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Abstract The Galerkin ®nite element method (GFEM)
owes its popularity to the local nature of nodal basis
functions, i.e., the nodal basis function, when viewed
globally, is non-zero only over a patch of elements con-
necting the node in question to its immediately neigh-
boring nodes. The boundary element method (BEM), on
the other hand, reduces the dimensionality of the problem
by one, through involving the trial functions and their
derivatives, only in the integrals over the global boundary
of the domain; whereas, the GFEM involves the integration
of the ``energy'' corresponding to the trial function over a
patch of elements immediately surrounding the node. The
GFEM leads to banded, sparse and symmetric matrices; the
BEM based on the global boundary integral equation
(GBIE) leads to full and unsymmetrical matrices. Because
of the seemingly insurmountable dif®culties associated
with the automatic generation of element-meshes in
GFEM, especially for 3-D problems, there has been a
considerable interest in element free Galerkin methods
(EFGM) in recent literature. However, the EFGMs still
involve domain integrals over shadow elements and lead
to dif®culties in enforcing essential boundary conditions
and in treating nonlinear problems.

The object of the present paper is to present a new
method that combines the advantageous features of all the
three methods: GFEM, BEM and EFGM. It is a meshless
method. It involves only boundary integration, however,
over a local boundary centered at the node in question; it
poses no dif®culties in satisfying essential boundary con-
ditions; it leads to banded and sparse system matrices; it
uses the moving least squares (MLS) approximations. The
method is based on a Local Boundary Integral Equation
(LBIE) approach, which is quite general and easily appli-
cable to nonlinear problems, and non-homogeneous do-
mains.

The concept of a ``companion solution'' is introduced so
that the LBIE for the value of trial solution at the source
point, inside the domain X of the given problem, involves
only the trial function in the integral over the local
boundary oXs of a sub-domain Xs centered at the node in
question. This is in contrast to the traditional GBIE which
involves the trial function as well as its gradient over the
global boundary C of X. For source points that lie on C,
the integrals over oXs involve, on the other hand, both the
trial function and its gradient. It is shown that the satis-
faction of the essential as well as natural boundary con-
ditions is quite simple and algorithmically very ef®cient in
the present LBIE approach.

In the example problems dealing with Laplace and
Poisson's equations, high rates of convergence for the
Sobolev norms jj � jj0 and jj � jj1 have been found.

In essence, the present EF-LBIE (Element Free-Local
Boundary Integral Equation) approach is found to be a
simple, ef®cient, and attractive alternative to the EFG
methods that have been extensively popularized in recent
literature.

1
Introduction
The meshless discretization approach for continuum me-
chanics problems has attracted much attention during the
past decade. The initial idea dates back to the smooth
particle hydrodynamics (SPH) method for modeling as-
trophysical phenomena (Lucy 1977). By focusing only on
the points, instead of the meshed elements as in the con-
ventional ®nite element method, the meshless approach
possesses certain advantages in handling problems with
discontinuities, and in numerical discretization of 3-D
problems for which automatic mesh generation is still an
art in its infancy.

Based upon the general weak formulations, the Galerkin
®nite element method (GFEM), and the global boundary
integral equation (GBIE) which leads to the boundary el-
ement method (BEM), can be established (Zhang and
Atluri 1986). The Galerkin ®nite element method, due to
its profound roots in generalized variational principles
and its ease of use, has found extensive engineering ac-
ceptance as well as a commercial market. The typical
feature of the ®nite element method is the sub-domain
discretization, and the use of local interpolation functions.
Compared to its convenience and ¯exibility in use, the
®nite element method has been plagued for a long time by
such inherent problems as locking, poor derivative solu-
tions, etc. In contrast, although only a boundary discreti-
zation is necessary for linear boundary value problems, the
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boundary element method is restricted to the cases where
the in®nite space fundamental solution for the differential
operator of the problem must be available. Besides, in the
BEM based on the GBIE, the evaluation of the unknown
function and/or its gradients at any single point within the
domain of the problem involves the calculation of integrals
over the entire global boundary, which is tedious and in-
ef®cient. In solving the nonlinear problems, both FEM and
BEM inevitably have to deal with the nonlinear terms in
the domain of the problem, for which the accuracy of the
gradient calculation would play a dominant role in terms
of convergence. Both methods may become inef®cient in
solving the problems with discontinuities such as crack
propagation (along yet to be determined paths) analysis or
the formation of shock waves in ¯uid dynamic problems.

An alternative option for such problems is the meshless
discretization or a ®nite point discretization approach.
The current developments of meshless methods in litera-
ture, such as the diffuse element method (Nayroles et al.
1992), the element free Galerkin method (Belytschko et al.
1994, 1995; Krysl et al. 1995; Organ et al. 1996), the re-
producing kernel particle method (Liu et al. 1996), and the
free mesh method (Yagawa and Yamada 1996), are gen-
erally based upon variational formulations. Only very
limited improvements have been achieved by the EFG
method, when compared to the FEM, in solving discon-
tinuous problems, as both of them are based on the
Galerkin formulation, and domain integrals are necessary
in constructing the numerical models for the problem.
Besides, the integration schemes in the neighborhood of
the discontinuity, and the enforcement of essential boun-
dary conditions, are very cumbersome in the EFG method.
Due to the non-interpolative MLS approximation and the
non-polynomial shape functions for the MLS approxima-
tion, the essential boundary conditions in the EFG method,
based on the MLS approximation, can not be easily and
directly enforced.

