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Abstract This study presents an effective and robust time
integration procedure for general anisotropic, thermal
rheologically simple viscoelasticity, that is suitable for
implementation in a broad spectrum of general purpose
nonlinear ®nite element programs. It features a judicious
choice of state variables which record the extent of in-
elastic ¯ow (creep), a stable backward Euler integration
step, and a consistent tangent operator. Numerical exam-
ples involving homogeneous stress states such as uniaxial
tension and simple shear, and non-uniform stress states
such as a beam under tip load, were carried out by in-
corporating the present scheme into a general purpose
FEM package. Excellent agreement with analytical results
is observed.

1
Introduction
Finite element simulations of viscoelastic behavior have
been widely reported in the literature. The vast majority of
them, however, deal with the isotropic case where there are
only two distinct sets of relaxation behavior ± one asso-
ciated with the shear modulus and the other with bulk
modulus. Examples of this line of work include Taylor et al.
(1970), Henriksen (1984), Simo (1987), Lai and Bakker
(1996), Kaliske and Rothert (1997), to name just a few.
Additional literature review may be found in Yi (1991) and
Zocher et al. (1997).

Certain materials of engineering interest exhibit aniso-
tropic viscoelastic behavior. An example is thermosetting
matrix composites during curing. Depending on the ar-
rangement of ®bers, the level of anisotropy is at least or-
thotropic, with 9 distinct modulus components, each with

its individual relaxation behavior. Up to 36 components
can be expected in the truely anisotropic case.

Yi and Hilton (1995), Yi et al. (1996), and Yi et al. (1997)
have carried out ®nite element simulations with aniso-
tropic viscoelasticity, mostly dealing with curing induced
residual stress calculations of thermoset composites. Their
®nite element algorithm is detailed in Yi and Hilton (1994)
and Yi (1991). In brief, the approach starts from the
constitutive relation, applies the viscoelastic version of the
variational principle, invokes ®nite element discretization,
and arrives at a system of integral equations in the nodal
unknowns. By employing techniques such as the Laplace
transform, it is possible to march forward in time by
keeping the solutions from the previous two time steps,
thus obtaining the transient time history without too much
memory burden.

Zocher et al. (1997) presented a novel ®nite element
scheme for linear anisotropic viscoelasticity. Rather than
dealing with integral equations, the authors introduced a
smart integration point constitutive update algorithm
whereby the stress increment is separated into a part
which is linear in the strain increment, and a nonlinear
contribution which can be computed from stored results
in the previous increment. Consequently, the overall in-
cremental virtual work equation is linear in the displace-
ment increment, bypassing the need for Newton iterations
and the consistent tangent operator. However, the as-
sumption of a single reduced time for all directions may be
physically unrealistic for certain materials, such as ®ber-
reinforced composites.

This paper presents an alternate integration point
constitutive update algorithm very similar in spirit to
Zocher et al. (1997) mentioned above. Following Yi and
Hilton (1995), the reduced time is directional dependent.
An intelligent choice of state variables leads to evolution
laws in the form of linear ®rst order ODE's, the time in-
tegration of which can be achieved by a variety of common
methods, e.g. backward Euler. Most importantly, the
method is fully compatible with standard nonlinear ®nite
element analysis, where the incremental virtual work
equation is nonlinear in the displacement increment, re-
quiring techniques such as Newton-Rhapson iterations
and consistent tangent operators.

2
Anisotropic viscoelastic model
It should be stated at the outset that the summation con-
vention for repeated indices is inhibited in this work. All
summations are explicitly indicated by summation signs.
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2.1
Basic constitutive relations
Starting from the following hereditary integral relationship
between stress and strain in a general anisotropic setting:

rij�t� �
Z t
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Cijkl�nijkl ÿ n0ijkl�
d

dt0
��kl ÿ �?kl�dt0 :

�1�
For anisotropy, the reduced time, which characterizes
thermal rheologically simple behavior, can be different for
different directions. Hence it can be written as

nijkl �
Z t

0

dt0

Aijkl�h�t0�; a�t0�� : �2�

n0ijkl has a similar de®nition, with integration up to t0. Here,
the shift factor A is made dependent not only on tem-
perature h, but also on some other scalar variable a rele-
vant to the application. For composites, moisture and
degree of cure are two possible candidates for a.

