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Abstract Numerical results for two nearby swimming
micromachines, obtained by the boundary element meth-
od (BEM), are reported in this paper. Two neighbouring
con®gurations, side by side and in tandem, are considered
and the translational and rotational velocities together
with the force exerted on the micromachines are given. It
is demonstrated that, for both con®gurations, the ap-
proximate re¯ection method gives comparable results to
the full solutions. In the side by side con®guration, hy-
drodynamic interaction is signi®cant when the separation
distance is less than about 1.5 of the total length of the
machine. A propulsion advantage in the tandem con®gu-
ration is found, where the leading machine acquires a
higher velocity and the results obtained by the re¯ection
method agree well with the full BEM solution.

1
Introduction
The simplest multiparticle system for which the resistance
of the particles can be exactly determined by a theoretical
method is the two-sphere system. Stimson and Jeffery
(1926) solved the axisymmetric problem when two spheres
translate with the same velocity along their line of centres.
The forces acting on the spheres were obtained only for
equal-sized spheres, but later Jeffrey and Onishi (1984)
calculated the resistance and mobility functions for two
unequal rigid spheres in low Reynolds number ¯ows.
Davis (1969) also calculated the forces on the spheres
when one is in motion along the line of centres while the
other is at rest.

In order to compute the complete forces and torques
acting on the spheres in the most general case, we must
also consider the contributions arising from the asym-
metrical parts of the motion of the spheres, i.e., the forces
and torques acting when the spheres either translate or
rotate relatively about the axis perpendicular to their line
of centres. The calculations were carried out by Goldman
et al. (1966) for equal spheres, and for unequal spheres
calculations were carried out by Davis (1969). Thus, when
the ¯uid motions caused either by the translation or ro-
tation of the spheres are concerned, the resistance is de-

termined, and consequently the elements of the grand
resistance matrix can be found. Also, recently, a method in
conjunction with the ``reciprocal theorem method,'' is
described by Phillips (1996) to calculate the motion of N
spherical particles in a second-order ¯uid (to take into
account, at least in the ®rst approximation, the viscoelastic
nature of the ¯uid). That method can be integrated into
the Stokesian Dynamic Simulation dealing with non-
Newtonian suspensions.

In 1951, Taylor analysed the swimming of two micro-
scopic organisms executing planar sinusoidal ¯agellar
waves. He postulated that the propulsive advantage could
result, if the two neighbouring organisms beat their ¯agella
in unison (i.e., with constant relative ¯agellar phase angle
and the same frequency). Although this prediction was
based on a simpli®ed two-dimensional model, it was
consistent with the frequent experimental observation that
the ¯agella of neighbouring spermatozoa have a tendency
to beat in this manner. Later, a model of the swimming of
two organisms was proposed (in which propulsion was
achieved by helical ¯agellar rotation) by Ramia et al.
(1993). In their model, they considered two organisms
swimming close and parallel to each other, and the effects
of two parameters, ¯agellar phase angle and the separation
distance were studied. It was shown that these parameters
have little effects on the swimming speed, the angular
velocity, the propulsive force and torque on each of the
organisms. In other words, the hydrodynamic interaction
would never be as signi®cant as the more fundamental cell
body/¯agellar interaction. This result is quite reasonable,
according to the fact that the resistance coef®cients for
each of two translating or rotating neighbouring spheres
do not increase signi®cantly (see Happel and Brenner
1973), unless they are very close to each other.

In a series of papers (Nasseri and Phan-Thien 1996,
1997a, 1997b), we have been considering the problem of
swimming and optimising a micromachine, consisting of a
head (which contains an electromechanical power source)
and a tail which produces a propulsive force by rotating
with respect to the head. The idea is to produce a simple
pro®le for these machines, that can be manufactured by
current, or near-future technology. After analysing dif-
ferent shapes for the tail for this special micromachine,
rigid straight rod-shape or elastic in the form of stretch-
ing-compressing rod, we realised that a micromachine
with spiral tail would be the optimal design (the spiral tail
can be manufactured by twisting a plate). In this paper we
examine the effect of hydrodynamic interaction between
two micromachines with spiral tails, which are swimming
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in a viscous ¯uid in two con®guration, side by side and in
tandem. We also consider an approximate re¯ection
method which produces comparable results to the full
numerical BEM solutions.