It may be seen in the following discussion that the
presently proposed method possesses the advantages of
®nite element and boundary element approaches as well as
of the meshless ®nite point discretization. An ef®cient and
¯exible meshless formulation based on the local boundary
integral equation (LBIE) is proposed in the current re-
search. The local boundary integral equation is used to
represent the values of the unknown function at the point
of interest, and may involve the values at those points
located inside the domain of in¯uence of the point in
question. In this formulation, the requirements for the
continuity of the trial function used in an approximation
may be greatly relaxed, and no derivatives of the shape
functions are needed in constructing the system stiffness
matrix, at least for the internal nodes. The essential
boundary conditions can be directly and easily enforced
even when a non-interpolative approximation of the MLS
type is used. The differences between the present method
and the conventional boundary integral method, lie in the
discretization scheme used and in the technique in con-
structing the system equations. The present method is also
more ¯exible and easier in dealing with nonlinear prob-
lems than the conventional boundary integral equation
method. Although mainly 2-D problems described by a

harmonic operator are considered in the present paper for
illustrative purposes only, the method can be easily ap-
plied to elasticity as well as other multi-dimensional linear
and nonlinear boundary value problems.

In the present paper, by ``the support of a source point
(node) yi'' we mean a sub-domain (usually taken as a
circle of radius ri) in which the weight function wi in the
MLS approximation, associated with node yi, is non-zero;
by ``the domain of de®nition'' of an MLS approximation
for the trial function at any point x we mean a sub-domain
which covers all the nodes whose weight functions do not
vanish at x; and by ``the domain of in¯uence of node yi''
we denote a sub-domain in which all the nodes have non-
zero couplings with the nodal values at yi, in the system
stiffness matrix. The domain of in¯uence of a node is
somewhat like a patch of elements in the FEM, which share
the node in question. In our implementation, the domain
of in¯uence of a node is the union of the domains of
de®nition of the MLS approximation for the trial function
at all points on the local boundary of the source point
(node). We do not intend to mean these to be versatile
de®nitions, but rather, explanations of our terminology.

The following discussion begins with the description of
the local boundary integral equation (LBIE) formulation in
Sect. 2. A brief discussion of the approximation or inter-
polation method is given in Sect. 3. In Sect. 4, the dis-
cretization and numerical implementation for this method
are presented. A simple comparison between the present
method and conventional ®nite element method is made in
Sect. 5 and numerical examples for 2-D potential problems
are given in Sect. 6. The paper ends with conclusions and
discussions in Sect. 7.

2
Local boundary integral equation
Although the present approach is fully general in solving
nonlinear boundary value problems, only the linear Pois-
son's equation is used in the following, to demonstrate the
formulation. The Poisson's equation may be written as

r2u�x� � p�x� x 2 X �1�
where p is a given source function, and the domain X is
enclosed by C � Cu [ Cq, with boundary conditions

u � u on Cu ; �2a�
ou

on
� q � q on Cq �2b�

where u and q are the prescribed potential and normal
¯ux, respectively, on the essential boundary Cu and on the
¯ux boundary Cq, and n is the outward normal direction
to the boundary C.

A weak formulation of the problem may be written as,Z
X

u��r2uÿ p� dX � 0 �3�

where u� is the test function and u is the trial function. If
one uses the test function which satis®es the equation:

r2u��x; y� � d�x; y� � 0 �4�
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where d�x; y� is the Dirac delta function, after integration
by parts twice, the following integral equation can be ob-
tained

u�y� �
Z

C
u��x; y� ou�x�

on
dC

ÿ
Z

C
u�x� ou��x; y�

on
dCÿ

Z
X

u�p dX
�5�

where n is the unit outward normal to the boundary C, x is
the generic point and y is the source point. It is well known
from the potential theory that such an integral represen-
tation should hold over the entire domain X and on its
boundary. Even though y may be a source point within X,
we label Eq. (5) as the Global Boundary Integral Equation
(GBIE). By taking the point y to the boundary and using
the boundary conditions and proper numerical discreti-
zation, the formulation leads to the conventional boundary
integral equation (and hence, the boundary element)
method.

It should be noted that such an integral equation can be
considered as an equation to calculate the value of the
unknown variable u at the source point y.

If, instead of the entire domain X of the given problem,
we consider a sub-domain Xs, which is located entirely
inside X and contains the point y, clearly the following
equation should also hold over the sub-domain Xs:

u�y� �
Z

oXs

u��x; y� ou�x�
on

dC

ÿ
Z

oXs

u�x� ou��x; y�
on

dCÿ
Z

Xs

u�p dX
�6�

where oXs is the boundary of the sub-domain Xs. In other
words, the equation for the value of the unknown function
at the source point can be obtained by carrying out the
integrals over any closed boundary surrounding the point,
and over the sub-domain enclosed within the closed
boundary.

In the original boundary value problem, either the po-
tential u or the ¯ux ou=on may be speci®ed at every point
on the global boundary C, which makes the integral
equation (5) a well posed problem. But none of them is
known a priori along the local boundary oXs. Especially,
the gradient of the unknown function u along the local
boundary appears in the integral. In order to get rid of the
gradient term in the integral over oXs, the concept of a
``companion solution'' is now introduced into the formu-
lation. The companion solution is associated with the
fundamental solution and is de®ned as the solution of the
following Dirichlet problem over the sub-domain Xs,

r2u0 � 0 on Xs;

u0 � u��x; y� on oXs : �7�
For oXs located inside X note the fact that the fundamental
solution u� is regular everywhere except at the source point y,
and hence the solution to the boundary value problem (7)
should exist and be regular everywhere in Xs.

Using u�� � u� ÿ u0 as the test function in the integrals
in Eq. (3), and integrating by parts twice yields

Z
Xs

ÿu�x�r2u��x; y�dX �
Z

oXs

u���x; y� ou�x�
on

dC

ÿ
Z

oXs

u�x� ou���x; y�
on

dC

ÿ
Z

Xs

u���x; y� p�x� dX : �8�

Noting that ÿr2u�� � ÿr2u� � r2u0 � d�x; y� in Xs, and
u�� � 0 along oXs, and by the de®nition of the companion
solution, Eq. (8) becomes

u�y� � ÿ
Z

oXs

u�x� ou���x; y�
on

dCÿ
Z

Xs

u���x; y� p�x� dX

�9�
for the source point located inside X. Thus, only the un-
known variable u itself appears in the local boundary in-
tegral form. We label Eq. (9) as the Local Boundary
Integral Equation (LBIE).

