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Abstract The fast multipole method (FMM) is very ef®-
cient in solving integral equations. This paper applies the
method to solve large solid-solid boundary integral
equations for elastic waves in two dimensions. The scat-
tering problem is ®rst formulated with the boundary ele-
ment method. FMM is then introduced to expedite the
solution process. By using the FMM technique, the num-
ber of ¯oating-point operations of the matrix-vector
multiplication in a standard conjugate gradient algorithm
is reduced from O N2� � to O N1:5� �, where N is the number
of unknowns. The matrix-®lling time and the memory
requirement are also of the order N1:5. The computational
complexity of the algorithm is further reduced to O N4=3

ÿ �
by using a ray propagation technique. Numerical results
are given to show the accuracy and ef®ciency of FMM
compared to the boundary element method with dense
matrix.

1
Introduction
The elastic wave (beam) scattering from a solid-solid in-
terface is of great interest to a wide range of disciplines
such as geophysical exploration, non-destructive evalua-
tion, mechanical design, etc. Since elastic waves are char-
acterized by both displacement ®elds and stress ®elds
which propagate and cover large spatial domains (in terms
of the operating wavelength), a large number of unknowns
are often involved in the numerical modeling. For large
problems, iterative methods such as conjugate gradient

(CG) methods are preferred over direct methods. The
major computational cost of an iterative method lies in the
matrix-vector multiplications. In a standard dense matrix
boundary element method (Rizzo 1967; Cole et al. 1978;
Brebbia et al. 1984; Manolis and Beskos 1988; Nihei et al.
1995), or the method of moment (MoM) in the electro-
magnetic community (Harrington 1968), the number of
¯oating-point operations of a matrix-vector multiplication
is O N2� �, where N is the number of unknowns involved.
The memory requirement is also of O N2� �. Iterative
methods are superior to direct methods when the number
of iterations required for convergence is small, and when
the number of right-hand sides is small. However, when N
is big (unfortunately this is often the case), the dense
matrix methods become prohibitively slow and impracti-
cal.

In order to solve large problems, researchers have de-
veloped various techniques to reduce computational
complexities. Most of the techniques, however, are ap-
proximate methods and have limited applications. The
well-known Kirchhoff approximation and the small per-
turbation method (Tsang et al. 1985) are only applicable
for short wavelength and small rough surface scattering
respectively. Methods based on fast Fourier transforms are
inef®cient because of their strict uniform grid require-
ment. The wavelet technique has received much attention
in recent years, but studies (Wagner and Chew 1995) show
that, while reducing solution time by a constant factor, the
technique does not reduce its computational complexity.

The fast multipole method (FMM) is designed to speed
up the matrix-vector multiplications in an iterative
method. The method was ®rst introduced by Rokhlin
(1990) to solve acoustic wave scattering problems. Engheta
et al. (1992) applied the method to electromagnetic scat-
tering computation of the Ez-polarized case. Lu and Chew
(1993) extended the algorithm to the Hz-polarized case
and applied it to calculate the scattering solution of di-
electric-coated conducting cylinders. The application of
the method to three dimensional electromagnetic wave
scattering has been studied by Coifman et al. (1993), and
Song and Chew (1994).

The idea behind FMM is to ®rst divide the subscatterers
into groups. Then, the addition theorem of the Bessel
functions is used to translate the scattered ®elds of dif-
ferent scattering centers within a group into a single center
(the group center). Namely, we represent the scattered
®elds of a group of scatterers as waves emanating from its
group center by using the addition theorem. Next, the
interactions among these groups are calculated. That is,
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the scattered ®elds of all other groups are calculated at
each group around its center. Finally, the addition theorem
is again used to translate the scattered ®elds around the
group center to its group members (the subscatterers in
the group). As stated in the paper by Lu and Chew (1993),
the above procedure will not reduce the computational
complexity because the group center requires a higher-
order multipole. The reduction in the number of scattering
centers is at the expense of increasing the order of the
multipoles. However, signi®cant computational savings
can be achieved by diagonalizing the translation matrix
that accounts for interactions among the groups using
plane-wave bases and by appropriately selecting the size of
groups. The technique reduces the matrix-vector multi-
plication from O N2� � for dense matrix methods to O N1:5� �
in an iterative method. It can be easily extended to an
O N4=3
ÿ �

algorithm by using a ray propagation technique
(Wagner and Chew 1994; Coifman et al. 1994).

In this paper, we apply the fast multipole method and
the ray propagation fast multipole technique to the
boundary element methods (BEM) for elastic wave mod-
eling. We discuss how the new techniques are used to solve
two-dimensional solid-solid surface scattering problems
where the solids are assumed to be bonded at the inter-
faces. In what follows, we present the formulation of the
surface integral equations for elastic-wave ®elds. The in-
tegral equations are converted into a linear equation set
based on the pulse basis-point matching scheme. The fast
multipole method and the ray propagation technique are
then introduced to speed up the solution process. Finally,
we apply the technique to solve planar and rough solid-
solid surface scattering problems. The numerical results
are validated by an analytical approach and a dense-matrix
BEM code.

