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Abstract Purely elastic material models have a limited
validity. Generally, a certain amount of energy absorbing
behaviour can be observed experimentally for nearly any
material. A large class of dissipative materials is described
by a time- and frequency-dependent viscoelastic con-
stitutive model. Typical representatives of this type are
polymeric rubber materials. A linear viscoelastic approach
at small and large strains is described in detail and this
makes a very efficient numerical formulation possible. The
underlying constitutive structure is the generalized Max-
well-element. The derivation of the numerical model is
given. It will be shown that the developed isotropic algo-
rithmic material tensor is even valid for the current con-
figuration in the case of large strains. Aspects of evaluating
experimental investigations as well as parameter identifi-
cation are considered. Finally, finite element simulations
of time-dependent deformations of rubber structures
using mixed elements are presented.

1
Introduction
Besides a static structural response, the load-carrying be-
haviour for dynamic loading is of interest for a large
number of structures and classes of materials. In this ar-
ticle, time- or frequency-dependent materials are con-
sidered and structures are loaded in such a way that
inertial effects cannot be neglected. Typical representatives
of the class of problems mentioned are polymeric struc-
tures made out of any kind of synthetic material. Gen-
erally, the large strain case with respect to polymers
applies to rubber material. An interesting problem is e.g.
the analysis of tires where time- and frequency-dependent
stiffness and dissipative properties are of great im-
portance. Furthermore, damping devices and coatings to
reduce vibration capabilities are employed in a large
number of mechanical and civil engineering structures.

Research and development in many engineering fields
can be accelerated and optimized by numerical simula-
tions. The study on hand provides a mathematical and
numerical model for viscoelasticity which yields in com-
bination with the finite element method an improved so-
lution procedure for the mentioned class of design tasks.

Viscoelastic materials are distinguished from materials
which are idealized as being purely elastic. They exhibit
properties such as relaxation, creep and frequency-de-
pendent stiffness and dissipative characteristics as well as
strain-rate-dependent hysteretic behaviour. The appro-
priate mathematical model uses either a differential op-
erator representation or a formulation utilizing
convolution integrals. The latter approach is followed in
this paper.

The fundamental theory of viscoelasticity is described in
a number of textbooks such as Findley, Lai and Onaran
(1976), Christensen (1982) and Aklonis and MacKnight
(1983). A lot of articles is concerned with specific aspects
or formulations and cannot be mentioned here in detail.
We refer the interested reader to Morman (1985) who
published a detailed review of finite elasticity as well as of
linear and nonlinear viscoelastic theories.

Our article makes use of the work of Taylor, Pister and
Goudreau (1970), where a numerical formulation based on
a thermomechanical description for axisymmetric linear
viscoelasticity at small strains is presented. They derived a
convolution integral to take the total deformation history
into account resulting in a recursive formula. Simo (1987),
Govindjee and Simo (1992) and the formulation given here
employ this approach to evaluate the history-dependent
deformation.

The multiplicative split of the deformation gradient
F � J

1
31 F

e
Fv is of fundamental importance for another

viscoelastic approach given by Lubliner (1985). The vo-
lumetric deformation Fvol � J

1
31 is considered as being

purely elastic. The isochoric part Fiso � F
e
Fv is divided up

multiplicatively into an elastic F
e

and an inelastic portion
Fv. This multiplicative separation for a viscoelastic for-
mulation is already used by Sidoroff (1974). Lee (1969)
introduced equivalent kinematic quantities for finite
plasticity. Thus, he splits multiplicatively the deformation
gradient F � FeFp into an elastic Fe and a plastic con-
tribution Fp.