It should be noted that Eq. (9) holds irrespective of the
size and shape of oXs. This is an important observation
which forms the basis for the following development. Also,
it is clear that an integral relation similar to that in (9) can
be developed for fully nonlinear problems, with the non-
linear terms appearing in the integral over Xs. We now
deliberately choose a simple regular shape for oXs and
thus for Xs. The most regular shape of a sub-domain
should be an n-dimensional sphere centered at y for a

The domain of definition of the MSL approximation
for the trial function at point x

support of node

node

Sub - domain s

s

nodeinternalanforboundaryLocal s

x

y

y

yx

x
x

x

Fig. 1. Local boundaries, the supports of nodes, the domain of
de®nition of the MLS approximation for the trial function at a
point, and the domain of in¯uence of a source point (node): (1)
The domain of de®nition of the MSL approximation, Xx, for the
trial function at any point x is the domain over which the MLS is
de®ned, i.e., Xx covers all the nodes whose weight functions do
not vanish at x. (2) The domain of in¯uence for source point y is
the union of all Xx; 8x on oXs (taken to be a circle of radius r0 in
this paper). (3) The support of source point yi is a sub-domain
(taken to be a circle of radius ri for convenience) in which the
weight function wi corresponding to this node is non-zero. Note
that the ``support'' of yi is distinct and different from the
``domain'' of in¯uence of yi
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boundary value problem de®ned on an n-dimensional
space (or any other shape can be used for the convenience
of solving the speci®c problem). Over this regular shape,
the companion solution u0 can be easily and analytically
solved for most differential operators for which the fun-
damental solutions are available. For the current 2-D po-
tential problem, the sub-domain Xs is a circle of radius r0.
For the 2-D harmonic operator, the fundamental solution
u� for a 2-D potential operator is given by

u� � ÿ 1

2p
ln r �10�

and hence the companion solution to Eq. (7) over the
circle is a constant and given by

u0 � ÿ 1

2p
ln r0 : �11�

Therefore, the modi®ed test function becomes

u�� � u� ÿ u0 � 1

2p
ln

r0

r
�12�

where r � jxÿ yj, and r0 is the radius of the local sub-
domain, Xs.

When the source point is located at the global boundary
C of the original boundary value problem, the sub-domain
can still be taken as a part of a circular domain centered at
the nodal point, so as to de®ne the companion solution,
and the integral boundary should go through the part of
the circle located inside the domain X and the piece of
boundary line Cs on which the nodal point in question falls
(see Fig. 1). It should be noted that along the piece of
boundary line Cs, the modi®ed fundamental solution
u� ÿ u0, or the integral kernel corresponding to the gra-
dient terms, is not zero anymore. The integral governing a
nodal point that lies on the global boundary C may be-
come

a�y�u�y� � ÿ
Z

oXs

u�x� ou���x; y�
on

dC

�
Z

Cs

ou�x�
on

u���x; y� dC

ÿ
Z

Xs

u���x; y�p�x� dX �13�

where a�y� can be de®ned by Eq. (30a), such that the ¯ux/
traction boundary conditions can be taken into account.

With Eq. (9) and/or Eq. (13) for any source point y, the
problem becomes one as if we are dealing with a localized
boundary value problem over an n-dimensional sphere Xs.
The radius of the sphere should not affect the solution
except that the companion solution in the integral kernel
would vary with the radius. Also, it should be noted that
the companion solution is a function of source point y.
The remaining problem is how to represent the values of
the unknown function on the local boundary oXs such that
it can be calculated at the source point, i.e., some appro-
priate approximation or interpolation scheme has to be
invoked. This is the main topic discussed in the next
section.

3
Approximation or interpolation schemes for values
in Xs and on ­Xs

A variety of local interpolation schemes that interpolate
the data at randomly scattered points in two or more in-
dependent variables are available. These methods have
gained more interest in the ®eld of computer aided geo-
metrical design. They range from some very basic for-
mulations to some extremely complicated ones with
considerable computational costs.

For computational mechanics problems, different
interpolative approaches are feasible. In the ®nite element
method, the interpolation is over the element domain lo-
cally or, when viewed globally, the interpolation function
is nonzero only over a patch of elements that share the
node in question, which may affect the rate of convergence
due to the fact that the test and trial functions are chosen
from the same functional space. In the traditional boun-
dary element method based on the GBIE, the interpolation
function has to involve the values at the global boundary C
of the problem domain in order to calculate the unknowns
at a single point although the interpolation over boundary
is piecewise, and is local.

As seen from (13), in the present Local Boundary In-
tegral Equation (LBIE) method, the solution at the source
point y is determined from an integral of the data over a
local boundary oXs for u�x� and ou�x�=on. These boun-
dary data will be interpolated using the nodal values u at a
®nite number of points that are arbitrary located within a
local domain. Hence the present approach is a ``meshless
discretization approach''.

In order to make the current formulation fully general,
it needs a relatively direct local interpolation or approx-
imation scheme with reasonably high accuracy, and with
ease of extension to n-dimensional problems. The moving
least squares approximation is used in the current work
for the Poisson's equation. A different choice may be a
local non-moving least squares approximation. A brief
summary of the MLS and the local least squares approxi-
mation schemes is given in the following.