2
Surface integral equations
Consider two elastic media separated by an arbitrary
surface S0 as shown in Figure 1. The upper region is de-
noted as X0 and is occupied by an isotropic homogeneous
medium characterized by mass density q0 and LameÂ
constants k0 and l0. The lower region is denoted as X1 and
is occupied by another isotropic homogeneous medium
characterized by mass density q1 and LameÂ constants k1

and l1. The unit normal vector of the surface is de®ned by
n̂�r�, where r � �x; z�. In the following formulation, we use
uppercase boldface letters for vector ®elds, and reserve
lowercase boldface letters for column vectors and spatial
coordinates. Matrices and second rank tensors are repre-
sented by uppercase boldface letters with a bar on the top.
Two bars are placed on an uppercase boldface letter to
represent a third rank tensor. Given a function g�x; z�, the
notations for differentiation are de®ned as followings,

oxg � og

ox
; o2

xxg � o2g

ox2
; o3

xxzg � o3g

ox2oz
:

Suppose we have a force distribution F r0� �eÿixt inside the
closed surface, where x is the angular frequency. The
force will generate stress and displacement ®elds in the
media. The displacement vector U�r� and the stress tensor
�T�r� satisfy the following surface integral equations (SIE)
for a bonded interface S0 (Varadan et al. 1991; Nihei et al.
1995),

1

2
U�r�� �

Z
S0

(
U�r0� � n̂0 � R

�0
r; r0� �

� �

ÿ n̂0 � �T r0� �� � � �G0 r; r0� �
)

dl0 � Uinc�r� ; �1�

ÿ 1

2
U�r� � �

Z
S0

(
U r0� � � n̂0 � R

�1
r; r0� �

� �

ÿ n̂0 � �T r0� �� � � �G1 r; r0� �
)

dl0 � 0 ; �2�

where both r; r0 2 S0 and n̂0 � n̂ r0� �. The incident ®eld
Uinc�r� is given as

Uinc�r� �
Z

X0

F r0� � � �G0 r; r0� �dr0 ; �3�

where �G0 r; r0� � is the Green's displacement tensor in X0. It
satis®es the following vector wave equation,

�k� l�rr � �lr2
� �

�G r; r0� � � qx2 �G r; r0� �
� ÿd rÿ r0� ��I ; �4�

where r and r0 are the observation point and the source
point respectively and �I is the identity tensor. For an in-
®nitely extended region, the solution to the above vector
wave equation is given by Morse and Feshbach (1953):

�G r; r0� � � 1

x2q
k2

s gs�I�r gp ÿ gs

ÿ �r0� �
; �5�

where gp and gs are the whole space scalar Green's func-
tions for the compressional and the shear waves respec-
tively. for two dimensional problems, gp � i

4 H
�1�
0

kpjrÿ r0jÿ �
, and gs � i

4 H
�1�
0 ksjrÿ r0j� � with kp � x=vp and

ks � x=vs, where vp and vs are the compressional and
shear wavespeeds. Using the constitutive relationship, the
third rank Green's stress tensor, R

�
, can be readily written

as

R
�

r; r0� � � k�Ir � �G� l r�G� �Gr� � : �6�Fig. 1. The surface scattering model for the boundary integral
equations
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By letting n̂0 � �T r0� � � Txx̂� Tzẑ, where Tx � n0xTxx

�n0zTzx and Tz � n0xTxz � n0zTzz, and substituting the ex-
pression into the vector surface integral Eqs. 1 and 2, we
obtain four scalar SIEs:

1

2
Ux�r� � �

Z
S0

�
Uxn0xR

0
xxx � Uxn0zR

0
xxx � Uzn0xR

0
xzx

� Uzn0zR
0
zzx ÿ TxG0

xx ÿ TzG0
zx

�
dl0 � U inc

x �r� ; �7�
1

2
Uz�r� � �

Z
S0

�
Uzn0zR

0
zzz � Uzn0xR

0
xzz � Uxn0zR

0
zxz

� Uxn0xR
0
xxz ÿ TxG0

xz ÿ TzG0
zz

�
dl0 � U inc

z �r� ; �8�

ÿ 1

2
Ux�r� � �

Z
S0

�
Uxn0xR

1
xxx � Uxn0zR

1
zxx � Uzn0xR

1
xzx

� Uzn0zR
1
zzx ÿ TxG1

xx ÿ TzG1
zx

�
dl0 � 0 ; �9�

and

ÿ 1

2
Uz�r� � �

Z
S0

�
Uzn0zR

1
zzz � Uzn0xR

1
xzz � Uxn0zR

1
zxz

� Uxn0xR
1
xxz ÿ TxG1

xz ÿ TzG1
zz

�
dl0 � 0 : �10�

Thus, we have four unknowns Ux � Ux r0� �, Uz � Uz r0� �,
Tx � Tx r0� �; and Tz � Tz r0� � and four scalar equations.
The boundary element method can be used to solve the
surface unknowns. Once we know the displacement ®elds
U r0� � and the tractions n̂0 � �T r0� � on the interface, the fol-
lowing equations can be used to calculate the displacement
®elds everywhere in X0 and X1 respectively,

U�r� �Uinc�r� �
Z

S0

(
n̂0 � �T r0� �� � � �G0 r; r0� �

ÿ U r0� � � n̂0 � R
�0

r; r0� �
� �)

dl0 ; �11�

U�r� �
Z

S0

(
U r0� � � n̂0 � R

�1
r; r0� �

� �

ÿ n̂0 � �T r0� �� � � �G1 r; r0� �
)

dl0 : �12�

The constitutive relation equation can be used to deter-
mine the stress tensor from the displacement ®elds.

