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Abstract Accurate imposition of essential boundary con-
ditions in the Element Free Galerkin (EFG) method often
presents difficulties because the Moving Least Squares
(MLS) interpolants, used in this method, lack the delta
function property of the usual finite element or boundary
element method shape functions. A simple and logical
strategy, for alleviating the above problem, is proposed in
this paper. A discrete norm is typically minimized in the
EFG method in order to obtain certain variable coeffi-
cients. The strategy proposed in this work involves a new
definition of this discrete norm. This new strategy works
very well in all the numerical examples, for 2-D potential
problems, that are presented here. In addition to the dis-
cussion of boundary conditions, some recommendations
are also made in this paper regarding strategies for re-
finements in order to improve the accuracy of numerical
solutions from the EFG method.

1
Introduction
Significant progress has been made in recent years, (see,
for example, Shephard et al. 1995, or Oden, 1995), in
creating structured meshes for three-dimensional (3-D)
Finite Element Method (FEM) analysis of solids and
structures. Shephard et al. (1995), for example, report on a
mesh with two million tetrahedra! However, it is generally
recognized that successful meshing of 3-D bodies of
complex shape can be difficult, time consuming and ex-
pensive. For linear analysis, for example, mesh generation
is often much more time consuming than the assembly
and solution of the FEM equations. Therefore, there is
considerable interest in exploring methods of numerical
analysis that avoid or greatly simplify this meshing task.

Nayroles et al. (1992) have proposed an interesting
method which they call the Diffuse Element Method
(DEM). They propose a nodal interpolation scheme in
which interpolants are fit to nodal values by a least-squares

approximation scheme. These interpolants are called
Moving Least Squares (MLS) interpolants. Nayroles et al.
(1992) have coupled this interpolation scheme with Ga-
lerkin methods to produce the Diffuse Element Method
(DEM). The conventional Finite Element Method mesh is
not necessary in this approach. They (i.e. Nayroles et al.)
present applications of the DEM in 2-D potential theory
and in linear elasticity.

In a series of papers, Belytschko and his co-workers have
popularized a different implementation of the Diffuse
Element Method. They have called their approach the
Element Free Galerkin (EFG) method and have applied it
to a large variety of (two-dimensional) problems such as
potential theory and linear elasticity (Belytschko et al.
1994 a), fracture mechanics with crack growth (Belytschko
et al. 1994 b, 1995 a, Lu et al. 1994), dynamic fracture
(Belytschko et al. 1995 b, Belytschko and Tabbara, 1996)
and plate bending (Krysl and Belytschko, 1995). In their
work, Belytschko and his co-workers have coupled the
MLS interpolants with a variational (weak) form of the
equilibrium equations of the appropriate boundary value
problem. They have introduced a background cell struc-
ture in order to carry out integration by numerical
quadrature.

Very recently, Mukherjee and Mukherjee (1997) have
proposed a combination of MLS interpolants with
Boundary Integral Equations (BIE). This new method,
called the Boundary Node Method (BNM), retains the
meshless attribute of the EFG and the dimensionality ad-
vantage of the BIE, and only needs nodes (points) to be
specified on the bounding surface of a body. Numerical
results for 2-D potential theory, obtained by the BNM, are
most encouraging (Mukherjee and Mukherjee, 1997).

One of the problems with MLS interpolants is that, in
general, they lack the delta function property of the usual
BEM or FEM shape functions, in that

UI�xJ� 6� dIJ �1�

where UI is the Ith shape function evaluated at a nodal
point xJ and dIJ is the Kronecker delta. This complicates
the imposition of essential boundary conditions in the EFG
method. Belytschko and his co-workers have employed
various strategies such as collocation (Belytschko and
Tabbara, 1996), Lagrange multipliers (Belytschko et al.,
1994 a) and use of tractions as Lagrange multipliers (Lu et
al., 1994) in order to impose essential boundary conditions
in the EFG method.