Consider a sub-domain Xx, the neighborhood of a point
x, which is located in the problem domain X. To ap-
proximate the distribution of function u in Xx, over a
number of randomly located nodes fxig, i � 1; 2; . . . ; n,
the Moving Least Squares approximant uh�x� of u;
8x 2 Xx, can be de®ned by

uh�x� � pT�x� a�x� 8x 2 Xx; x � x1; x2; x3
� �T

�14�
where pT�x� � �p1�x�; p2�x�; . . . ; pm�x�� is a complete mo-
nomial basis of order m; and a�x� is a vector containing
coef®cients aj�x�; j � 1; 2; . . . ;m which are functions of
the space coordinates x � x1; x2; x3� �T . For example, for a
2-D problem,

pT�x� � �1; x1; x2�; linear basis; m � 3 ; �15a�
pT�x� � �1; x1; x2; �x1�2; x1x2; �x2�2�;

quadratic basis; m � 6 : �15b�
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The coef®cient vector a�x� is determined by minimizing a
weighted discrete L2 norm, de®ned as:

J�x� �
Xn

i�1

wi�x� �pT�xi�a�x� ÿ ûi�2

� �P � a�x� ÿ û�T �W � �P � a�x� ÿ û� �16�
where wi�x� is the weight function associated with node i,
with wi�x� > 0 for all x in the support of wi�x�, xi denotes
the value of x at node i, n is the number of nodes in Xx for
which the weight functions wi�x� > 0, and the matrices P
and W are de®ned as

P �
pT�x1�
pT�x2�
� � �

pT�xn�

2664
3775

n�m

; �17�

W �
w1�x� � � � 0
� � � � � � � � �
0 � � � wn�x�

24 35 ; �18�

and

ûT � �û1; û2; . . . ; ûn� : �19�
Here it should be noted that ûi; i � 1; 2; . . . ; n in Eqs. (16)
and (19) are the ®ctitious nodal values, and not the nodal
values of the unknown trial function uh�x� in general (see
Fig. 2 for a simple one dimensional case for the distinction
between ui and ûi).

The stationarity of J in Eq. (16) with respect to a�x�
leads to the following linear relation between a�x� and û.

A�x�a�x� � B�x� û �20�
where matrices A�x� and B�x� are de®ned by

A�x� � PTWP � B�x�P �
Xn

i�1

wi�x�p�xi�pT�xi� ;

�21�
B�x� � PTW

� �w1�x� p�x1�; w2�x� p�x2�; . . . ;wn�x� p�xn�� :
�22�

The MLS approximation is well de®ned only when the
matrix A in Eq. (20) is non-singular. It can be seen that
this is the case if and only if the rank of P equals m.
A necessary condition for a well-de®ned MLS approxi-

mation is that at least m weight functions are non-zero (i.e.
n � m) for each sample point x 2 X and that the nodes in
Xx will not be arranged in a special pattern such as on a
straight line. Here a sample point may be a nodal point
under consideration or a quadrature point.

Solving for a�x� from Eq. (20) and substituting it into
Eq. (14) gives a relation which may be written as the form
of an interpolation function similar to that used in the
FEM, as

uh�x� � UT�x� � û �
Xn

i�1

/i�x�ûi;

uh�xi� � ui 6� ûi; x 2 Xx

�23�

where

UT�x� � pT�x�Aÿ1�x�B�x� �24�
or

/i�x� �
Xm

j�1

pj�x��Aÿ1�x�B�x��ji : �25�

/i�x� is usually called the shape function of the MLS ap-
proximation, corresponding to nodal point yi. From
Eqs. (22) and (25), it may be seen that /i�x� � 0 when
wi�x� � 0. In practical applications, wi�x� is generally
chosen such that it is non-zero over the support of nodal
point yi. The support of the nodal point yi is usually taken
to be a circle of radius ri, centered at yi. The fact that
/i�x� � 0, for x not in the support of nodal point yi pre-
serves the local character of the Moving Least Squares
approximation.

The fact that the MLS approximation uh does not in-
terpolate the nodal data, i.e. uh�xi� � ui 6� ûi and
/i�xj� 6� dij causes a major problem in element free
Galerkin formulation (Belytschko et al. 1994), but will not
pose any dif®culty for the present approach as will be seen
in Sect. 4.

The smoothness of the shape functions /i�x� is deter-
mined by that of the basis functions and of the weight
functions. Let Ck�X� be the space of k-th continuously
differentiable functions. If wi�x� 2 Ck�X� and
pj�x� 2 Cl�X�, i � 1; 2; . . . ; n; j � 1; 2; . . . ;m, then
/i�x� 2 Cr�X� with r �min �k; l�.

The partial derivatives of /i�x� are obtained as (Bel-
ytschko et al. 1994)

/i;k �
Xm

j�1

�pj;k�Aÿ1B�ji � pj�Aÿ1B;k � Aÿ1
;k B�ji� �26�

in which Aÿ1
;k � �Aÿ1�;k represents the derivative of the

inverse of A with respect to xk, which is given by

Aÿ1
;k � ÿAÿ1A;kAÿ1 �27�

where, ���;i denotes o���=oxi.
A local least squares approximation is easier and more

direct. This approximation will not yield a globally con-
tinuous surface and generally can not be used in varia-
tional based formulation or Galerkin formulation. In the
current research, the following basis functions are used

pT�x� � �1; r; r cos h; r sin h; r cos 2h; r sin 2h� �28�

( )x

x

Boundary node

1x 2x x

ˆ

Fig. 2. The distinction between ui and ûi
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where r and h are the local polar coordinates of a node.
The shape functions and their derivatives may also be
evaluated by Eqs. (25) and (26) with weight functions
being 1 and matrices A and B constant. The shape func-
tions from this approximation scheme look like tents,
linearly varied along direction r, which are very similar to
those of ®nite element methods with linear shape func-
tions. The evaluation of the integrals in Eqs. (9) or (13)
becomes easier when this approximation method is used.