3
Boundary element method formulation
In this section, we discuss how the SIEs (7)±(10) can be
converted into a set of linear equations which can be
solved by a computer. To solve the surface unknowns
Ux r0� �, Uz r0� �, Tx r0� �, and Tz r0� � with the boundary ele-
ment method, we ®rst expand the surface ®eld compo-
nents in terms of basis functions, and then test the
equation with weighting functions. In general, either full-
domain or subdomain basis functions can be used to ex-
pand the unknown ®elds as long as the set of basis

functions is complete. However, it is often dif®cult to ®nd
such a set of full-domain basis functions, and for different
problems, the full-domain basis functions are usually
different. On the contrary, the subdomain basis is more
versatile and is widely used for various problems. Thus,
we choose the subdomain basis for out problem. Speci®-
cally, in the following formulation of the moment method,
we use the pulse basis functions to expand the surface
unknowns and the Dirac delta functions to test the SIEs
for ease of implementation. So, we discretize the surface
into N segments with approximately equal length and
expand the surface ®eld unknowns with the pulse basis
function, i.e.,

Ux r0� � �
XN

n�1

Ux
nPn r0� �; Uz r0� � �

XN

n�1

Uz
nPn r0� � ;

and

Tx r0� � �
XN

n�1

Tx
nPn r0� �; Tz r0� � �

XN

n�1

Tz
nPn r0� � ;

where Ux
n , Uz

n, Tx
n and Tz

n with n � 1; . . . ;N are the un-
known coef®cients to be determined. The pulse basis
function Pn�r��n � 1; 2; . . . ;N� has a constant unity value
on the nth segment and vanishes outside its two end points
rn and rn�1.

To convert Eq. (7) into linear algebraic equations, we
substitute the expression of Ux, Uz, Tx; and Tz into the
equation, multiply both sides with d rÿ rm� �, and integrate
with respect to x over the surface. We obtain the following
linear algebraic equations:XN

n�1

A1
mnUx

n � B1
mnUz

n � C1
mnTx

n � D1
mnTz

n

ÿ � � b1
m;

m � 1; 2; . . . ;N ; �13�
where b1

m � U inc
x �rm� and A1

mn, B1
mn, C1

mn, and D1
mn are

constant coef®cients given by

A1
mn �

1

2
dmn��

Z
S0

Pn r0� �
�

n0xR
0
xxx

� n0zR
0
zxx � n0xR

0
xzx

�
dl0 ; �14�

B1
mn �

Z
S0

Pn r0� � n0xR
0
xzx � n0zR

0
zzx

ÿ �
dl0 ; �15�

C1
mn � ÿ

1

x2q

Z
S0

Pn r0� � k2
s g0

s � o2
x0x0 g0

s ÿ g0
p

� �h i
dl0 ;

�16�
and

D1
mn � ÿ

1

x2q

Z
S0

Pn r0� �o2
z0x0 g0

s ÿ g0
p

� �
dl0 ; �17�

where Rm � r0 ÿ rmj j. Notice that Rijk; fi; j; kg � fx; y; zg,
are given by Eq. (6). We did not substitute them into the
expressions for A1

mn and B1
mn in favor of conciseness. The

normal direction of the nth segment is de®ned by
n̂0 � n0xx̂� n0zẑ, where n0x and n0z are given as
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n0x � ÿ
zn�1 ÿ zn�����������������������������������������������������

xn�1 ÿ xn� �2� zn�1 ÿ zn� �2
q ;

n0z � ÿ
xn�1 ÿ xn�����������������������������������������������������

xn�1 ÿ xn� �2� zn�1 ÿ zn� �2
q : �18�

The matrix elements are calculated directly from the
above formulae for non-diagonal terms �m 6� n�. For di-
agonal terms, the Green's functions are singular when
r0 ÿ rmj j approaches zero. However, the integrands for

both A1
mm and B1

mm are odd functions for the central point
xm; zm� �. The Cauchy principal integrals thus vanish for

the self-terms. Therefore, we have

A1
mm � 0:5; B1

mm � 0; m � 1; 2; . . . N : �19�
The diagonal elements C1

mm and D1
mm need to be evaluated

very carefully, because the Green's function contains an
integrable singularity at r � r0. The procedure used to treat
these singularities is to substract the singular term from
the integrand to make it regular so that standard numer-
ical integration methods can be applied. The singular term
substracted here is the small argument approximation of
the integrand. The contribution of the singular term to the
diagonal element is calculated analytically.