The non-mechanical, stress-free strain is expressed as

�
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ckl�s�ds �3�
where bkl are the thermal expansion coef®cients. So the
®rst term is thermal strain and ckl are the a analogs.

In the interest of algebraic simplicity, the Prony series
which characterizes modulus relaxation behavior takes the
following form (considering only one exponential term):

Cijkl�nijkl� � C1ijkl � ~Cijkl exp ÿ nijkl

sijkl

� �
�4�

where C1ijkl are the equilibrium moduli, ~Cijkl the magnitudes
of transient decay, and sijkl the relaxation times.

Multiple exponential terms can be handled with ease, as
explained in a later subsection. To focus on the main ideas
one exponential term is used in the foregoing development.

Substituting the Prony series (4) into (1) results in
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Next the de®nition

C0
ijkl � C1ijkl � ~Cijkl �6�

can readily be interpreted as the instantaneous (glassy)
moduli. Eq. (5) can be re-written as
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where rc
ij is a ®ctitious ``creep'' stress, being de®ned as the

difference between the purely elastic stress based on in-
stantaneous moduli and the actual stress. The following
notation has been adopted for convenience:

��kl � �kl ÿ �?kl : �8�

2.2
Choice of state variables
The proper choice of state variables is an important aspect
in the design of the present viscoelastic time integration
procedure. Ideally, those variables should follow clearly
de®ned evolution laws and their values easily updated
from one time increment to the next, preferably without
knowledge of their entire time history. With this in mind,
the following state variables were chosen:

Dijkl �
Z t

0

~Cijkl 1ÿ exp ÿ nijkl ÿ n0ijkl

sijkl

 !" #
_��kl dt0 �9�

where _/ � d/=dt0, i.e. an over dot denotes differentiation
w.r.t. the dummy time variable.

Note that Dijkl exhibits minor symmetry: Dijkl � Djikl �
Dijlk, so that there are at most 36 distinct scalars to keep
track of in the general anisotropic case. Also, the ``creep''
stress is merely the kÿ l summation of these state vari-
ables:

rc
ij �

X
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X
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Dijkl : �10�

2.3
A differentiation formula
In preparation for deriving the evolution law of Dijkl, a
formula for differentiating functions of the form

y�s� �
Z s

0

f �s; s0�ds0 �11�

with respect to s, was developed.
Denoting by Ds an in®nitesimal change in s, the fol-

lowing is observed:
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where of =ox denotes the partial derivative of f w.r.t. its
®rst argument. Following the de®nition of the deriva-
tive,

dy

ds
� lim

Ds!0

y�s� Ds� ÿ y�s�
Ds

� f �s; s� �
Z s

0

of

ox
�s; s0�ds0 : �13�

2.4
Time evolution law for Dijkl

The evolution law of Dijkl can be derived as follows:

Dijkl �
Z t

0
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_��kl dt0 : �9�

Notice that nijkl is a function of t via Eq. (2). Similarly n0ijkl
is a function of t0. _��kl � d=dt0 ��kl is a function of t0.
Therefore, the integrand is of the form f �t; t0� and the
differentiation formula just developed can be applied. In
this particular case,

f �t; t� � 0 ; �14�
of
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where the last factor comes from the differentiation of (2)
and Aijkl is to be evaluated at time t. Finally, the time
evolution law takes the form:
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2.5
Summary
The present constitutive law is summarized as follows:
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where
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with its time evolution

d
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Dijkl � 1

sijklAijkl

~Cijkl��kl ÿ Dijkl

� �
: �16�

The achievement of such a differential (rate) form for the
evolution of state variables is the high point in our algo-
rithmic development. It offers the user great ¯exibility in
choosing a suitable time integration method, such as

backward-Euler or trapezoidal rule, based on ease of
coding and accuracy considerations. Perhaps more
importantly, it obviates the need for non-physical as-
sumptions such as linear time variation of strain
throughout the increment. Such assumptions are adopted
in many viscoelastic constitutive updating schemes such as
the one in Zocher et al. (1997).