Although the order of smoothness of the approxi-
mation or shape functions built by the MLS approxima-
tion is higher, it should be noted that it is in general not
necessary to be so, for using the local boundary integral
approach, for which even a Cÿ1 trial function can give a
pretty satisfactory result as has already been shown in
some literature on boundary element techniques (see e.g.
Zhang and Atluri 1986).

4
Discretization and numerical implementation
It has been pointed out that the normal gradient of u will
not appear in the local boundary integrals after the com-
panion solution is introduced into the integral kernel as
far as the source point y remains within the global
boundary C of the original problem; but this is not true for
the source points located at the boundary of the original
problem. In the latter case, a part of boundary integral
involves Cs, a section of the global boundary C of the
original problem domain (see Fig. 1), along which the
normal ¯ux of u would also be an independent unknown
variable when it is not speci®ed. In the numerical imple-
mentation, one may either retain the unknown ¯ux ou=on
as an independent variable in the ®nal linear equations, or
to directly differentiate Eq. (23) to represent the unknown
¯ux. When the unknown ¯ux is retained, a simple inter-
polation/approximation can be used. Thus both u and its
normal gradient at the global boundary may appear in the
®nal linear equations as independent unknown variables.
The potential u and its gradients at any internal point may
be calculated by using Eq. (9). If the direct differentiation
of Eq. (23) is used and the ¯ux will not appear as an
independent variable, a rather accurate interpolation/ap-
proximation with good approximation for derivatives may
be required, and the potential and its derivatives can be
calculated by Eq. (23) without bothering to integrate
Eq. (9) over the local boundary. In the currently presented
numerical implementation, the unknown ¯ux at problem
boundary is not kept as an independent variable, and the
®nal linear equations contain only the unknown ®ctitious
nodal values û.

Equations (9) and (13) are used to derive the system
equations and the right hand side vector. As mentioned
before, the radius of the local boundary should not affect
the result of numerical solution, and hence the size of each
local boundary (here it is taken as a circle) can be chosen
to be small enough such that the local boundary of any
internal node will not intersect with the boundary C of the
problem domain. Only the local boundary integral asso-
ciated with a boundary node contains Cs, which is a part of
the boundary C of the original problem domain, and
Cs � oXs \ C (see Fig. 1).

Substituting Eq. (23) into Eq. (9) for interior nodes, and
Eq. (13) for boundary nodes, imposing boundary condi-
tions on the right hand side for node i, and carrying out
the integrals, the following linear equations may be
obtained

aiui � f 0i �
XN

j

K 0ijûj; i � 1; 2; . . . ;N �29�

where N is the total number of nodes in the entire domain
X, ai; i � 1; 2; . . . ;N are the constant coef®cients depend-
ing upon the shape of the global boundary, which are

ai �
1 for internal nodes,
1=2 for nodes on a smooth boundary,
h=�2p� for nodes on boundary corners,

8<:
�30a�

with h being the internal angle of the boundary corner,
and

f 0i �
Z

Csq

u��q dCÿ
Z

Csu

u
ou��

on
dCÿ

Z
Xs

u��p dX ;

�30b�

K 0ij �
Z

Csu

u��
o/j�x�

on
dCÿ

Z
Csq

/j�x�
ou��

on
dC

ÿ
Z

Ls

/j�x�
ou��

on
dC �30c�

in which Csq and Csu are the ¯ux and essential boundary
sections of Cs with Cs � Csq [ Csu, u is the prescribed
value at Csu, q is the prescribed ¯ux at Csq, and Ls is a part
of the local boundary oXs which is not located on the
global boundary C. For those interior nodes located inside
the domain X, Ls � oXs, and the boundary integrals in-
volving Csu and Csq vanish in Eqs. (30b) and (30c).

Here, it should be noted that since the value of un-
known variable u at the source point y (or more precisely,
the nodal value of uh�x� itself) appears on the left hand
side of Eq. (29) it is very convenient to impose the es-
sential boundary conditions. On the other hand, this has
caused a serious problem for Galerkin-based meshless
formulations (Belytschko et al. 1994) due to the fact that
only ®ctitious nodal values instead of nodal values of the
unknown variable appear in the approximations such as
the MLS approximation. Upon imposing the essential
boundary condition for ui in the left hand side of Eq. (29)
for those nodes where u is speci®ed; or using Eq. (23) to
represent u for those nodes with u unknown, we have the
following linear system

Kû � f �31�
with the ®ctitious nodal values û as unknowns, where the
entries for K and f are given by

Kij �
ÿK 0ij for nodes with ui known,

ÿK 0ij � ai/j�xi� for nodes with ui unknown ,

�
�32�
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and

fi � f 0i � aiui for nodes with ui known,
f 0i for nodes with ui unknown . (33)

�
In implementing the MLS approximation for the local
boundary integral equation (LBIE) method, the basis
functions and weight functions should be chosen at ®rst.
Both Gaussian and spline weight functions with compact
supports can be considered. The Gaussian weight function
corresponding to node i may be written (Belytschko et al.
1994) as

wi�x�

�
exp�ÿ�di=ci�2k� ÿ exp�ÿ�ri=ci�2k�

1ÿ exp�ÿ�ri=ci�2k� 0 � di � ri,

0 di � ri

8><>:
�34�

where di � jjxÿ xijj; ci is a constant controlling the shape
of the weight function wi and therefore the relative
weights; and ri is the size of the support for the weight
function wi and determines the support of node xi. In the
present computation, k � 1 was chosen.

A spline weight function is de®ned as

wi�x� � 1ÿ 6
di

ri

� �2

�8
di

ri

� �3

ÿ3
di

ri

� �4

0 � di � ri,

0 di � ri .