Similarly, The linear system corresponding to the sur-
face integral Eq. (8) can be written asXN

n�1

A2
mnUx

n � B2
mnUz

n � C2
mnTx

n � D2
mnTz

n

ÿ � � b2
m;

m � 1; 2; . . . ;N ; �20�
where b2

m � U inc
z �rm�. The constant coef®cients A2

mn, B2
mn,

C2
mn, and D2

mn are de®ned by

A2
mn �

Z
S0

Pn r0� � n0zR
0
zxz � n0xR

0
xxz

ÿ �
dl0 ; �21�

B2
mn �

1

2
dmn � �

Z
S0

Pn r0� � n0zR
0
zzz � n0xRxzz

ÿ �
dl0 ; �22�

C2
mn � ÿ

1

x2q

Z
S0

Pn r0� �o2
x0z0 g0

s ÿ g0
p

� �
dl0 ; �23�

and

D2
mn � ÿ

1

x2q

Z
S0

Pn r0� � k2
s g0

s � o2
z0z0 g0

s ÿ g0
p

� �h i
dl0 :

�24�
Again, the above expression can be readily used to cal-
culate off-diagonal elements. The diagonal elements are
evaluated by using the same approach as described for
Eq. (7). The discretization of Eqs. (9) and (10) is basically
the same as Eqs. (7) and (8). The only difference is that the
medium involved is that of X1. The system equations can
be expressed asXN

n�1

A3
mnUx

n � B3
mnUz

n � C3
mnTx

n � D3
mnTz

n

ÿ � � b3
m;

m � 1; 2; . . . ;N ; �25�
and

XN

n�1

A4
mnUx

n � B4
mnUz

n � C4
mnTx

n � D4
mnTz

n

ÿ � � b4
m;

m � 1; 2; . . . ;N ; �26�
where b3

m � b4
m � 0 (for m � 1; 2; . . . ;N). Note that

A3
mm � B4

mm � ÿ0:5 and B3
mm � A4

mm � 0. Combining
Eqs. (13), (20), (25), and (26), we have 4N linear algebraic
equations with the same number of unknowns. The com-
bined linear algebraic equations can be solved by direct
methods such as Gauss-Jordan elimination or by iterative
solvers such as conjugate gradient methods. In this paper,
the conjugate gradient normalized residual method
(CGNR) is used to solve the non-symmetric linear system
(Barrett 1993). Next, we discuss how the fast multipole
technique is used to formulate the same boundary element
problem and solve it more ef®ciently.

4
Fast multipole technique
In the previous section, we discussed how the traditional
BEM is used to solve the SIEs (1) and (2). We ended up
with a large set of linear equation system which needs to
be solved. As we said earlier, iterative methods are pre-
ferred over direct methods for large problems. For an
iterative method, the most CPU intensive part is the ma-
trix-vector multiplication. The number of ¯oating-point
operations (FPO) in a dense matrix-vector multiplication
is of O N2� �. The fast multipole method expedites this
matrix-vector multiplication by a special treatment of in-
teractions among widely separated segments. To use the
technique, we divide the N segments of the scattering
surface into groups based on the spatial distances. If we
put M segments in each group, there are N=M groups
altogether. Next, we discuss how the fast multipole method
can be applied to our problem.

As we can see from the previous section, no matter how
complicated they are, all matrix-element expressions are
related to the Hankel functions, H

�1�
0 �kpjrm ÿ r0j� and

H
�1�
0 �ksjrm ÿ r0j�, and their derivatives in the integrands. If

the two indices m, n of a matrix element belong to two
separated groups, the integral for the matrix element can
always be approximated by H

�1�
0 �kpjrm ÿ rnj�,

H
�1�
0 �ksjrm ÿ rnj�, and their corresponding derivatives.

Here, we assume that the group diameter is larger than one
wavelength. Using the addition theorem, we have

H
�1�
0 kRmn� � �

X1
p�ÿ1

Jp�kd�H�1�p kRll0� �

� eip�/dÿ/ll0�p� ; �27�
where Rmn � rm ÿ rn, Rll0 � rl ÿ rl0 , and d � Rml

� Rl0n Rml � rm ÿ rl; Rl0n � r0l ÿ rn

ÿ �
. Here, /ll0 is the angle

the line Rll0 makes with the x axis, and we assume that the
vector d makes an angle of /d with the x axis. Here, rl and
rl0 are the group centers. Substituting the elementary id-
entity (Stratton 1941, Chew 1990),

Jp�kd�eip/d � 1

2p

Z 2p

0

daeik��Rml�Rl0n��ip�aÿp=2� ; �28�

into Equation (27) yields
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H
�1�
0 kRmn� � � 1