2.6
Generalization to multiple exponential terms
It suf®ces to illustrate the case for two exponential terms,
where the relaxation modulus takes the form:

Cijkl�nijkl� �C1ijkl � ~Cijkl exp ÿ nijkl
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The hereditary constitutive relation is then:
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The de®nition of the glassy moduli is revised as:

C0
ijkl � C1ijkl � ~Cijkl � C

?

ijkl

resulting in the following rearranged equation:
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where Dijkl;Eijkl are the chosen state variables, de®ned
as:
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Clearly, the evolution laws for Dijkl and Eijkl are completely
analogous to that described in Sect. 2.4.
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To summarize, addition of more exponential terms in
the Prony series translates into more storage requirements
and the added bookkeeping costs needed to update the
extra state variables, but introduces no conceptual dif®-
culty.

3
Computational aspects
In a typical `implicit' ®nite element program which em-
ploys nonlinear material models, the discretized principle
of virtual work, which enforces equilibrium and boundary
conditions in a weak sense, generates an estimated incre-
mental displacement ®eld which is used to calculate inte-
gration point values of the stress and other ®eld variables
at the end of a time increment. If these stresses do not
satisfy the principle of virtual work, then the estimate of
the incremental displacement ®eld is revised and new in-
crement end stresses are calculated; iteration continues
until the principle of virtual work is satis®ed to within
acceptable tolerances.

Within this context, the FEM program's `constitutive
update subroutine', being called once for each integration
point for each global iteration, must perform the following
functions.

Input:

1. the (converged values of) stress, strain, state variables,
etc. at time n

2. the (estimated) strain and perhaps other ®eld variables1

at time n� 1

Output:

1. the stress and state variables at time n� 1
2. the consistent tangent operator to be used in a Newton

type iterative method

4
Implicit time integration
Focusing on the computational task at hand and adding
superscripts to indicate the time step, the present consti-
tutive law can be re-written as:
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Analyzing the right hand side terms, the following are
noted:

1. �n�1
kl is a given, as mentioned in item 2 of input.

2: �
?n�1

kl �
Z hn�1

h0

bkl�s�ds�
Z an�1

a0

ckl�s�ds : �19�

As per item 2 of input, hn�1 and an�1 are given and �
?n�1

kl
is readily computed.

3. The only non-trivial task lies in computing Dn�1
ijkl . As

mentioned in Sect. 2.5, the user is free to choose an
appropriate method for integrating Eq. (16). The
backward Euler scheme is implemented here for ease of

coding. Alternate strategies such as the generalized
trapezoidal rule (``alpha'' = 0.5), can be adopted with-
out dif®culty.

Replacing the derivative by ®nite difference in (16), and
using the backward Euler scheme which is known for its
stability, the following can be obtained:
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Rearranging yields
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Again, An�1
ijkl is known since hn�1 and an�1 are also pro-

vided as per item 2 of input. Therefore Dn�1
ijkl is computable.

5
Consistent tangent operator (CTO)
The Consistent tangent operator concept was introduced
by Simo and Taylor (1985) in the context of rate-inde-
pendent plasticity. During the incremental solution pro-
cess for nonlinear problems, nonlinear virtual work
equations are solved by Newton's method. In updating the
global ``Jacobian'' matrix, estimates are needed, at the in-
tegration point level, of the rate of change of stress w.r.t.
strain. Previously, the quantity o _r=o_� was used, resulting
in sub-optimal convergence rates. It turns out that using
the quantity orn�1=oD� produces better results because
this expression depends not only on the constitutive law
but also on the time integration algorithm in the consti-
tutive update. The use of this quantity, namely the con-
sistent tangent operator, preserves the quadratic
convergence rate of Newton's method, accelerates the
search for displacement ®elds that better satisfy the prin-
ciple of virtual work.