8<:
�35�

The size of support, ri, of the weight function wi associated
with node i should be chosen such that ri should be large
enough to have suf®cient number of nodes covered in the
domain of de®nition of the MLS approximation for the
trial function at every sample point (n � m) to ensure the
regularity of A. A very small ri may result a relatively large
numerical error in using Gauss numerical quadrature to
calculate the entries in the system matrix. On the other
hand, ri should also be small enough to maintain the local
character for the MLS approximation.

The implementation of the present method can be
carried out according to the following routine,

1. Choose a ®nite number of points in the domain X and
on the boundary C of the given physical domain; de-
cide the basis functions and weight functions such that
the MLS approximation is well de®ned.

2. Determine the local sub-domain Xs and its corre-
sponding local boundary oXs for each node (see Fig. 1).

3. Loop over all nodes located inside the domain and at
the boundary
� Determine Gaussian quadrature points xQ in Xs and

on oXs.
� Loop over quadrature points xQ in the sub-domain

Xs and on the local boundary oXs

(a) determine the nodes xi located in the domain of
de®nition of the MLS approximation for the trial
function at point xQ, i.e., those nodes with
wi�xQ� > 0;

(b) for those nodes in the domain of de®nition of the
MLS approximation of trial function at point xQ;
calculate /i�xQ� and the derivatives /i;j�xQ� for
the nodes with Csu non-empty;

(c) evaluate numerical integrals in Eqs. (30b), (30c);
(d) deal with the left hand side of Eq. (29);
(e) assemble contributions to the equations for

nodes in K; f ;
(f) end if
� End quadrature point loop

4. End node loop.
5. Solve the linear system equation for the ®ctitious nodal

values û.
6. Calculate the value of the unknown variable and its

derivatives by using Eq. (23) at those sample points
under consideration.

Also, from Eq. (30c), it is seen that no derivatives of the
shape functions are needed in constructing the stiffness
matrix for the internal nodes and for those boundary
nodes with no essential-boundary-condition-prescribed
sections on their local boundaries. This is attractive in
engineering applications as the calculation of derivatives
of shape functions from the MLS approximation is quite
costly.

The locations of the non-zero entries in every line of the
system matrix depend upon the nodes located inside the
domain of in¯uence of the source nodal point. If the shape
and size of the domain of in¯uence for all of the nodal
points are taken to be the same as each other, it may be
easy to see that the resulting system matrix becomes
banded with non-zero entries being symmetrically and
sparsely located with unsymmetric values. That is, if node i
is located inside the domain of in¯uence of node j, the
node j would also located inside the domain of in¯uence of
node i. This may provide some convenience in con-
structing the system matrix. A non-symmetric matrix K
may need more computer memory and computation cost,
but the ¯exibility, ease of implementation and accuracy
embodied in the present formulation will still make it at-
tractive. The density of the nodal point distribution may
vary, depending upon the local variation of the unknown
variable. Thus, even with the same size of the domain of
in¯uence for all the nodes, the number of nodal points
covered by the domain of in¯uence associated with dif-
ferent nodes may be different, such that the resolution of
the numerical solution can be improved by adding more
nodes at some place where the unknown variable may have
a dramatic variation. There are no mesh lines connected to
the nodal points in the discretized model, so that it is easy
to implement intelligent, adaptive algorithms in engi-
neering applications.

5
Comparison between the present method
and the finite element method
Although the present method uses the local boundary in-
tegral formulation to construct the system equations, the
method is more like the ®nite element method in the sense
that the present method does not need to keep the un-
known ¯ux as an independent variable for the present
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Poisson's equation. A simple comparison of the present
method with the Galerkin ®nite element method, for a
simple seven node domain, would be of interest to delin-
eate the differences between them.

Consider ®rst a regular domain with the node 1, located
at the origin and the six other equally spaced nodes on the
unit circle (see Fig. 3, Mesh a). Connecting the six nodes
with the node at origin, forms an FEM model with six
constant strain triangular elements. The radius of the local
boundary for node 1 is r0 < 1. It is found that the coef®-
cients in the system stiffness matrices corresponding to
node 1 computed by the present approach with both the
MLS and the local least square approximations are:

�1;ÿ1=6;ÿ1=6;ÿ1=6;ÿ1=6;ÿ1=6;ÿ1=6� �36�
which are identical to the coef®cients in the global system
matrix corresponding to node 1, generated by the Galerkin
FEM (GFEM) with ``constant strain triangular elements''.

Next if we place the six nodes on the unit circle un-
evenly along the circle (see Fig. 3, Mesh b), then the line in
the stiffness matrix for GFEM becomes

�1;ÿ0:1133;ÿ0:1133;ÿ0:1934;

ÿ 0:1934;ÿ0:1934;ÿ0:1934� �37a�
and those using the MLS and local least squares approxi-
mations in the present LBIE approach become, respectively

�1;ÿ0:0940;ÿ0:0940;ÿ0:2325;

ÿ 0:1735;ÿ0:1735;ÿ0:2325� ; �37b�
�1;ÿ0:0732;ÿ0:0732;ÿ0:2500;

ÿ 0:1768;ÿ0:1768;ÿ0:2500� : �37c�
It may be seen that those are still relatively comparable to
each other.

Finally, if the six nodes are placed randomly (see Fig. 3,
Mesh c), it is found that those coef®cients become

�1;ÿ0:1733;ÿ0:1188;ÿ0:2574;

ÿ 0:2310;ÿ0:1271;ÿ0:0924� �38a�
for the ®nite element method, and,

�1;ÿ0:1638;ÿ0:1256;ÿ0:2424;

ÿ 0:2613;ÿ0:8067;ÿ0:1209� ; �38b�
�1;ÿ0:1914;ÿ0:1101;ÿ0:2541;

ÿ 0:2446;ÿ0:1143;ÿ0:0855� �38c�
for the present LBIE method with the MLS and local least
squares approximations, respectively, for r0 � 0:1. We see
that, though they are different, they are still comparable to
each other.