Both Lubliner (1985) and Simo (1987) propose a linear
rate equation for internal stress variables of the ‘standard-
type’ to define the viscoelastic model. Simo (1987) devel-
ops a finite isothermal and linear viscoelasticity combined
with damage effects (see Mullins (1969)). The integration
of the deformation history is accomplished by the recur-
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rence relation of Taylor, Pister and Goudreau (1970) which
has already been mentioned. The algorithm and the con-
sistent linearized tangent operator are given by Simo in the
reference configuration. Govindjee and Simo (1992) focus
on damage phenomena in greater detail based on Simo
(1987). Moreover, Im and Atluri (1987) published a paper
on finite plasticity using an endochronic approach, which
is essentially similar to viscoelasticity.

A generalized viscoelastic theory is proposed by Bagley
and Torvik (1983). Padovan (1987) describes a finite ele-
ment implementation of this model. Instead of integer
time derivatives fractional order operators are introduced
into the constitutive rate equation. For simulations in the
time domain time consuming transformations are used to
solve this extended formulation numerically. According to
Bagley and Torvik less material parameters are required
and a more flexible model is obtained compared to a
constitutive approach using integer time derivatives.
However, an extensive comparative study on this topic has
not been published yet as far as the authors are aware.

The goal of this paper is the presentation of a compact
and efficient three-dimensional viscoelastic formulation
which is well suited for large scale finite element compu-
tations. It is based on the generalized Maxwell-element, i.e.
a finite number of separate Maxwell-elements in parallel,
and, therefore, it is valid for small and finite strains. This
constitutive formulation has proved to be a realistic ap-
proach and, therefore, it is used frequently in polymer
physics to describe rubber material. Moreover, the geo-
metrical linear setting is readily extended to a nonlinear
formulation. It may represent the basis for further exten-
sions like thermo-viscoelasticity and damage phenomena
which are not topic of the following considerations. The
numerical model shown is linearized in closed form to
yield a simple material tensor slightly different from an
elastic model. Due to its simplicity the material tensor is
determined directly in the current configuration for the
large strain approach in the case of isotropy. After in-
troducing the mathematical and the numerical model,
aspects of the evaluation of experimental data and of
parameter identification are addressed. Finally, the for-
mulation is applied to finite element computations to show
its efficiency and characteristics.

2
Phenomenological viscoelastic model
The derivation of the mathematical and the numerical
viscoelastic model is performed in three steps. Firstly, the
fundamental approach is given as a one-dimensional
analytical description at small strain. Subsequently, the
accompanying three-dimensional numerical formulation
ready for a finite element implementation is given. It is
followed by its geometrically nonlinear extension.

2.1
Basic formulation
The following development of a viscoelastic material for-
mulation for solids is based on some fundamental as-
sumptions. Thermorheologically simple materials for
which the time-temperature superposition principle is

valid (see Schwarzl and Staverman (1952)) are considered.
The thermomechanically coupled process is simplified and
the generation of heat is not taken into account, i.e., an
isothermal situation is assumed. Furthermore, damage
phenomena like the Mullins-effect (see Mullins (1969))
observed for rubber materials during the first loading
cycles are not of interest in this study. We focus on linear
viscoelastic material where the Boltzmann superposition
principle is applicable.

The developed viscoelastic formulation can be re-
presented by a rheological analogy - the generalized
Maxwell model - which is often used as a phenomen-
ological approach to polymeric materials. Firstly, the de-
rivations are given for one-dimensional, linear elastic and
geometrically linear considerations.

The basic constitutive rheological elements of linear
viscoelasticity are an elastic spring called Hooke-element
and a viscous Newton-element (Fig. 1). The elastic mate-
rial constant l gives the linear relation

re
� l�e

�1�

between elastic strain �
e and elastic stress re. The viscous

stress rv of the Newton-element depends on the strain rate
_�
v. For the Newton-element these quantities are related

linearly by the coefficient of viscosity g

rv
� g _�v �2�

analogously to the elastic Hooke-element. The viscosity g
can also be expressed in terms of the elastic constant l

g :� sl �3�

by introducing the relaxation time s. Fig. 2 shows how the
relaxation time s is given by the initial slope of a relaxation
test. The combination of Hooke- and Newton-element in
series yields the so-called Maxwell-element (Fig. 1) where
the total strain � consists of an additive combination
� � �

e
� �

v of an elastic �
e and a viscous �

v component
while the stress

r � l�e
� g _�v �4�

is, of course, in both rheological elements the same. From
(4) _�

v
�

1
s ��ÿ �

v
� can be obtained using �

e
� �ÿ �

v and
_�
v
�

1
g l�e

:

Fig. 1. Hooke-, Newton- and Maxwell-element
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At the state of equilibrium _�
v
� 0 the viscous strain of a

Maxwell-element converges to the total strain �
v
� � and

the elastic strain vanishes �
e
� 0: Alternatively, we get the

fundamental differential equation

_� �

1
l
_r�

1
g

r �5�

for the stress of a Maxwell-element from _� � _�
e
� _�

v.
When carrying out a relaxation test (Fig. 2) a Maxwell-

element is deformed �̂�0� � �̂�t� � const. at a constant
strain. In this case the solution of the differential equation
(5) yields

rh � c exp ÿ

t
s

� �

and rp � 0 �6�

for the homogeneous and the particular solution, respec-
tively. By using the initial condition r̂�0� � l�̂�0� the
constant c � l�̂�0� is determined. Thus, we get the solution

r̂�t� � l exp ÿ

t
s

� �

�̂�0� �7�

where the relaxation function

^C�t� � l exp ÿ

t
s

� �

�8�

defines the specific viscoelastic characteristics of the ma-
terial. At an infinite large time the stress is fully reduced
r̂�1� � 0:

The preceding relaxation test of one Maxwell-element is
easily applied to an extended viscoelastic formulation
where a finite number of separate Maxwell-elements are
arranged in parallel with an elastic Hooke-element (Fig. 3).
The stress relaxation for the generalized Maxwell-element
is given by

r̂�t� � l0 �̂�0� �
X

N

j�1

lj exp ÿ

t
sj

� �

�̂�0�

�
^C�t� �̂�0�

�9�

where

^C�t� � l0 �
X

N

j�1

lj exp ÿ

t
sj

� �

�10�

defines the characteristic relaxation function of N Max-
well-elements (Fig. 3). The time-independent elastic part
of the deformation is represented by the term l0 which is
constant with respect to time. In this paper the relaxation
function (10) will be used in a normalized form. It is
related to the elastic part l0. Thus, we introduce

ĉ�t� �
^C�t�
l0

� 1 �
X

N

j�1

cj exp ÿ

t
sj

� �

: �11�

Viscoelastic formulations can be derived on the basis of
either differential operators or convolution integrals as
mentioned in the introduction. The latter approach is
followed in this paper. Starting from the Boltzmann su-
perposition principle a creep test is considered. A Max-
well-material is loaded at time t � t0 by a constant stress
r0. The strain is a function of time

�̂0�t� � ^!�t ÿ t0�^H�t ÿ t0�r0 �12�

expressed by the creep function ^!�t ÿ t0� and the Heavi-
side unit step function ^H�t ÿ t0�. The rheological element
is subjected to an additional stress r1 at t � t1 which leads
to an equivalent strain response. According to the Boltz-
mann superposition principle the response for the com-
bined load history i � 1; :::; M

r̂�t� �
X

M

i�1

^H�t ÿ ti�Dri �13�

is computed directly by superposition of the separate
responses

�̂�t� �
X

M

i�1

�̂i�t ÿ ti� �
X

M

i�1

^!�t ÿ ti�^H�t ÿ ti�Dri �14�

from the separate loadings Dri to give the combined re-
sult. When infinitesimal load steps Dri are applied, the
total strain is determined by the integral representation

�̂�t� �
Z t

0

^!�t ÿ s�^H�t ÿ s� dr̂�s� �15�

Fig. 2. Relaxation test of a Maxwell-element

Fig. 3. Generalized Maxwell-element
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to sum up the deformation history. This hereditary in-
tegral is reduced to

�̂�t� �
Z t

0

^!�t ÿ s�
or
os

ds �16�

when the stress history is differentiable with respect to
time.