1.1
Hydrodynamic interaction
The subject of hydrodynamic interaction between two or
more particles in low Reynolds number has been thor-
oughly reviewed by Happel and Brenner (1973). A sum-
mary is outlined here for convenience. Generally,
hydrodynamic interaction between the particles is gov-
erned by the following variables:

1. their shapes and sizes;
2. the distance between them;
3. their orientations with respect to each other;
4. their individual orientations relative to the direction of

the gravitational ®eld;
5. their velocities and spin relative to the ¯uid at in®nity.

Since the Reynolds number based on a typical size of the
particles is small, the local ¯uid motion is assumed to
satisfy the quasi-static Stokes equations,

lr2v � rp; r � v � 0 �1:1�
Where v is the ®eld velocity, p the dynamic pressure and
l the viscosity. Because of the linearity of the governing
equations of motions and boundary conditions, two
modes of motion, translation and rotation, may be sepa-
rately investigated, and the results superposed. Initially,
we shall restrict our attention to cases where the particle
translate, without rotation, as they move through liquid (a
simpler of the two possible modes of rigid body motion).

Consider two rigid particles of arbitrary shape trans-
lating through an unbounded ¯uid which is at rest at in-
®nity. If we identify the particles by the label a and b, the
boundary conditions are

v � Ua on a �1:2�
and

v! 0 as r !1 �1:3�
where r is measured from the centre of particle a. In ad-
dition,

v � Ub on b : �1:4�
The exact solution of this problem is given by Stimson and
Jeffery (1926), for the slow motion of two spheres parallel
to their line of centres (an axisymmetric ¯ow). For larger
collections of particles, or for pairs of nonspherical bodies,
a systematic scheme of successive iterations, whereby the
boundary-value problem may be solved to any degree of
approximation by considering boundary conditions asso-
ciated with one particle at a time, is provided by the
method of re¯ection (Brenner and Happel 1958). This
method is applicable for widely separated particles,
whereas the distance between closest points on the sur-
faces is much greater than particle size. Surfaces near
contact present a far more challenging problem, both from
an analytical and computational viewpoint. For rigid sur-
faces in relative motion, the ¯ow in the gap region dom-

inates and lubrication theory provides the leading terms in
an asymptotic expansion (Kim and Karrila 1991).

1.1.1
Method of reflection
Consider a system of n particles. Let Uk �k � a; b; c; . . . ; n�
denote the velocity of the kth particle. The forces, Fk, are
necessary to maintain each particle in its state of uniform
motion, and the restraining torques, Tk, required to keep
the particles from rotating under the in¯uence of the hy-
drodynamic stresses developed at their surfaces.

To solve the boundary-value problem posed by
Eqs. 1.1±1.4, we proceed as follows: Since the equation of
motion and boundary conditions are linear, the local ve-
locity and pressure ®elds may be decomposed into a sum
of ®elds, thus,

v � v�1� � v�2� � v�3� � v�4� � � � � �1:5�
p � p�1� � p�2� � p�3� � p�4� � � � � �1:6�
each pair of solution, v�j�; p�j�

ÿ �
, separately satis®es the

equations of motion and vanishes at in®nity. Again, be-
cause of the linearity in the governing equations, we may
further subdivide each of these into a ®nite sum of terms,ÿ

v
�j�
k ; p

�j�
k

�
, also satisfying the governing differential equa-

tions and vanishing at in®nity. Now, focus attention on
any particle in the system, say a, and de®ne v�1�; p�1�

ÿ �
by

the boundary condition

v�1� � Ua on a : �1:7�
The ``re¯ection'' of this ®eld from particle b is then de®ned
by the boundary condition

v
�2�
b � Ub ÿ v�1� on b : �1:8�

In general, the re¯ection of v�1� from any of the nÿ 1
particles is de®ned by

v
�2�
k � Uk ÿ v�1� on k �k � b; c; . . . ; n� : �1:9�

Thus, the re¯ection of v�1� from all the remaining nÿ 1
particles is given approximately by

v�2� �
Xn

k�b

v
�2�
k : �1:10�

The re¯ection process may be continued (see Happel and
Brenner 1973), as far as necessary to obtain satisfaction of
all boundary conditions to the desired accuracy. Except for
simple arrangements, numerical evaluations will be much
easier than general analytical representation of the result.