The present simple constitutive update algorithm (18),
(21) leads to a straightforward derivation of the CTO:
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The temperature dependence of the reduced time expres-
sion in Eq. (2) signals that heat transfer may also be an
integral part of the FEM analysis. In such case, the Con-
sistent tangent operator w.r.t. temperature is also needed.
The following derivation is provided for completeness.1 e.g. temperature, if heat transfer is involved
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6
Numerical examples
To illustrate how the current algorithm can be imple-
mented in a general purpose FEM code, a `user material'
subroutine UMAT, which serves precisely the function of
the constitutive update discussed in Sect. 3, was developed.
The FEM code ABAQUS was chosen and linked with this
subroutine.

Examples 1 and 2 primarily serve to validate the an-
isotropic capability of the user subroutine, using very
simple loading conditions of uniaxial tension and simple
shear. Example 3 tests the time integration procedure in a
more general setting with stress gradients, namely a can-
tilever beam subjected to a tip load.

For Examples 1 and 2, the hypothetical viscoelastic
material was chosen to be orthotropic, with principal di-
rections along the 1,2,3 axes. The precise material prop-
erties are shown in Table 1. Material characterizations for
Example 3 will be described later.

Note that mij is the Poisson's ratio that characterizes the
transverse strain in the j-direction, when the material is
stressed in the i-direction. In general, mij is not equal to mji:
they are related by mij=Ei � mji=Ej.

These values completely determine the glassy relaxation
moduli C0

ijkl and the equilibrium relaxation moduli C1ijkl.

The transient decay ~Cijkl is given by

~Cijkl � C0
ijkl ÿ C1ijkl :

The time period of simulation was chosen as 0 � t � 1.
Also, the relaxation times were set to

s2222 � 0:09;

s3333 � 0:08;

s1313 � s1331 � s3113 � s3131 � 0:09;

s2323 � s2332 � s3223 � s3232 � 0:08; and

sijkl � 0:1 for the rest :

In the interest of obtaining manageable analytical solu-
tions, reduced time shifting as indicated in Eq. (2) and
non-mechanical strain as shown in Eq. (3) were not con-
sidered. The anisotropic model tested takes the simpler
form:
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dt0
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Cijkl�t� � C1ijkl � ~Cijkl exp ÿ t

sijkl

� �
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Example 1. Uniaxial tension
Here, the material sample is subjected to an applied stress
r�t� in the 1-direction, and free of stress in other direc-
tions. The non-zero strain components are �11; �22; �33:
Denoting by Bijkl the creep compliance analog of Cijkl, the
analytical solution becomes

�11�t� �
Z t

0

B1111�t ÿ s� dr
ds
�s�ds;

�22�t� �
Z t

0

B2211�t ÿ s� dr
ds
�s�ds;

�33�t� �
Z t

0

B3311�t ÿ s� dr
ds
�s�ds :

�24�

The linear stress history is prescribed as:

r�t� � t

1000
; 0 � t � 1 :

The ultimate stress is of the order 10ÿ3 of Young's mod-
ulus, conforming to the small strain theory.

Calculating the creep compliance Bijkl�t� from the pre-
scribed relaxation moduli Cijkl�t� represents the key
computational effort. This involves taking and inverting
Laplace transforms. More precisely, let matrix �C�t�� rep-
resent the condensed form of Cijkl�t�, and similarly for
�B�t��. Then, the elementwise Laplace transform of �B�t��,
denoted by � �B�s�� will equal to

� �B�s�� � 1
s2 � �C�s��ÿ1 :

The software package Mathematica is used to perform
such a conversion, as well as the ®nal integration of
Eq. (24) to obtain the analytical solution.