Analogous steps for the relaxation test yield an equiva-
lent integral representation

r̂�t� �
Z t

0

^C�t ÿ s�
o�
os

ds �17�

where ^C�t ÿ s� is the relaxation function. Creep and re-
laxation are merely two different aspects of the phenom-
enon viscoelasticity. Therefore, the transition from one
property to the other can be shown by Laplace- or Fourier-
transformation (see Findley et al. (1976)).
Complex Moduli The relaxation and creep tests described
characterize the behaviour of viscoelastic solids as a
function of time. To understand the phenomena in greater
detail and to compute the response of a dynamically loa-
ded viscoelastic body, the material is subjected to an os-
cillating load resulting in a state of stress

r � r0 cos xt �18�

which varies harmonically with frequency x. The stress
amplitude is r0. For the description of a harmonic vibra-
tion it is useful to represent the oscillation by a vector in
the complex plane rotating about the origin. The transition
from polar coordinates to Eulerian representation

cos xt � i sin xt � exp�ixt� �19�

yields

r � r0 exp�ixt� �20�

where i :�
������

ÿ1
p

. The accompanying strain response

� � �0 cos�xt ÿ d� or � � �0 exp�i�xt ÿ d�� �21�

oscillates at the same frequency x but lags behind the
stress by the phase angle d. This phase shift d, often called
loss angle, is an important quantity for the characteriza-
tion of viscoelastic dissipative properties. The phase shift
causes a hysteresis in the stress-strain diagram of a har-
monic vibration. The area described by the hysteresis is a
measure for the energy dissipated in one cycle of vibration.

We shall apply this frequency-dependent formulation to
the generalized Maxwell-model. Reformulation of Eq. (5)

ls _� � s _r� r �22�

and inserting the complex stress and strain quantities
leads to

ixsl �0 � r0 exp�id� �1 � ixs� : �23�

This defines the complex relaxation modulus

C�

�

r0

�0
exp�id� � l

ixs
1 � ixs

�24�

for one Maxwell-element. Splitting the complex quantity
C� into a real and an imaginary part

C�

� C0

� i C00

� l
x2s2

1 � x2s2 � i l
xs

1 � x2s2 �25�

results in the components C0 and C00 called storage and
loss modulus.

The mechanical loss factor as the ratio of imaginary C00

and real part C0

tan d �
C00

C0

�

1
xs

�26�

is also a function of the frequency like C0 and C00. Similarly,
the complex modulus for the generalized Maxwell-element
is computed as

C�

� C0

� i C00

� l0 �
X

N

j�1

lj
ixsj

1 � ixsj

� l0 �
X

N

j�1

lj

x2s2
j

1 � x2s2
j
� i

X

N

j�1

lj
xsj

1 � x2s2
j

;

�27�

for N viscous elements and an elastic spring l0 or as the
normalized modulus

c� � c0 � i c00

� 1 �
X

N

j�1

cj
ixsj

1 � ixsj

� 1 �
X

N

j�1

cj

x2s2
j

1 � x2s2
j
� i

X

N

j�1

cj
xsj

1 � x2s2
j

:

�28�

This complex relaxation function (27) and (28) can be
derived directly by a Fourier-transform of the time-de-
pendent function (10) and (11) from time domain to fre-
quency domain.