These simple examples show that the results of nu-
merical discretization based upon the present LBIE
method are similar to those of the Galerkin ®nite element
method, even though the present LBIE method uses only
the local boundary integral formulation instead of the el-
ement domain integration for strain energy as in GFEM.
Although, for these simple examples, the local least
squares approximation works well, it may not be easily
extended to higher dimensional problems and may result
unstable solutions for extremely irregular meshes. There-
fore in the sequel, the MLS approximation is used in all
our numerical examples.

6
Numerical examples
In this section, some numerical results are presented to
illustrate the implementation and convergence of the
present LBIE approach. For the purpose of error estima-
tion and convergence studies, the Sobolev norms k � kk are
calculated. In the following numerical examples, the
Sobolev norms for k � 0 and k � 1 are considered for the
present potential problem. These norms are de®ned as:

kuk0 �
Z

X
u2 dX

� �1
2

�39a�

and

kuk1 �
Z

X
u2 � � ruj j�2 dX

� �1
2

: �39b�

The relative errors are de®ned as

rk � ku
num ÿ uexactkk

kuexactkk

; k � 0; 1 : �40�
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1

1

0

Fig. 3. Comparison with FEM: meshes
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6.1
Patch test
Consider the standard patch test in a domain of dimension
2� 2 as shown in Fig. 4, and a Dirichlet problem with
p � 0 in Eq. (1) (or the Laplace equation). we consider a
problem with the exact solution

u � x1 � x2 �41�
where the potential boundary condition Eq. (2a) is pre-
scribed on all boundaries according to Eq. (41). Satisfac-
tion of the patch test requires that the value of u at any
interior node be given by the same linear function (41);
and that the derivatives of the computed solution be
constant in the patch.

Since the exact solution is linear, a linear basis for the
MLS approximation is able to represent this solution. Note
that the shape functions and their derivatives from the
MLS approximation are no longer piecewise polynomials,
and the numerical integration scheme will not yield ac-
curate values for the matrices in the linear system (31). In
this example, 9 Gauss points are used on each local
boundary Ls (a circle for internal nodes and a part of a
circle for boundary nodes in this case), and 6 points are
used on each boundary section Cs for numerical quadra-
tures.

The nodal arrangements of all patches are shown in Fig.
4. Both Gaussian and spline weight functions are tested. In
all cases, ri � 4 and ri=ci � 4 are used in the computation.
In Fig. 4, the coordinates of node 5 for mesh c1, c2, c3, c4,
c5 and c6 are (1.1, 1.1), (0.1, 0.1), (0.1, 1.8), (1.9, 1.8), (0.9,
0.9) and (0.3, 0.4) respectively.

The computational results show that the present
meshless method based on local boundary integral equa-
tion (LBIE) passes all the patch tests in Fig. 4 for both
Gaussian and spline weight functions with the given
source function p � 0.

6.2
Laplace equation
The second example solved here is the Laplace equation in
the 2� 2 domain shown in Fig. 4, with the exact solution,
a cubic polynomial, as

u � ÿ�x1�3 ÿ �x2�3 � 3�x1�2x2 � 3x1�x2�2 : �42�
A Dirichlet problem is solved, for which the essential
boundary condition is imposed on all sides, and a mixed
problem, for which the essential boundary condition is
imposed on the top and bottom sides and the ¯ux boun-
dary condition is prescribed on the left and right sides of
the domain. The MLS approximation with both linear and
quadratic bases as well as Gaussian and spline weight
functions are employed in the computation. The size of
support for both weight functions are taken to be 2, and
the parameter ci for Gauss weight function is ri=4.

Regular meshes of 9(3� 3), 36(6� 6) and 64(8� 8)
nodes are used to study the convergence of the method.
The local boundary integrals on oXs are evaluated by using
20 Gauss points on each local boundary. The size (radius)
of the local boundary for each node is taken as 0.005 in the
computation.

The convergence with mesh re®nement of the present
method is studied for this problem. The results of relative
errors and convergence for norms k � k0 and k � k1 are
shown in Fig. 5 for the Dirichlet problem and in Fig. 6 for
the mixed problem, respectively.

It can be seen that the present meshless method based
upon the LBIE method has high rates of convergence for
norms jj � jj0 and k � k1 and gives reasonably accurate re-
sults for the unknown variable and its derivatives.

6.3
Poisson's equation
The results from the present meshless LBIE formulation
are also studied for the Poisson's equation with a given
source function p � x1 � x2 in the same 2� 2 domain, for
which the exact solution is taken to be

u � ÿ5
6 �x1�3 � �x2�3� �� 3�x1�2x2 � 3x1�x2�2 �43�

The boundary conditions, the size of local boundary, the
parameters ci and ri in the MLS approximation as well as
the nodal arrangement are the same as those used in the
last example. Also, the MLS approximations with both
linear and quadratic bases as well as Gaussian and spline
weight functions are tested in the computation.

The convergence with mesh re®nement of the present
method is studied for this problem. The results of relative
errors and convergence for the jj � jj0 and jj � jj1 norms are
shown in Fig. 7 for the Dirichlet problem and in Fig. 8 for
the mixed problem, respectively. These ®gures show that
the present meshless method works quite well for the
Poisson's equation.

Fig. 4. Nodes for the patch test
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From these two examples, it can be seen that the qua-
dratic basis yields somewhat of a better result than the
linear basis while both bases possess high accuracy. Also,
the Gauss weight function works better than the spline
weight function. We should keep in mind that the appro-
priate parameters ci in Eq. (34) need to be determined for
all nodes for the Gauss weight function. The values of these
parameters will effect the numerical results considerably.
With inappropriate ci used in the Gaussian weight function,
the results may become very unsatisfactory. The optimal
choice of these parameters is still an open research topic.