For a complete strict treatment, it is necessary to have
available a solution of the creeping motion equations for
the case of a single particle with an arbitrary velocity ®eld
prescribed on its surface. Good approximations, are pos-
sible, however, by assuming that when the particles are
suf®ciently separated:

1. the ®eld produced by a given particle will be the same as
that produced by a point force acting at the centre of the
particle;

2. the drag resulting from the ®eld re¯ected at a given
particle can be approximated by considering the ®eld to
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be equivalent to a uniform velocity ®eld whose magni-
tude and direction are the same as what actually would
exist at the particle centre if it were not present.

Consider two spheres a and b, moving with instantaneous
velocities Ua and Ub in an otherwise unbounded medium
which is at rest at in®nity (as shown in Fig. 1). We choose
one axis of the reference system of coordinates along a line
connecting the centres of the two particles (here z), and as
the particles move in a plane, it is necessary to specify only
one additional coordinate. So we will choose the xz plane.
In addition to equations of motion 1.1, we require the
boundary condition at in®nity Eq. 1.3 and the following
conditions to be satis®ed:

v�1� � Ua on a

v�2� � ÿv�1� � Ub on b

v�3� � ÿv�2� on a

v�4� � ÿv�3� on b; etc. �1:11�
The initial ®eld v�1� obviously will correspond to the set-
ting of particle a in an unbounded ¯uid. Associated with
this motion is the force exerted by the ¯uid on the particles

F�1�a � ÿl ~Ka Ua � ÿl ~Ka�iUax � kUaz� �1:12�
where ~Ka � 6pa. Since particle a is assumed to be located
at a relatively large distance (several diameters at least)
from particle b, we may compute the translational effect of
particle a by assuming that it generates the same ®eld as
would be produced by a point force situated at the centre
of the particle (see Lamb 1932):

v�1� � ÿ F
�1�
a

6plr
ÿ r2

24pl
r F�1�a � r
� � 1

r
�1:13�

and

p � 1

4p
F�1�a � r
� � 1

r
: �1:14�

If we express Eq. 1.13 in Cartesian coordinates appropriate
to Fig. 1, we obtain

v�1� �
~KaUax

8pr
i� r

x

r2

� �
�

~KaUaz

8pr
k� r

z

r2

� �
: �1:15�

Since the centre of particle b has the coordinates x � 0,
y � 0, z � d, the value of v�1� at this point is

v
�1�
b �

~Ka

8pd
�iUax � 2kUaz� : �1:16�

where d is the centre to centre separation distance between
two particles. From this we compute the force exerted on
particle b

F
�2�
�b� � ÿ l ~Kb�Ub ÿ �v�1��b� � ÿil ~Kb Ubx ÿ

~KaUax

8pd

� �
ÿ kl ~Kb Ubz ÿ

~KaUaz

4pd

� �
: �1:17�

Using the same technique as previously, we can calculate
the velocity ®eld generated by the force F

�2�
b acting at the

location of particle b. Therefore, the origin of the coordi-
nate system will now be at the centre of particle b, and v�2�
at particle a will be

v�2�a � i
~Kb

8pd
Ubx ÿ

~KaUax

8pd

� �
ÿ k

~Kb

4pd
Ubz ÿ

~KaUaz

4pd

� �
:

�1:18�
Also, by writing the force contributions F

�3�
a and F

�5�
a , we

will obtain the formula for Fa and after expressing the
geometric series as a function and combining terms, we
®nd

Fa

l ~Ka

� ÿi
Uax ÿ � ~KbUbx=8pd�
1ÿ � ~Ka

~Kb�=�8pd�2 ÿ k
Uaz ÿ � ~KbUbz=4pd�
1ÿ � ~Ka

~Kb�=�4pd�2 :

�1:19�
By interchanging the subscript a and b, the force exerted
on particle b, Fb, is also obtained from Eq. 1.19.