2.2
Linear viscoelasticity
The development of a numerical model starts from the
general integral representation of linear viscoelasticity

r̂�t� �
Z t

0

^C�t ÿ s�
o�̂�s�
os

ds

where ^C�t ÿ s� � l0 �
X

N

j�1

lj exp ÿ

t ÿ s
sj

� � �29�
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as an one-dimensional formulation given by equation
(Eq. (17)). Splitting the integral into an elastic and a vis-
coelastic contribution leads to

r̂�t� �
Z t

0
l0

o�̂�s�
os

ds

�

Z t

0

X

N

j�1

lj exp ÿ

t ÿ s
sj

� �

o�̂�s�
os

ds

� l0�̂�t� �
X

N

j�1

Z t

0
lj exp ÿ

t ÿ s
sj

� �

o�̂�s�
os

ds

� r̂0�t� �
X

N

j�1

^hj�t� ; �30�

the elastic stress component r̂0�t� and the internal stress
equivalent variables ^hj�t�. In a relaxation test the con-
tribution of the internal variables ^hj�t� to the state of stress
vanishes

lim
t!1

^hj�t� � 0 �31�

when time tends towards infinity. The goal of the following
steps is to obtain an efficient numerical formulation for the
solution of the hereditary integral

^hj�t� �
Z t

0
lj exp ÿ

t ÿ s
sj

� �

o�̂�s�
os

ds �32�

for each separate history variable ^hj�t�. This convolution
integral is derived from the linear rate equation

_hj �
1
sj

hj � cj _r0 �33�

for one Maxwell-element j, i.e. one internal stress variable
hj of the generalized rheological model. The rate equation
(33) is based on the differential equation for the stress (5).
Substituting the strain by �̂�t� � r̂0�t�

l0
in (32) leads to

^hj�t� �
Z t

0
cj exp ÿ

t ÿ s
sj

� �

or̂0�s�
os

ds ; �34�

a representation of the internal variables in terms of the
stress r̂0�t� and the factor cj of the normalized relaxation
function. The efficient solution of this hereditary integral
is crucial for a numerical implementation.

Considering the time interval �tn; tn�1� we define the time
step Dt :� tn�1 ÿ tn. Utilizing a multiplicative split of the
exponential expression

exp ÿ

tn�1

sj

� �

� exp ÿ

tn � Dt
sj

� �

� exp ÿ

tn

sj

� �

exp ÿ

Dt
sj

� � �35�

and the separation of the deformation history into a period
0 � s � tn when the result is known and into the current
unknown time step tn � s � tn�1 yields

^hj�tn�1� � cj

Z tn�1

0
exp ÿ

tn�1 ÿ s
sj

� �

dr̂0�s�
ds

ds

� exp ÿ

Dt
sj

� �

cj

Z tn

0
exp ÿ

tn ÿ s
sj

� �

dr̂0�s�
ds

ds

� cj

Z tn�1

tn

exp ÿ

tn�1 ÿ s
sj

� �

dr̂0�s�
ds

ds

� exp ÿ

Dt
sj

� �

^hj�tn�

� cj

Z tn�1

0
exp ÿ

tn�1 ÿ s
sj

� �

dr̂0�s�
ds

ds �36�

an exact recursive formula for the current value of the
stress quantity hj. The transition from differential coeffi-
cient to discrete time steps

dr̂0�s�
ds

� lim
Ds!0

Dr̂0�s�
Ds

� lim
Dt!0

rn�1
0 ÿ rn

0

Dt
�37�

introduces a time approximation of second order into the
formula which was exact so far. The remaining expression

hn�1
j � exp ÿ

Dt
sj

� �

hn
j

� cj

Z tn�1

tn

exp ÿ

tn�1 ÿ s
sj

� �

ds
rn�1

0 ÿ rn
0

Dt
�38�

is integrated analytically. We end up with a recursive
formula

hn�1
j � exp ÿ

Dt
sj

� �

hn
j � cj

1 ÿ exp ÿ

Dt
sj

� �

Dt
sj

�rn�1
0 ÿ rn

0 �

�39�

for an update of the stress variables given in a similar
manner already by Herrmann and Peterson (1968) as well
as by Taylor, Pister and Goudreau (1970). The recursive
determination of the current variables hn�1

j requires the
quantities rn

0 , hn
j where j � 1; :::; N of the preceding time

step n and, therefore, they have to be stored in a data base.
The shown strain-driven integration algorithm is un-
conditionally stable for small and large time steps and it is
second order accurate.