Table 1. Glassy and equilibrium moduli

moduli glassy value equilibrium value

E1 2.8 0.23
E2 2.7 0.22
E3 2.6 0.21
m21 0.3 0.3
m31 0.3 0.3
m32 0.3 0.3
G12 1 0.08
G13 0.9 0.075
G23 0.8 0.07
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The present time integration scheme was validated by
performing a ®nite element analysis of a 3D problem with
50 equal increments.

Example 2. Simple shear
Here, the material sample is subjected to an applied shear
strain

�12�t� � t

1000
:

The analytical solution becomes

r12�t� �
Z t

0

C1212�t ÿ s� d�12

ds
� C1221�t ÿ s� d�21

ds
ds

� 2

Z t

0

C1212�t ÿ s� d�12

ds
ds :

The situation is even simpler in this case since the
creep compliance Bijkl�t� is not needed. Again, a 3-D
FEM analysis incorporating the present time integra-

Fig. 1. Uniaxial tension: strain 11

Fig. 2. Uniaxial tension: strain 22

Fig. 3. Uniaxial tension: strain 33

Fig. 4. Simple shear: stress 12

Fig. 5. Beam with tip load: tip displacement
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tion procedure was performed with 50 equal incre-
ments.

Example 3. Beam with tip load
This example serves to verify the present viscoelastic time
integration method in a more complex setting with spa-
tially varying stress states. A cantilever beam is subjected
to a transient concentrated tip load

P � P0�H�t� ÿ H�t ÿ t1��
where P0 � 1 N; t1 � 10 s, and H is the Heavyside func-
tion. The beam has a length, L, of 18 m and a square cross
section of area A � 1 m2.

According to classical Euler-Bernoulli beam theory,
the tip displacement wL in the linearly elastic case is
given by:

wL � P0L3

3EI

where I is the area moment of inertia of the cross section
(in this case 1

12 m4). The hypothetical viscoelastic material
has the following relaxation behavior for the Young's
modulus:

E�t� � E1 � E1 exp�ÿt=q� : �25�
The values of E1;E1 and q are taken to be 0.1 MPa,
0.4 MPa and 1 second respectively.

Applying the standard viscoelastic correspondence
principle yields the tip displacement time history:

wL � P0L3

3I
�D�t� ÿ D�t ÿ t1�H�t ÿ t1��

where the creep compliance D�t� is given by:

D�t� � D0 � D1�1ÿ exp�ÿt=k��
with

E0 � E1 � E1; D0 � 1

E0
; D1 � 1

E1
ÿ 1

E0
; k � E0q

E1
:

It should be noted that the beam theory solution ap-
proaches the 3-D elasticity solution for slender beams such
as the present one whose aspect ratio is 18.

By virtue of the 1-D nature of classical beam theory,
only the Young's modulus in the axial direction enters into
the picture. Transverse Young's moduli and Poisson ratios
do not matter as far as beam theory is concerned. For
simplicity the hypothetical material is chosen to be iso-
tropic with Young's modulus described in (25), and a
constant Poisson's ratio of 0.3.

The 3-D ®nite element analysis employed a uniform
mesh of 20� 2� 2 elements, with a constant time step of
0.2 second.

7
Conclusion
This study demonstrates the supreme accuracy and ef-
fectiveness of a novel time integration procedure for an-
isotropic, small strain, thermal rheologically simple
viscoelasticity. The scheme performs constitutive updates
at the integration point level. Its unconventional choice of
state variables allows for stress updating without reference
to information from previous increments. While the stable
backward Euler strategy accommodates bigger time steps,
the Consistent tangent operator minimizes the number of
global iterations. Its elegant structure renders it generali-
zable to multiple Prony exponential terms. Most impor-
tantly, its non-interference with the global ®nite element
framework means it can be readily incorporated into
general purpose nonlinear structural analysis codes. Vali-
dation of the present scheme has been performed in var-
ious settings involving both homogeneous and non-
uniform stress states.
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