2p

Z 2p

0

da~bml�a; k�~all0 �a; k�~bl0n�a; k� ;
�29�

where

~all0 �a; k� �
XP

p�ÿP

H
�1�
p kRll0� �eip�aÿ/ll0�p=2� ; �30�

and

~bml�a; k� � eik�Rml ; ~bl0n�a; k� � eik�Rl0n : �31�
Notice that now, cylindrical waves are replaced by plane
waves in the integrand of Eq. (29). Also, the ~all0 �a� term is
not dependent on a particular subscatterer but group
centers, while ~bml�a� and ~bl0n depend on the transmitting
and the receiving groups respectively. The series in Eq. (30)
diverges if P increases inde®nitely and appropriate trun-
cation is needed in order to obtain the required accuracy.
In fact, the divergence is due to the exchange of the order
of the summation and the integration introduced in the
derivation. The original addition theorem does not diverge
because Jp�kd� ! 0, when p!1. Given Eqs. (29)±(31), it
is now trivial to express the derivatives in a similar fashion
as following,

ojH
�1�
0 kRmn� �
oxj

� 1

2p

Z 2p

0

da~bml�a; k�~all0

� �a; k��ik cos a�j ~bl0n�a; k� ; �32�
and

ojH
�1�
0 kRmn� �
ozj

� 1

2p

Z 2p

0

da~bml�a; k�~all0

� �a; k��ik sin a�j~bl0n�a; k� : �33�
In order to show how FMM works, we take the mth row

out of the submatrix A1 in Eq. (13) as an example and
de®ne

Im �
Xn62Bl

n�1;N

A1
m;nUx

n ; �34�

where m belongs to Gl, the lth group, and Bl represents the
self group Gl and the near neighbor groups. Note that the
submatrix A1 is used only to illustrate the FMM principle.
In FMM, only the main diagonal and a few neighboring
sub-diagonal elements need to be generated in the sub-
matrix A1. Using Eqs. (29), (32), and (33), we have

Im � i

8p

Z 2p

0

da~bml a; kp

ÿ � Xl0 62Bl

l0�1;N=M

~all0 a; kp

ÿ �
�
X
n2Gl0

E a; kp

ÿ �
~bl0n a; kp

ÿ �
DnUx

n

� i

8p

Z 2p

0

da~bml a; ks� � �
Xl0 62Bl

l0�1;N=M

~all0 a; ks� �X
n2Gl0

F a; ks� �~bl0n a; ks� �DnUx
n ; �35�

where Dn is the size of the segment n. All the medium
parameters are those of region X0. For the interactions in
the self group and the near neighbor groups, the matrix-
vector multiplication is performed directly. The functions
E a; kp

ÿ �
and F a; ks� � are given as

E a; kp

ÿ � �n0x
k

2l� k
ikp cos aÿ 2

k2
s

ikp cos a
ÿ �3

� �
ÿ n0z

2

k2
s

ikp sin a
ÿ �

ikp cos a
ÿ �2

; �36�
and

F a; ks� � �n0x
2

k2
s

iks cos a� �3�2iks cos a

� �
� n0z

2

k2
s

iks sin a� � iks cos a� �2�iks sin a

� �
:

�37�
The integrals in Eq. (35) can be simply evaluated with a
staircase approximation. Thus, the equation can be re-
written as

Im � i

4Q

XQ

q�1

~bml aq; kp

ÿ � Xl0 62Bl

l0�1;N=M

~all0 aq; kp

ÿ �
�
X
n2Gl0

E aq; kp

ÿ �
~bl0n aq; kp

ÿ �
DnUx

n

� i

4Q

XQ

q�1

~bml aq; ks

ÿ � Xl0 62Bl

l0�1;N=M

~all0 aq; ks

ÿ �
�
X
n2Gl0

F aq; ks

ÿ �
~bl0n aq; ks

ÿ �
DnUx

n ; �38�

where Q is the number of discretization points for the
integrals. It can be shown that Q has to be proportional to
the group size in terms of wavelength from the sampling
theorem. As we can see in Eq. (38), the interactions among
the separated groups have been diagonalized by using
plane wave bases, thus reducing the FPO count in the
matrix-vector multiplication. In Eq. (38), the matrix-vector
multiplication is performed in three stages by the three
summation signs. Notice also that the operations have to
be performed separately for compressional and shear
waves. If we denote the three stages as 1, 2 and 3 starting
from the last summation sign in Eq. (38), we see that the
®elds of the subscatterers in each group are translated to
their group center in the ®rst stage (group aggregation).
Then, group interactions are calculated at the second stage
(translation). Finally, these group interactions at each
group are distributed to its group members (group dis-
aggregation). Figure 2 demonstrates the major difference
in the calculation of Im between the FMM approach and
the traditional dense matrix approach. As shown in
Figs. 2(a) and 2(b), the calculation of Im in a dense matrix
approach involves direct interactions of the element m
with all the other subscatterers, while FMM proceeds in a
way as described above. In FMM, one needs to generate
three sparse matrices instead of the dense matrix. These
sparse matrices are associated with the three stages of the
FMM matrix vector multiply procedure.
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The computational cost can be estimated in terms of the
three stages outlined above in addition to the matrix-
vector multiplication associated with the self group and
the near neighbor groups. The FPO count is calculated as

T � c1
N

M
MQ� c2

N

M

� �2

Q� c3M
N

M
Q� c4NM ;

�39�
where c1, c2, and c3 are some constants associated with the
three stages. The last term in the equation comes from the
direct matrix-vector multiplication for the self group and
the near neighbor groups. The coef®cient c4 is also a
constant. Since Q is proportional to the group size M, the
FPO count of the matrix-vector multiplication is propor-
tional to N1:5 if we choose M � ����

N
p

. Actually, one should
also notice that the speeds of the compressional and shear
waves are different. Additional computational savings can
be achieved if we choose different parameter Q for the
different waves. For the two medium problem, usually four
distinctive Q values can be used. Noticing that the largest
Q corresponds to the fastest wave speed in the media,
smaller Q's can be used for the other three speeds.