Now consider the case of two equal-sized spheres of
radii a, Eq. 1.19 then becomes

ÿ F

6pla
� i

Ux

1� �3=4��a=d� � k
Uz

1� �3=2��a=d� :

�1:20�
Note that the force exerted by the ¯uid on each particle is
the same and that their motion is parallel and with the
same velocity. They can move sidewise, but will maintain
the same distance between each other. If the two particle
move along x axis (perpendicular to their line of centres),
we derive the important formula

F � ÿ 6pla

1� �3=4��a=d�U �1:21�

and if they move along their line of centres

F � ÿ 6pla

1� �3=2��a=d�U ; �1:22�

The motion of two arbitrary particles In order to apply
this approximation procedure to other than spherical
particles, it is necessary not only to locate centres of the
particles involved, but also to ascribe to each a charac-
teristic ``radius,'' which may be taken the same as that of a
sphere exhibiting the same Stokes resistance as the parti-
cle. For the case of two particles with characteristic di-
mensions ca and cb, we may write Eq. 1.12 in terms of theFig. 1. Coordinate system for two particle interactions
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Stokes translation tensor in the case of an arbitrary par-
ticle which is not spherically isotropic (see Brenner 1964)

�F1�a � ÿ6plca�U1�a � Ua �1:23�
where �F1�a is the force which body a would experience if
it moved through an unbounded ¯uid with a velocity Ua.
The symmetric dimensionless dyadic U1 is termed the
Stokes resistance tensor of the particle (Brenner 1963),
which is independent of such factors as the size, velocity,
and orientation of the particle and of the properties of the
¯uid through which it moves.

In particular for a sphere of radius ca � a, �U1�a � I.
Now, if we let e be a unit vector along the line of centres of
the two particles, the relationship obtained by Brenner,
analogous to Eq. 1.19 is,

Fa

6plca

� ÿ �U1�ÿ1
a ÿ

9

16

ca

d

cb

d
�I� ee� � �U1�b � �I� ee�

� �ÿ1

� Ua ÿ 3

4

cb

d
�I� ee� � �U1�b � Ub

� �
; �1:24�

and also for Fb, a similar equation will be obtained by
interchanging a to b.

In this work, we have considered �U1�a to be as
U1x 0

0 U1z

� �
a

, e as
sin a
cos a

� �
and hence the following

formula is derived, after considerable reduction, for two
particles of arbitrary shape which are moving in xz plane

Fx

Fz

� �
a

� ÿ6plca

�Ux�aÿ3
4

ca
d �/x�b�Ux�b

1
�/x�aÿ

9
16

cacb
d2 �/x�b

�Uz�aÿ3
2

ca
d �/z�b�Uz�b

1
�/z�aÿ

9
4

cacb
d2 �/z�b

264
375 �1:25�

Therefore, for two equal-sized particles the foregoing
formula reduces to

Fx

Fz

� �
� ÿ6plca

Ux/x

�1�3
4

ca
d /x�

Uz/z

�1�3
2

ca
d /z�

24 35 �1:26�

and for two spheres

Fx

Fz

� �
� ÿ6pla

Ux

1�3
4

a
d

Uz

1�3
2

a
d

" #
�1:27�

which is exactly what we obtained before (Eqs. 1.21 and
1.22) by considering /x � /z � 1 and ca � a.

1.1.2
Rotational effect
Considering Eq. 1.15 we can develop the rotation of the
®eld v�1� using

r� v�1� �
~Ka

4pr3
Uax�kyÿ jz� ÿ Uaz�jxÿ iy�� � �1:28�

In general, the ¯uid rotation at the location of particle b is

x
�1�
b � 1

2

ÿr� v�1�
�

b
�1:29�

and since the location of particle b is taken at x � 0, y � 0,
z � d, we have

x
�1�
b � j

~KaUax

8pd2
: �1:30�

Now, if the particle b is not ®xed it will simply rotate at the

velocity x
�1�
b and the only rotational effect experienced by

particle a will be that due to the point force located at
particle b, the curl of which can be obtained in a similar
fashion to Eq. 1.28. Thus the rotation developed at particle
a by the ®eld v�2� will be

x�1�a � j
~Kb

8pd2
Ubx ÿ

~KaUax

8pd

� �
�1:31�

which is opposite in direction to the rotation of particle b,
but the lead terms are the same in magnitude for equal-
sized particles. These terms will increase in the same way
as the additional point force contributions, in a geometric
series, so that ultimately

xa � x�2�a �x�4�a � � � � � j
~Kb

8pd2

Ubx ÿ � ~KaUax=8pd�
1ÿ � ~Ka

~Kb�=�8pd�2
 !