The main contribution of the present paper is the pro-
posal of a simple, logical and effective strategy for the
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imposition of essential boundary conditions in the EFG
method. A discrete weighted norm is typically minimized
in the EFG method in order to obtain certain variable
coefficients. In the present work, a new definition of this
norm is employed, together with the use of fluxes as La-
grange multipliers in potential problems. Numerical re-
sults for problems in 2-D potential theory, presented in
this paper, are most encouraging. Extensions of this idea,
to 3-D problems and to linear elasticity, are obvious.

Another issue discussed in this paper is the role of nodes
and integration cells in h-refinement of the EFG method. It
is pointed out that the role of integration cells in the EFG is
different from that of elements in the FEM.

This paper begins with a brief summary of MLS inter-
polants and the EFG method for problems in 2-D potential
theory. The rest of the paper is devoted to issues related to
imposition of boundary conditions and h-refinement in
the EFG method.

2
MLS interpolation scheme
Following Belytschko et al. (1994 a), one writes

u�x� �
X

m

j�1

pj�x�aj�x� � pT
�x�a�x� �2�

where, in this work on 2-D problems, the intrinsic poly-
nomial basis p(x) is quadratic, i.e.

pT
�x� � �1; x; y; x2

; y2
; xy� ; m � 6 �3�

The coefficients in equation (2) are obtained by mini-
mizing a weighted, discrete L2 norm defined as

Jnew �

X

n

I�1

w�dI� pT
�xI�a�x� ÿ ûI

� �2
�4a�

where n is the number of nodes in the neighborhood of an
evaluation point E (usually a Gauss point), with co-
ordinates x, for which the weight functions w�dI� 6� 0; and
ûI are approximations to the values u�xI� at the nodes xI .
This neighborhood of E is called its domain of dependence
DE. Specific weight functions are discussed later in the
next section of this paper. A key contribution of the pre-
sent work is the above new definition of the discrete norm
Jnew. In previous work on the EFG method, the expression

Jold �
X

n

I�1

w�dI� pT
�xI�a�x� ÿ uI

� �2
�4b�

where uI are the nodal values, has been used. This re-
placement of uI by ûI in the definition of J has been carried
out in order to accurately satisfy essential boundary con-
ditions at the boundary nodes. This matter is discussed in
detail later in this paper.

Using the stationarity of J in equation (4a) one finally
obtains

u�x� �
X

n

I�1

UI�x�ûI �5a�

The corresponding result starting from Eq. (4b) is

u�x� �
X

n

I�1

UI�x�uI �5b�

In the above, the shape functions UI�x� are

UI�x� �
X

m

j�1

pj�x�CjI�x� �6�

with

C�x� � Aÿ1
�x�B�x� �7�

A�x� �
X

n

I�1

wI�x�p�xI�p
T
�xI� �8�

wI�x� � w�dI� �9�

and

B�x� � �w1�x�p�x1�; w2�x�p�x2�; � � � ;wn�x�p�xn��

�10�

It is important to observe that if Jold is used, Eqs. (1) and
(5b) imply that, in general, the quantity u�xJ� is not equal
to the nodal value uJ . The distinction between these two
quantities is important.

The weight functions must be chosen such that the
matrix A in Eq. (8) is invertible.

The partial derivatives of UI(x) are obtained as

UI;i �
X

m

j�1

fpj;iCjI � pj�C;i�jIg �11�

where

�C;i�jI � f�Aÿ1
�
;iB � Aÿ1B;igjI �12�

�Aÿ1
�
;i � ÿAÿ1A;iA

ÿ1
�13�

and ;i �
o

oxi
:

3
Weight functions
The weight function chosen in this work is the exponential
function (Belytschko et al., 1994 a)

w�dI� �

(

eÿ�dI=c�2
ÿeÿ�^dI=c�2

1ÿeÿ�^dI=c�2
; dI �

^dI

0 ; dI >
^dI

�14�

Here, dI � kx ÿ xIk; (the Euclidean distance between x
and xI), ^dI is the size of the support for the weight function
wI and c is a constant that controls the relative weights.

The weight function wI determines the range of influ-
ence <I of the node xI . According to Eq. (14), <I for a node
I is a circle of radius ^dI , centered at xI . The domain of
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dependence DE of an evaluation point E (with coordinates
x) is the union of n overlapping circles, each centered at xI
and of radius ^dI (Fig. 1). Only in the special case where all
the ^dI are equal to ^d does DE become equivalent to a circle
of radius ^d, centered at E.