In the above discussion, the submatrix A1 is used to
illustrate how matrix vector multiply is performed in the
FMM approach. There are 16 similar submatrices in the
whole problem as given by Eqs. (13), (20), (25), and (26).
All the matrix vector multiplies has to be calculated sim-
ilarly.

5
Ray-propagation fast multipole algorithm (RPFMA)
If one chooses the group size such that M � N1=3, then Q is
proportional to N1=3. Eq. (39) can be rewritten as

T � c1N4=3 � c2N4=3Q� c3N4=3 � c4N4=3 : �40�
In the above equation, all the terms have a FPO count
proportional to N4=3 except c2N4=3Q which corresponds to

the group interactions. Thus, if we can reduce the cost of
the group interactions, the computational complexity of
the fast multipole method can be reduced. We now focus
on the second stage of Eq. (38) which translates the ®elds
radiated from a transmitting group in Q discretized di-
rections into the same number of discretized directions at
a receiving group. Intuitively, one expects the interaction
to be strongest for ®elds radiated along the line joining the
two groups. This is indeed the case, and forms the basis for
the ray propagation technique (Wagner and Chew 1994;
Coifman et al. 1994). In the ray propagation fast multipole
algorithm, we neglect some of the interactions in side lobes
which are much smaller than the main beam, thus re-
ducing the cost of the second stage of FMM. As the
problem size grows, the width of the main beam joining
two groups decreases as 1=M, while the number of angular
sampling directions Q grows as M. Thus, the number of
sampling directions in the main beam and the signi®cant
side lobes remains approximately constant as a function of
problem size. Therefore, the remaining Q in Eq. (40) is
independent of problem size if the small side-lobe inter-
actions are ignored, and the ray propagation fast multipole
algorithm has a computational complexity of O N4=3

ÿ �
.

To take the full advantage of this idea, we use a tapered
window function in the truncation of the summation terms
in Eq. (30) instead of using a square window. The ad-
vantage of using a tapered window for Eq. (30) is that its
Fourier transform will have lower side-lobes. These lower
side-lobes will allow the discarding of more elements of
all0 �a; k� for a given threshold level and reduce the cost in
the second stage of the fast multipole method.

6
Numerical results
A Fortran code has been developed based on the formu-
lations of the fast multipole method to simulate various
surface scattering problems. The results of the FMM code
are shown to be as good as those of traditional dense-
matrix BEM method and analytical method when avail-
able. As expected, the FMM code is much faster than the
dense matrix approach and it requires much less memory.
We have also parallelized the FMM code as well as the
dense-matrix BEM code for the 4-processor SGI Power
Challenge machine by using the MP commands. The FMM
code scales very well when more CPUs are used. In what
follows, we check the FMM code by comparing the FMM
results with those of analytical method for a planar sur-
face. Then, the FMM code is used to solve a rough surface
scattering problem. The FMM results are compared with
those of the dense-matrix BEM code for the rough surface
case. Finally, the performance of the FMM code is checked
against the dense-matrix BEM code in terms of the com-
puter time usage and the memory requirement. The ef®-
ciency of parallelization for the FMM code is also
addressed on the SGI Power Challenge computer
(4� R8000, 90 MHz, 2 GB RAM). We use BEM to repre-
sent the dense-matrix BEM method for simplicity. Notice
that unless otherwise stated all the results given here are
obtained on a four CPU SGI Power Challenge machine.

The FMM code is ®rst veri®ed for a two-layer elastic
media with a planar interface. The incident wave Uinc used

Fig. 2a, b. The major difference in the calculation of Im between
the traditional dense matrix approach (a) and the FMM approach
(b)
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is an asymptotic Gaussian beam modeled via the complex-
source-point technique (Felsen 1984) and is given by,

Uinc � rUinc kp;R
ÿ �

; �41�
for compressional source, or

Uinc � r� ŷUinc ks;R� �ÿ �
; �42�

for shear wave source, where R � ��xÿ x0 ÿ ib sin h�2
��zÿ z0 ÿ ib cos h�2�1=2 and RefRg > 0. Here, b is a con-
stant which determines the width of the beam source, and
h is the incident angle of the beam axis, measured with
respect to the z axis. The Gaussian beam 1=e width w is
related to b by bp;s � 0:5w2kp;s. The potential function in
Eq. (41) and (42) is de®ned as

Uinc�k;R� � 1�����������
8pkR
p eikR�ip4ÿkb ; �43�

which is the large argument approximation of the zeroth
order Hankel function of the ®rst kind.