:

�1:32�
The rotation of particle b, xb, may be obtained from the
foregoing by interchanging the subscripts a and b and by
changing the sign of the rotation. The rotations occur
about axes perpendicular to the xz plane. For two equal-
sized particle � ~K � 6pKCa�

x � �j
3KCaUx

4d2

1

1� 3KCa=4d

� �
: �1:33�

and if the particles are the same size and spherical, we have
for a and b

x � �j
3aUx

4d2

1

1� 3a=4d

� �
: �1:34�

Note that Ux � U sin a (a � 90, for particles moving side
by side and a � 0 for particles moving along their line of
centres, see Fig. 1), the velocity component perpendicular
to the line connecting the particles centres is the only one
contributing to the rotation.

2
Swimming side-by-side
Figure 2 shows the position of two micromachines which
are swimming in a highly viscous ¯uid. It is assumed that
the machines are suf®ciently distant from boundary walls
for the surrounding ¯uid to be regarded as unbounded
and the ¯uid at in®nity is at rest. The weight of each
machine can be adjusted so that the machine can be re-
garded as neutrally buoyant (gravity force equal to buoy-
ancy force) and at the same time each one may lie
horizontally. The principal axis of ®rst machine is along z
axis, and its centre locates at the centre of the global co-
ordinate. The second machine swims side-by-side with the
®rst machine, i.e., their principal axes are parallel. The two
machines have equal sizes and swim with the same angular
velocity x, (both in z direction). Each machine has the
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optimised geometric dimensions to obtain the maximum
propulsion velocity (Nasseri and Phan-Thien 1997b).

Note that in our calculations we have considered two
machines, for each the tail and head are each treated as a
separate individual body (i.e., closed surface). This is made
possible by maintaining a small but ®nite separation dis-
tance �ah=10� between the head and the tail (Phan-Thien
et al. 1987). The viscous force F and torque T acting on a
typical surface Sm, are calculated by the integrals

F �
I

Sm

t ds T �
I

Sm

�x� t� ds �2:1�

where t is the traction on the boundary Sm, and x repre-
sents the displacement vector from the head/tail joining
point c, and stability requires that the force and torque on
the body of each machine must vanish.

Using the BEM to solve for the boundary traction and
Eq. 2.1, series of 24 numerical expressions may be carried
out enabling the calculation of the elements comprising
the resistance matrix in the following equation (Happel
and Brenner 1973).

F1

T1

F2

T2

2664
3775 �

K11 LT
11 K12 LT

12

L11 M11 L12 M12

K21 LT
21 K22 LT

22

L21 M21 L22 M22

2664
3775

U1

X1

U2

X2

2664
3775 �2:2�

As the velocities, forces and torques are three-dimensional
vectors, each element in the above matrix will itself be a
3� 3 matrix (and superscript T denotes the usual matrix
transpose operation).

Figure 3 illustrates the dimensionless instantaneous
translational velocity �U=Ltx�, versus the distance be-
tween the centre of the two machines. These values have
been obtained by using BEM for solving the traction
equations on the surface of the two machines (Eq. 2.2). As
explained in previous papers, Lt and x are normalising
factors (taken as unity). As it is obvious from the ®gure;
the closer the machines get, the higher the translational
velocity of both will be.

By using the method of re¯ection to a system of n
spheres and by assuming that all velocities of the particles
are in the same direction, the resulting ®elds involve only
positive contributions (see Kim and Karrila 1991), there-

fore, the resultant interaction will result in increasing ve-
locities of particles (e.g., for many particles, the larger the
swarm of particles, the faster it will move).

Brenner (1964) has shown that in the case of particles
which are not spherically isotropic, their trajectories will
in general not be parallel, hence, the re¯ection technique
may be generalized for two particles moving in arbitrary
directions, provided that the point force approximations is
applicable. Free rotation of such anisotropic particles as
they settle in a ¯uid in the presence of each other will give
rise to velocity components which cannot be represented
simply by point forces and point torques. It is shown that,
a rotating anisotropic particle falling under the in¯uence
of gravity will experience changes in magnitude and di-
rection of its instantaneous velocity U.