4
Coupling of MLS interpolants with variational equations
The partial differential equation to be solved is Laplace’s
equation in 2-D

r

2u � 0 in B �15�

with boundary conditions

u � �u on oBu ; q � �q on oBq �16�

where oB � oBu0oBq is the boundary of B and q �

ou
on is

the normal derivative u. Here, n is the usual unit outward
normal to oB at any point on it.

Starting from

0 �
Z

B
u;iidudA �

Z

oBu

dq�u ÿ �u�ds �17�

integration by parts leads to the weak (variational) from
used in this work.
Z

B
u;idu;idA ÿ

Z

oBu

qduds ÿ
Z

oBu

udqds

�

Z

oBq

�qduds ÿ
Z

oBu

�udqds
�18�

where dA and ds are area and length elements in B and on
oB, respectively, and du is the usual first variation of u.
Equation (17) is equivalent to the one in Zienkiewicz and
Taylor (1994-p248, Eq. (9.141)) and the exact potential
theory counterpart of the variational equation for elasticity
in Lu et al. (1994, Eq. (25)). Note that the flux q is used as
the Lagrange multiplier in Eqs. (17–18).

One now derives an interpolation for q on oB from
Eq. (5a) as

q�x� �
X

n

I�1

WI�x�ûI ; x � oB �19�

where

WI �
oUI

ox
nx �

oUI

oy
ny �20�

with the spatial derivatives of U being obtained from
Eq. (11) and nx; ny the Cartesian components of the unit
normal n.

Substitution of Eqs. (5a) and (19) into the weak form
(18) leads to the discretized system of linear equations

��K� ÿ �G� ÿ �GT
��fûg � ffg ÿ fgg �21a�

Please note that if one starts from Eq.(4b) instead of (4a),
one gets

��K� ÿ �G� ÿ �GT
��fug � ffg ÿ fgg �21b�

which is identical to Eq. (21a) except for the replacement
of fûg by fug. Equation (21b) is the exact potential theory
counterpart of the elasticity Eq. (27a) in Lu et al. (1994).

In the above,

KIJ �

Z

B
�UxIUxJ � UyIUyJ�dA �22�

GIJ �

Z

oBu

WIUJds �23�

fI �

Z

oBq

�qUIds �24�

gI �

Z

oBu

�uWIds �25�

where UxI �
oUI
ox ; UyI �

oUI
oy and the vectors fûg and fug

contain their nodal values ûI and uI , respectively, at all the
nodes in B.

Assembly is performed at each quadrature point and
contributions are gathered at each node. A simple cell
structure is used in order to carry out the integrations above
by Gaussian quadrature. While the number of cells influ-
ences the accuracy of the numerical solution, it has no re-
lationship with the number of degrees of freedom in the EFG
method. This issue is discussed further later in this paper.

5
Essential boundary conditions
As mentioned before, the lack of the delta function
property of UI (Eq. (1)) causes problems in imposing es-
sential boundary conditions in the EFG method. Three
different strategies for imposing essential boundary con-
ditions in elasticity have been proposed by Belytschko and
his co-workers. Their potential theory counterparts are
described below.

Strategy 1:
Collocation with old definition of J (Eq. (4b))

In this case, Lagrange multipliers are not used and Eq.
(21b) reduces toFig. 1. Domain of dependence of an evaluation point E
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�K�fug � ffg �26�

Essential boundary conditions take the form

uI � �uI � �u�xI� ; xI on oBu �27�

Strategy 2:
Fluxes as Lagrange multipliers with old definition
of J (Eq. (4b))

This strategy uses fluxes as Lagrange multipliers to en-
force (see Eq. (17)).

u�x� � �u�x� ; x on oBu �28�

This is enforced in discretized form as (see Eq. (5b))

u�xJ� �
X

n

I�1

UI�xJ�uI � �u�xJ� ; xJ on oBu �29�

The resulting final equation is (21b) which is solved for
fug which contains uI at all the nodes in B. The values of
uI at all the nodes are accepted as the numerical solution
of the problem.