The parameters of the two elastic media are given as
q0 � 1; 400 kg/m3, cp0 � 3; 000 m/s, cs0 � 2; 000 m/s,
q1 � 2; 700 kg/m3, cp1 � 6; 400 m/s, and cs1 � 3; 700 m/s.
The compressional source is used and is located at x � 0,
z � ÿ4:17 kp0, where kp0 is the wavelength of the com-
pressional waves in X0. The parameter w of the asymptotic
beam source is chosen to be 2:56 kp0. Based on our for-
mulation, the scattered ®elds can be simulated by FMM.

For a well-welded planar interface, the re¯ected ®elds and
the transmitted ®elds can also be calculated analytically by
the real axis integration (RAI) in the wave number domain
(see Appendix).

Figures 3±4 show the comparison of scattered ®elds
calculated by FMM with those calculated by the RAI ap-
proach. The curves shown in the ®gures are the x and z
components of the displacement ®elds at different loca-
tions. The medium interface is at z � 0. The vertical lo-
cation �z� of the observation line is denoted in each ®gure.
Both the vertical location and the horizontal axis are in the
unit of wavelength kp0. A compressional source is used
here. The source is located at x � 0, z � ÿ4:17 kp0 with
x � 2:56 kp0. In Fig. 3, we have a compressional beam
source insonifying on the surface with an incident angle of
20�. While the lines of observation are always parallel to
the medium interface for all the ®gures, the observation
position of the z coordinate determines whether the cal-
culated ®elds are the ®elds of re¯ections or transmissions.
If z < 0, the curves represent the re¯ected ®elds. Other-
wise, the transmitted ®elds are plotted. These descriptions
hold true also for Fig. 4 except that the incident angle of
the source is at 50� and w � 3:33 kp0, where kp0 is the
wavelength of the compressional waves in X0. As we can
see from the ®gures, excellent agreement is achieved for all
the cases between the FMM and RAI results. Since the
source is not well-collimated, it excites surface waves even
when the incident angle of the beam axis is at 20� as shown

Fig. 3. Comparison of the scattered ®elds of a planar surface simulated by FMM and the real axis integration (RAI) in the wave
number domain
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in Fig. 3. The surface waves become stronger as the inci-
dent angle increases from 20� to 50�. Due to the existence
of the surface waves, we have to solve a much larger sur-
face area, especially when the incident angle is high. In
Fig. 4, a surface of roughly 90 wavelengthes is discretized
into 1,340 segments (15 points per wavelength). A linear
equation set of 5,360 unknowns is solved using FMM.

Figure 5 is a rough surface scattering problem en-
countered in geophysical well logging. The x axis and the
height of the rough surface are in the unit of wavelength
kp0. The overlaid curves are the incident displacement
®elds at the rough surface. The amplitude of the incident
®elds is reduced by a factor of 10 for display. The medium
parameters are the same as those used for the planar in-
terface given in Fig. 3. Again, the asymptotic Gaussian
beam source is used. We put the source at x � 0,
z � ÿ4:17 kp0 with an incident angle of 30�, w � 2:56 kp0.
Both the FMM and the dense-matrix BEM codes are used
to calculate the re¯ected ®elds by the rough surface. The
simulated results are shown in Figs. 6 and 7, where the
re¯ected displacement ®elds from the FMM code are
overlaid with those of the BEM code. The ®eld amplitude is
given in the unit of wavelength kp0. The observation line is
at z � ÿ4:17 kp0 for Fig. 6 and at z � ÿ8:33 kp0 for Fig. 7.
As we can see from the ®gures, FMM does not cause any
noticeable error in the simulation. However, the compu-
tational saving is drastic. For this particular problem, the
rough surface is discretized into 1,740 segments. The
number of unknowns solved is 6,960. For a convergence

residual of 5:0� 10ÿ6, the CPU time used for FMM is only
7 minutes, or less than one ®fth of the CPU time needed
for the BEM method.

Figure 8 shows the CPU time needed in each CG iter-
ation for FMM as compared with the traditional BEM. The
N1:5 and N2 lines are also plotted for references. FMM is
shown to have a computational complexity better than

Fig. 4. Same as Fig. 3

Fig. 5. A rough surface model used for simulation by using FMM
and BEM
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O N1:5� �. BEM, however, shows a complexity along the N2

line. The computer used here is an SGI Power Challenge
with four CPUs. While the CPU time might be affected by
various factors such as the problem size, the system load at

the time, the parallelization effects, and etc. When the
problem size is small, the parallelization is usually not very
ef®cient. When the problem size is large, one major
problem of the SGI computer is cache misses. In BEM, one

Fig. 6. Comparison of the re¯ected ®elds from a rough surface simulated by FMM and BEM