By using Eq. 1.33, we realized that, when two particles
are moving in a ¯uid, supposing that the particles translate
in ¯uid without any rotation, the velocity component
perpendicular to the line connecting the particles centres,
in our case velocity along z axis in Fig. 2, is the only one
contributing to rotation. Therefore, as seen in Fig. 4a, each
of the two machines, rotates about x axis and hence gets
closer to the other one. This happens only if the separation
distance is smaller than about half of the total length of the
machine �d K L=2�.

Furthermore, the spiral waves around the machines
forces them to depart from the initial plane (see Fig. 4b).
Therefore each machine experiences three rotations at a
time (noting that rotation about z axis is more dominant).
As the separation distance becomes large �d J 1:5L�, hy-
drodynamic interaction is negligible and the trajectories of
two machines will be straight lines. The components and
the magnitude of the rotational velocity for the machine
are shown in Fig. 5 in terms of the separation distance
between two machines.

Also, the numerical results from calculating the resis-
tance force exerted on each machine if they translate with
the velocities shown in Fig. 3, can be compared with the
results obtained using the method of re¯ection (Eq. 1.26).

Fig. 2. Two micromachines with equal sizes, swimming side by
side in viscous ¯uid, with a separation distance d and equal ro-
tational velocity x

Fig. 3. The magnitude of the instantaneous translational velocities
of two machines in terms of the centre to centre separation
distance
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For two machines moving side by side and parallel to z
axis (Fig. 2) we will have

F � ÿ6pl
UCa/

1� 3=4 �Ca/�=d� � ; �2:3�

where U � Uax � Ubx and Ca/ has been derived in cal-
culation of Stokes' law correction factor (see Appendix)
and is equal to 0:268002 for this case.

Figure 6 illustrates the force exerted on each of these
micromachines, using the method of re¯ection (Eq. 2.3) as
compared to the BEM results. An excellent agreement is
obtained. In other words, as long as two machines can
maintain their separation distance while swimming, the
method of re¯ection provides a good approximation to
the force exerted on the machines from the surrounding
¯uid.

3
Swimming in tandem
Consider now two micromachines which are swimming in
viscous ¯uid along their line of centres. As shown in Fig. 7,
for this con®guration the line of centres is coincident with
the z axis, and similar to the previous con®guration, each
machine is moving along its principal axis. We wish to
analyse hydrodynamic effects on the swimming charac-
teristics of these two micromachines. From Fig. 8, it is
obvious that, the front micromachine swims faster when
the two machines get closer to each other. In fact, the
micromachine at the back, in the wake of the front micro-
machine, experiences a retarding force due to hydrody-
namic interaction, and consequently, has a lower velocity.

After several cycles, they get far from each other, and as
the separation distance increases, hydrodynamic effects
become negligible, hence they move with a constant ve-

Fig. 4. Trajectories of the centre of
the machines after 9 cycles of
the tail rotations

Fig. 5. The components and the magnitude of the instantaneous
angular velocity for each machine in terms of the separation
distance Fig. 6. Comparison between the resistance force, using BEM and

method of re¯ection, exerted on each of two micromachines
swimming side by side in terms of the separation distance. When
no closure occurs, the results are the same
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locity maintaining the distance between their centres, e.g.,
for d � 1:7 Lt, it is needed for the tail of each machine to
rotate about 30 cycles to reach to this ultimate constant
velocity which in fact is the velocity each machine would
have in the absence of the other one.

Furthermore, hydrodynamic interaction results in an
increase in the angular velocity for the leading machine
and a decrease in rotation for machine at the back.

As pointed out by Happel and Brenner (1973) the ve-
locity component perpendicular to the line of centres,
which is zero in this con®guration, i.e., Ux � U sin a � 0,
referring to Eq. 1.33, is the only one contributing to ro-
tation. They also mentioned that if two particles fall along
their line of centres, no rotation will result. The result
obtained here, in this regard, is in agreement with fore-
going statement. Numerical results reveal that, when two
machines are swimming along their line of centres no
rotation occurs and they keep their straight trajectories
along the line of centres.