Strategy 3:
Lagrange multipliers with old definition of J (Eq. (4b))

This strategy is essentially the same as strategy 2, except
that general Lagrange multipliers are used here.

New Strategy Proposed in this Paper:
Fluxes as Lagrange multipliers with new definition
of J (Eq. (4a))

The new strategy proposed here is very simple, logical
and easy to enforce. Equation (28) is enforced in dis-
cretized form as (see Eq. (5a))

u�xJ� �
X

n

I�1

UI�xJ�ûI � �u�xJ�; xJ on oBu �30�

Next, one solves the resulting Eq. (21a) for fûg which
contains ûI . Finally, one sets (see Eq. (5a))

u�xJ� �
X

n

I�1

UI�xJ�ûI �31�

at all the nodes xJ ; J � 1; 2; � � � ; NN ; where NN is the total
number of nodes in B. The values of u�xJ� at all the nodes
are accepted as the numerical solution of the problem.

6
Numerical results
Boundary Conditions Strategy 2 (fluxes as Lagrange mul-
tipliers with the old definition of J) and the new strategy
(fluxes as Lagrange multipliers with the new definition of
J) are compared in the numerical examples below.
Henceforth, these strategies are called ‘with Jold’ and
‘with Jnew’, respectively. Lu et al. (1994) (see their Table 2)
state that Strategy 1 (collocation with old definition of J)
can lead to significant errors in linear elasticity problems.

Hence, Strategy 1 is not considered further in the present
paper.

The discretization (4 × 4 cells, 9 × 9 nodes) and nu-
merical examples considered here are summarized in
Fig. 2. In all cases, Laplace’s equation is solved in a unit
square. The nodal arrangement in each cell used in these
examples is the same as that in Lu et al. (1994) Fig. 2a.
Also, in all cases, ^d = 0.32, c = 0.48 and a 6 × 6 array of
Gauss points is used for numerical integration.

A global error measure is defined as

2�

1
jujmax

����������������������������������������

1
NN

X

NN

i�1

�u�e�i ÿ u�n�i �

2

v

u

u

t

�32�

where the superscripts (e) and (n) refer to the exact and
numerical solutions, respectively, and NN is the total
number of nodes. Also, 21 is the error with Jnew and 22
with Jold, respectively.

In all the numerical results shown in Figs. 3–7, a solid
line is the exact solution, ‘×–×–×’ is the solution with Jnew
and ‘O O O’ is the solution with Jold.

Example 1 is a patch test for the new formulation – a
Dirichlet problem for the solution

u � x � y �33�

The numerical results for u � �x; y� with Jnew are shown in
Fig. 3. The global error for this example is 2 = 0.51%.

It has been proved by Belytschko et al. (1996) that MLS
interpolants are consistent and any function in a basis can
be reproduced exactly. Here, the intrinsic basis p(x) is
quadratic while the test solution u�x� is linear. Thus, in
this case, one has

u�h�
�x� � u�e�

�x� �34�

where u�h�
�x� is the approximation to the exact solution

u�e�
�x�. Unfortunately, however, the MLS interpolants lack

the delta function property, so that, if one writes, as in
Belytschko et al. (1994)

u�h�
�x� �

X

n

I�1

UI�x�uI �35�

one has, in general,

u�e�
�xJ� � u�h�

�xJ� �
X

n

I�1

UI�xJ�uI 6� uJ �36�

The last inequality in equation (36) means that one can
get errors in the numerical solutions for nodal values uj
even for a linear field. A small error in the nodal values
persists even with the new formulation presented in this
paper.

Examples 2–5 are all concerned with the exact cubic
solution of Laplace’s equation

u � ÿx3
ÿ y3

� 3xy2
� 3x2y �37�
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Example 2 is a Dirichlet problem, 3 and 4 are mixed and
5 is a modified Neumann problem. The actual boundary
conditions imposed on the boundary of a unit square, in
each case, are shown in Fig. 2.

