total SIF for each of the tips of each the curved
cracks.

4
Arbitrarily curved crack growth near loaded
fastener holes
With the proposed method, arbitrarily curved crack
growth near loaded fastener holes under fatigue loading is
analyzed. For calculating fatigue crack growth increment,
Forman's equation is used. Forman's equation is given by
(Forman et al. 1967):

da

dN
� C�DK�n
�1ÿ R�Kc ÿ DK

: �18�

Here DK is the stress intensity factor range and R is the
stress ratio in cyclic loading. In this paper, the material is
assumed to be 2024-T3 aluminium alloy. In this case the
values of Kc � 83 000 psi

����
in
p �91:2 MPa

����
m
p �,

C � 3� 10ÿ13 and n � 3 are used. Here, the unit of crack
length is inches and that of SIF is psi

����
in
p

. When the units
are meter and MPa

����
m
p

, C � 6:3� 10ÿ9 and n � 3. And
the stress ratio is assumed to be 0.1 in fatigue calculation.

Crack growth direction is determined by using the
maximum principal stress criterion (Erdogan and Sih
1963). Crack extension angle hm is determined from the
following equation:

KI sin hm � KII 3 cos hm ÿ 1� � � 0 : �19�
In calculating DK in Eq. (18), we use the equivalent stress
intensity factor which is de®ned by:
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KI� �eq� KI cos3 hm

2
ÿ 3KII cos2 hm

2
sin

hm

2
: �20�

5
Sample problems and discussions
First in order to check the accuracy of the present nu-
merical solution for a curved through-thickness crack in
an in®nite plane stress sheet, the stress intensity factors of
a parabolic crack are obtained and compared with Chen's
results (Chen 1993). The crack shape is represented by:

y � a a2 ÿ x2
ÿ �

=a jxj < a

and shown in Fig. 1. The results are given in Fig. 2. Each
normalized stress intensity factor is obtained from the
following relations:

KIB � FIB�a�r1x
������
pa
p

; KIIB � FIIB�a�r1x
������
pa
p

;

KIB � GIB�a�r1y
������
pa
p

; KIIB � GIIB�a�r1y
������
pa
p

;

KIB � HIB�a�r1xy

������
pa
p

; KIIB � HIIB�a�r1xy

������
pa
p

:

�21�

From Fig. 2, we can notice that the present results agree
well with those of Chen (1993).

Next straight line cracks emanating from a fastener hole
are considered and the calculated mode I SIF values are
compared with those of Cartwright and Parker (1982). A
circular hole of radius R is assumed to be located at the
center of a rectangular plate of width 2W , height 2H. Two
radial cracks of equal length �aÿ R� are assumed to
emanate along the x axis from the hole. The sheet is as-
sumed to be subject to uniform normal stress r0 on the
upper horizontal edge, and sinusoidally distributed pin
loading is assumed to exist on the lower half of the fastener
hole periphery. We assume H=W � 2 and W=R � 4. The
mode I SIF values KI of this problem can be obtained from
the superposition of two symmetric problems (Park et al.
1992). Let KIB be the SIF when uniform normal stress r0 is
applied on the upper and lower horizontal edge, and KIC

be the SIF when sinusoidally distributed pin loading is
applied on the upper and lower harves of the fastener hole
periphery. Then KI � �KIB � KIC�=2. The present results
agree very well with those of Cartwright and Parker (1972).

Next, we examine the fatigue crack growth behavior of
cracks emanating from fastener holes. The initial crack
con®guration is as shown in Fig. 4. The hole radius is R,
and crack lengths a1, a2, a3 and a4 are measured from the
hole surface. h1 is the angle between the x axis and the axis
formed by cracks of lengths a1 and a2; likewise h2 is the
angle between the x axis and the axis formed by cracks of
lengths a3 and a4.

Fig. 5 shows the case when uniform stress
r0 � 82:74 MPa �12 ksi� is applied on the upper horizontal
edge, r0=3 on the lower horizontal edge, and sinusoidally
distributed pin loading is applied on the lower half of
the hole periphery. This system of tractions is assumed to
be in self-equilibrium. At the initial crack con®guration,
the mode II SIF is only about 10% of the mode I SIF. So we
can ®nd that the kinking angle is small, and that the cracks

Fig. 1. A parabolic through-thickness crack in a sheet loaded in
plane stress

Fig. 2. Normalized S.I.F. for a parabolic through-thickness crack,
in a sheet under plane stress

Fig. 3. Variation of normalized S.I.F. as a function of crack
length, for a straight line crack along the x axis, emanating from
a loaded fastener hole
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propagate nearly horizontally. Here the total applied
loading cycles 26 700 cycles.

Fig. 6 shows the case when uniform stress r0 is applied
on the upper horizontal edge, and an equilibrating sinu-
soidally distributed pin loading exists on the lower half of
the hole periphery. The crack growth behavior is nearly
the same as in Fig. 5. And the total applied loading cycles
19 800 cycles.

Next we assume slanted initial cracks. Fig. 7 is the case
when both the initial cracks emanating from the fastener
holes are slanted at 45 degrees. Fig. 8 shows the case when

the initial cracks emanating from one of the fastener holes
are slaned at 20 degrees, and the cracks emanating from
the other hole are initially slanted at 0 degree. We can see
the fatigue crack growth behavior, involving arbitrarily
curved crack growth in the ®gure.

6
Conclusion
The ®nite element alternating method is extended further
for multiple curved cracks in an isotropic plate. With the

Fig. 4. Assumed initial con®gurations of cracks emanating
from loaded fastener holes

Fig. 5. Fatigue crack growth of cracks near loaded fastener
holes. The loading is uniform stress r0 on the upper edge of the
sheet, r0=3 on the lower edge of the sheet and sinusoidally
distributed pin loading on the lower halves of the fastener hole
peripheries. The loading system is in self-equilibrium

Fig. 6. Fatigue crack growth of cracks near loaded fastener
holes. The self-equilibrated loading consists of uniform stress r0

on the upper edge of the sheet and sinusoidally distributed pin
loadings on the lower halves of the fastener hole peripheries

Fig. 7. Fatigue crack growth of hole cracks near fastener holes.
The loading consists of uniform stress r0 on the upper and lower
edges of the sheet
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proposed method several example problems are solved in
order to check the accuracy and ef®ciency of the method.
Fatigue crack growth behavior is analyzed for curved
cracks emanating from loaded fastener holes in sheets,
representative of aircraft lap joints. It is found that the
proposed method can be used effectively in analyzing
general curved cracks and their growth in fatigue.
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