To estimate the drag force on each machine, again by
using Eq. 1.26, but knowing that in this new con®guration
the machines are swimming along their line of centres, we
have

F � ÿ6pl
UCa/

�1� 3=2 �Ca/�=d� �3:1�

with Ca/ as given previously.
Notice that although each micromachine is considered

as an anisotropic particle, but the value for the Stokes' law
correction factor �Ca/� is the same as before, because in
this con®guration each machine moves along its principal
axis.

Figure 10, shows that when two micromachines swim
along the line of centres, the method of re¯ection provides
an excellent estimate of the drag force exerted on each
machine. As the separation distance increases, the drag
force exerted on each machine is equal to the force which
each machine would experience in the absence of the
other.

4
Conclusions
Numerical results of the swimming of two nearby micro-
machines in a viscous ¯uid are obtained by the boundary
element method for two con®gurations: side by side and in
tandem. In the side by side con®guration, the method of
re¯ection provides a reasonable estimate for the resistance

Fig. 7. Two micromachines with
equal sizes, swimming along one
line in viscous ¯uid, with separa-
tion distance d and equal rota-
tional velocity x

Fig. 8. The magnitude of the propulsive velocity for microma-
chines swimming on line of their centres versus the centre-centre
separation distance. The micromachine which is in the front
swims faster when the two machines are close to each other

Fig. 9. The magnitude of the rotational velocity of each machine
versus the separation distance. The leading machine rotates
faster in close vicinity
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force, as long as the machines maintain the same relative
con®guration. This occurs when the two machines are
separated by a distance equal or greater to half of the
length of each machine. When the separation distance is
smaller than about the machine's length, we have to su-
perpose the rotation effect to Eq. 1.7 (not considered in the
method of re¯ection). In fact, the calculation of relative
velocities when the micromachines are very close to each
other is a problem which, in principle, involves the un-
steady form of the equations of motion, which has not
been considered in this paper.

In the tandem con®guration, swimming along line of
centres, the method of re¯ection is an excellent approxi-
mation for estimating the drag force exerted on each
machine, no matter how close they are swimming. The
leading machine acquires higher velocity (translational
and rotational), and when the separation distance becomes
more than 10 times of the length of the tail or almost 6.5
times of the total length of each machine, both machines
swim with the same velocity.

Appendix

Stokes' law correction factor
Here we calculate the Stokes' law correction factor for the
micromachine with spiral tail and compare this to the
value obtained from considering the whole machine as a
prolate spheroid.

Suppose that we have a prolate spheroid, with the
principal radii of a and b (b is the longest of the two semi-
axes, b > a), which is moving parallel to its axis of revo-
lution. To compare the resistance of a prolate spheroid
with a sphere having the same equatorial radius a, we have
(Happel and Brenner 1973)

Fz � ÿ6plaUK �4:1�
where K � K�a=b� is the correction to Stokes' law given by

K � 1
3
4

�������������
s2

0 ÿ 1
p ��s2

0 � 1� cothÿ1 s0 ÿ s0�
�4:2�

and

s0 � 1ÿ a

b

� �2
� �ÿ1=2

: �4:3�

Some values of K are given in table 4-26.1 of Happel and
Brenner (1973). If we estimate our micromachine as a
prolate spheroid with principal radii of 0.125 and 0.786562,
which are the radius of the head and half of the length of
the machine, respectively, obtained by the optimisation
procedure for analysing the motion of such machine with
spiral tail (see our latest paper), we have a=b � 0:15892
and K � 2:139058.

Also, if we assume that the micromachine with optimal
dimensional geometry, has a rigid body motion, moving
with the maximum dimensionless translational velocity
(with no rotation), we can use Stokes' law for the drag
exerted by the ¯uid on an arbitrary particle moving in a
¯uid, F � 6plCa/U, and calculate Ca/ needed in this
paper,

Ca/ � F

6plUmax
� 0:268002 ; �4:4�

where Ca is the characteristic length of the particle. By
estimating Ca to be the radius of the head of the machine,
which is 0.125, we have / � 2:144018.

This value is very close to the Stokes' law correction
factor of a prolate spheroid with the above mentioned
radii. In fact we can estimate our micromachine as a
prolate spheroid, with error of approximately 0.2%.
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