6.4
Potential flow
Consider the problem of a potential ¯ow around a cylinder
of radius a in an in®nite domain, shown in Fig. 9. u rep-
resents the stream function.

Due to symmetry, here only a part, 0 � x1 � 4 and
0 � x2 � 2, of the upper left quadrant of the ®eld is
modeled as shown in Fig. 9. The exact solution for this
problem is given by

u � x2 1ÿ x1

�x2�2 � �x1 ÿ L�2
" #

: �44�

Figure 9 shows the prescribed u and ou=on values along all
boundaries. The essential boundary condition on the left
and top edges is imposed according to the exact solution
(44).

The initial mesh of 24 nodes is considered as shown in
Fig. 10a. Subsequently, the number of nodes is increased
to 47 in Fig. 10b and 74 in Fig. 10c to study the conver-
gence of the present meshless method.

Both linear and quadratic bases as well as Gaussian and
spline weight functions are considered. We use ci � li and
ri � 4ci in the calculation, where li is de®ned as
(Belytschko et al. 1994)

li � max
j2Sj

jjxj ÿ xijj �45�

where Sj is the minimum set of neighboring nodes of xi

which construct a polygon surrounding xi.
The convergence for the Sobolev norms jj � jj0 and jj � jj1

is shown in Fig. 11. The mesh size h in this problem is
de®ned as the average mesh sizes on the bottom edge.
From Fig. 11, we notice that the quadratic basis is sur-
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Fig. 6a,b. Relative errors and convergence rates for the mixed
problem of Laplace equation: a for norm jj � jj0, b for norm jj � jj1
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prisingly not as good as the linear basis in this problem for
both Gaussian and spline weight functions.

The stream lines from the exact solution and from the
numerical solution of the present meshless formulation
with a linear basis and Gaussian weight functions for the
cases of 47 and 74 nodes are also shown in Fig. 12. It can
be seen that the stream lines are well approximated by the
present method with 74 nodes as compared to the closed
form solution.

7
Conclusions and discussions
The basic concept and implementation of a local boundary
integral equation formulation for solving the boundary
value problems have been presented in the present work.
The numerical implementation of the approach may lead
to an ef®cient meshless discrete model. The concept of a
companion solution is introduced, such that the gradient
or derivative terms would not appear in the integrals over
the local boundary after the modi®ed integral kernel is
used, for all nodes whose local boundary oXs fall within
the global boundary oX of the given problem. The non-
dependence of the solution on the size of the integral local

boundary provides a great ¯exibility in dealing with the
numerical model of the boundary value problems. Con-
vergence studies in the numerical examples show that the
present method possesses an excellent rate of convergence
for both the unknown variable and its derivatives. Only a
simple numerical manipulation is needed for calculating
the derivatives of the unknown function, as the original
approximated trial solution is smooth enough to yield
reasonably accurate results for derivatives. The numerical
results show that using both linear and quadratic bases as
well as spline and Gaussian weight functions in the ap-
proximation function can give quite accurate numerical
results.

Compared with the other meshless techniques discussed
in literature based on Galerkin formulation (for instance,
Belytschko et al. 1994; Mukherjee and Mukherjee 1997),
the present approach is found to have the following ad-
vantages.

� The essential boundary condition can be very easily
and directly enforced.

� No special integration scheme is needed to evaluate the
volume and boundary integrals. The integrals in the
present method are evaluated only over a regular sub-
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domain and along a regular boundary surrounding the
source point. The local boundary in general is the
surface of a ``unit sphere'' centered at the node in
question. This ¯exibility in choosing the size and the
shape of the local boundary will lead to more conve-
nience in dealing with the nonlinear problems.

� Due to the fact that an exact solution (the in®nite space
fundamental solution) is used as a test function to
enforce the weak formulation, a better accuracy may be
achieved in numerical calculation.

� No derivatives of shape functions are needed in con-
structing the system stiffness matrix for the internal
nodes, as well as for those boundary nodes with no
essential-boundary-condition-prescribed sections on
their local integral boundaries.

While the conventional boundary element method is based
on the ``global'' boundary integral equations, the present
LBIE formulation is advantageous because:

� The volume integration needs to be carried out only
over a small regular sub-domain Xs of the problem in
dealing with the boundary value problems for which
the volume integral has to be present. The same is true
for nonlinear problems.

� In the present LBIE method, the unknown variable and
its derivatives at any point can be easily calculated
from the interpolated/approximated trial solution only
over the nodes within the domain of de®nition of the
MSL approximation for the trial function at this point;
while this involves an integration through all of the

boundary points at the global boundary C, in the
boundary element method.

� Non-smooth boundary points (corners) cause no
problems in the present method, while special atten-
tion is needed in the traditional boundary element
method to deal with these corner points.

� It is not necessary in general to keep the unknown ¯ux/
traction on the boundary as an independent variable
for the present method.

� The stiffness matrix is banded in the present method
instead of being fully populated in the traditional BEM.

Besides, the current formulation possesses ¯exibility in
adapting the density of the nodal points at any place of the
problem domain such that the resolution and ®delity of
the solution can be improved easily. This is especially
useful in developing intelligent, adaptive algorithms based
on error indicators, for engineering applications.

The present method possesses a tremendous potential
for solving nonlinear problems and/or problems with
discontinuities. Further results in using the current ap-
proach in some solid mechanics problems will be pre-
sented in a series of forthcoming papers.

Fig. 9. Flow around a cylinder in an in®nite ®eld and the model
with boundary conditions

(a)26 nodes

(b) 47 nodes

(c) 74 nodes

Fig. 10. Flow around a cylinder: nodal arrangement
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