Numerical results for these examples are shown in
Figs. 4–7 and the global errors are summarized in Table 1.
In all cases, substantial improvement in accuracy is
achieved with Jnew. The strategy with Jold does quite poorly
in the Dirichlet problem in which all the boundary con-
ditions are of the essential type. The errors, from both
strategies, are considerably less for example 4 (Fig. 6)
compared to those for example 3 (Fig. 5). This is somewhat
surprising since both examples 3 and 4 are mixed pro-

Fig. 2. Geometry and boundary conditions for various examples

Fig. 3. The solution u�x; y� for the patch test. (Example 1)

Fig. 4. The solution u�x; y� for a cubic Dirichlet problem.
(Example 2)

Fig. 5. The solution u�x; y� for a cubic mixed problem. (Example 3)

Fig. 6. The solution u�x; y� for a cubic mixed problem. (Example 4)

Fig. 7. The solution u�x; y� for a modified Neumann problem.
(Example 5).
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blems of the same type in that two edges have essential and
two natural boundary conditions. Also, while the global
errors in both cases are acceptably small, the new strategy
with Jnew actually does better in the Dirichlet problem than
in the mixed problem in example 3 (see Figures 4, 5 and
Table 1)! Finally, as expected, both strategies do well in the
modified Neumann problem – example 5 (Fig. 7). In this
example, u = 0 (when using Jold) or û = 0 (when using Jnew)
is imposed at the origin by collocation.

The above numerical results demonstrate the consider-
able value of the proposed new strategy, with Jnew, for the
satisfaction of boundary conditions in the EFG method.

Nodes and Cells The following remarks pertain to issues
related to h refinement in the EFG method.

First, it is very important to realize that the cells in the
EFG method are quite different from finite elements in the
FEM. Cells are used to carry out numerical integration by
Gaussian quadrature and influence the accuracy of a nu-
merical solution. They can be very simple and need not
satisfy the usual compatibility requirements of finite ele-
ments. Cells can be easily generated inside a code and can
be easily refined in a localized region. Finally, the number
of degrees of freedom in the EFG depends solely on the
number of nodes NN and has no relationship to the
number of cells Nc.

The issue of h refinement is discussed next. One can try
to improve a numerical solution either by increasing the
number of nodes per cell or by increasing the number of
cells while keeping the ratio

r1 �
# of nodes
# of cells

�

NN

Nc
nearly fixed :

The first strategy, while quite appealing, does not seem
to work. This can be seen by comparing columns 3 and 4
with 5 and 6 in Table 2 which gives global errors for the
same examples 2–5 in Fig. 2, for different discretizations.
Note that the errors increase in most cases in columns 3
and 4, compared to those in columns 5 and 6, respectively,
even though ^d in columns 3 and 4 is taken to be half of that
in columns 5 and 6 in order to keep the number of nodes
in DE (the domain of dependence of a Gauss point)
roughly the same in both these cases. The same trend was
observed with the Boundary Node Method (Mukherjee and
Mukherjee, 1997, Table 4).

A better approach is the second one where one increases
the number of cells while keeping the ratios r1 and

r2 �
^d=a

(where a is the side of a typical square cell) roughly un-
changed. This is the situation when one compares col-
umns 1 and 2 with columns 5 and 6, respectively, in
Table 2. In both cases, each cell only has corner nodes and
r2 � 2:56. The results in column 1 (with Jnew) are essentially
perfect and those in column 2 (with Jold) are very good.

In summary, the best strategy for h-refinement in the
EFG appears to be to keep a relatively small number of
nodes/cell, keep ^d=a fixed and increase the number of
integration cells. Depending on the type of problem being
solved, this can be done globally or in local regions in the
domain B.

7
Discussion and conclusions
A simple and logical strategy is proposed in this paper for
the purpose of alleviating problems encountered in im-
posing essential boundary conditions in the EFG method.
This new strategy works very well in all the numerical
examples presented here and is recommended for all fu-
ture EFG applications.

A strategy for h-refinement of the EFG is proposed in
which one increases the number of integration cells while
keeping the ratio of (# of nodes)/(# of cells) small and
roughly the same.
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