Fig. 7. Same as Fig. 6
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needs to do Ay � x as well as A � x. Because of the way in
which system memory is accessed, the latter will cost much
more than the former if the cache miss problem is not
properly addressed. For FMM, the dense matrix is de-
composed into a set of sparse matrices, and this problem is
not very obvious. The comparison of the matrix ®lling
time for the two methods is given in Fig. 9. The same trend
is observed again. The difference is that the BEM line now
is below the N2 line, because the matrix ®lling process
does not need to access the dense matrix line by line in the
horizontal direction. FMM is also much better than BEM
when the memory requirement is considered. As shown in
Fig. 10, the memory requirement of FMM is also below the
N1:5 line. Notice that the problem solved here is the two
medium model with a planar interface as given earlier.
Different size problems are obtained by simply increasing
the surface size to be discretized. The largest problem
solved by BEM has 12,800 unknowns and the solve time is
more than 1.5 hours on the four-CPU SGI computer for a
convergence residual of 5:0� 10ÿ6. By using FMM, only 16

minutes is required to solve the same problem. The largest
problem solved here by FMM has 51,200 unknowns. The
CPU time needed to solve such a large problem is less than
3 hours. It is estimated that more than 40 hours is required
if the traditional BEM is used on the SGI computer. The
memory requirement for the dense matrix is approxi-
mately 20 GB. Figure 11 demonstrates the ef®ciency of our
FMM code when more than one CPU is used. 10,000 un-
knowns are used for the test. As we can see from the ®gure,
the matrix ®lling parallelizes better than the CG solver
part. The former achieves almost linear speedup. A factor
of 3.2 speedup is achieved for the CG solver when four
CPUs are used.

7
Conclusions
The fast multipole method is applied to the simulation of
surface scattering problems for elastic waves, which has
not been done before to our knowledge. An ef®cient code
is developed to solve the surface integral equations for a

Fig. 8. Comparison of the CPU time needed in each CG iteration
for traditional BEM and FMM

Fig. 9. The matrix ®lling time comparison of BEM and FMM

Fig. 10. The memory requirement of FMM as compared with
dense matrix methods

Fig. 11. Speedup of multi-CPU simulation by using FMM
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solid-solid interface. In terms of computational complex-
ity, the code is better than O N1:5� � in both the CPU time
and the memory requirement. The code is ®rst veri®ed by
the analytical results for a planar interface model, and then
tested by a dense-matrix BEM approach for a prototype
rough surface. Our results show that FMM, as a rigorous
method, is not only fast, but also very accurate. We have
also parallelized the code for the SGI Power Challenge
machine. Approximately linear speedup is achieved for the
matrix ®lling. A factor of 3.2 is achieved for the CG solver
when 4 CPUs are used.

Appendix A

Beam reflection and transmission
at a planar solid-solid interface
In this appendix, we present the wavenumber integral
representation we used for the problem of re¯ection and
transmission of a Gaussian beam at a planar solid-solid
interface. These integral solutions are numerically imple-
mented using a real axis integration scheme. They are used
to generate reference data for the FFM numerical solutions
for the canonical case of a planar interface. The geometry
of the 2D con®guration considered is shown in Fig. 1 with
the addition that a 2D (sheet) Gaussian beam input is
assumed to insonify in the �z direction a planar interface
at z � 0 separating medium 0 �vp0

; vs0
; q0� from medium 1

�vp1
; vs1

; q1�. The Gaussian beam is modeled via the com-
plex-source-point (CSP) technique by displacement of a
real point source into complex space as speci®ed by
Eqs. A.7 below (Felson 1984). Using a plane wave expan-
sion of the incident elastic CSP wave®eld, the re¯ected
�Uref� and transmitted �Utr� displacement ®elds at an ob-
servation point �x; z� can be derived from compressional
�Uref ;tr� and shear �Wref ;tr� scalar potentials as follows
(Zeroug and Stanke 1996),

Uref ;tr � rUref ;tr �r� yWref ;tr
ÿ �

; �A:1�
where

Uref�x; z�
Wref�x; z�

( )

� i

4p

Z 1
ÿ1

1

jm0

Rmp�k� exp iPref
U �k�

� �
Rms�k� exp iPref

W �k�
� �( )

dk ; �A:2�

Utr�x; z�
Wtr�x; z�

� �
� i

4p

Z 1
ÿ1

1

jm0

Tmp�k� exp iPtr
U�k�

� �
Tms�k� exp iPtr

W�k�
� �( )
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with

Pref
U �k�

Pref
U �k�

� �
� k xÿ ~x0� � ÿ jm0

~z0 ÿ jp0

js0

� �
z ; �A:4�

Ptr
U�k�

Ptr
U�k�

� �
� k xÿ ~x0� � ÿ jm0

~z0 � jp1

js1

� �
z : �A:5�

In the equations above, m � p for an incident compres-
sional beam and m � s for an incident shear beam, Rmp, Rms,
Tmp and Tms are the spectral plane wave re¯ection �R� and
transmission �T� coef®cients for a well-welded solid-solid
interface. The expressions for these quantities are given by
Zeroug and Stanke (1996). Furthermore,

jmi
�

���������������
k2

mi
ÿ k2

q
; Refjmi

g � 0; Imfjmi
g � 0;

kmi
� x=vmi

; �A:6�
where m � p; s. The CSP coordinates ~x0; ~z0� � are given by,

~x0 � x0 � ib sin h; ~z0 � z0 � ib cos h; �A:7�
where x0; z0� � denote the location of the Gaussian beam
waist and the CSP parameter b is related to the beam 1=e
width w through w � �������������

2b=km0

p
. The beam axis makes an

angle h with respect to the z axis.
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