A crucial aspect of the implementation of the integration
algorithm is its consistent linearization. The one-dimen-
sional viscoelastic tangent modulus

Cv;n�1
:�

orn�1

o�n�1 � 1 �
X

N

j�1

cj

1 ÿ exp ÿ

Dt
sj

� �

Dt
sj

8

<

:

9

=

;

l0

�40�

232



is computed as the derivative of the current state of stress

rn�1
� l0�

n�1
�

X

N

j�1

hn�1
j �41�

with respect to the current strain �
n�1. We end up with a

constant algorithmic tangent modulus Cv;n�1 for a con-
stant elastic quantity l0 and an unchanged time step Dt.

The extension of the shown formulation to a fully three-
dimensional approach is easily performed by introducing
tensor quantities. The total stresses of a linear elastic
Maxwell-material

rn�1
� rn�1

0 �

X

N

j�1

hn�1
j �42�

are determined from the elastic contribution

rn�1
0 � Ceεn�1

�43�

and from internal stress variables

hn�1
j � exp ÿ

Dt
sj

� �

hn
j � cj

1 ÿ exp ÿ

Dt
sj

� �

Dt
sj

�

rn�1
0 ÿ rn

0

�

�44�

which are described by second order tensors. The material
parameter cj is still employed as a scalar quantity in the
underlying constitutive rate equation for the three-di-
mensional extension

_hj �
1
sj

hj � cj _r0 �45�

and equivalently in the geometrical nonlinear setting (53).
Therefore, the model shown is restricted to isotropy. In the
general case, e.g. when orthotropic material is considered,
this quantity has to be represented by an unsymmetric
fourth order tensor c

j
.

The analytical linearization, i.e. the algorithmic material
tensor,

Cv;n�1
:�

orn�1

oεn�1 � 1 �
X

N

j�1

cj

1 ÿ exp Dt
sj

� �

Dt
sj

8

<

:

9

=

;

Ce;n�1

�46�

is computed analogously to the one-dimensional for-
mulation by the scalar quantity

1 �
X

N

j�1

cj

1 ÿ exp ÿ

Dt
sj

� �

Dt
sj

; �47�

which takes the viscoelastic characteristics into account,
and by the constant elasticity tensor Ce in case of linear
Hooke-material. The stress tensors rn

0 , hn
j , where

j � 1; :::; N need to be stored in a data base for the recursive
update of the stress quantities at the next time step n � 1.

Experimental investigations have shown that in many
cases viscoelastic behaviour is mainly related to the iso-
choric part of the deformation. Thus, the volume dilata-
tion is considered as being purely elastic. In contrast to
total viscoelasticity introduced before, a volumetric and
isochoric split of the stresses is required to formulate se-
parate material properties. The stresses for an isochoric
viscoelastic model

rn�1
� j In�1

ε 1 � dev rn�1
�48�

are composed of elastic hydrostatic pressure where j is the
bulk modulus and the viscoelastic deviatoric part

dev rn�1
� dev rn�1

0 �

X

N

j�1

hn�1
j �49�

of the stresses. For the computation of the history vari-
ables

hn�1
j � exp ÿ

Dt
sj

� �

hn
j

� cj

1 ÿ exp ÿ

Dt
sj

� �

Dt
sj

�

dev rn�1
0 ÿ dev rn

0

�

�50�

deviatoric stress tensors only are taken into account. The
tangential algorithmic material tensor

Cv;n�1
�Ce;n�1

vol
� 1 �

X

N

j�1

cj

1 ÿ exp ÿ

Dt
sj

� �

Dt
sj

8

<

:

9

=

;

Ce;n�1
iso

�j �1 
 1� � 1 �
X

N

j�1

cj

1 ÿ exp ÿ

Dt
sj

� �

Dt
sj

8

<

:

9

=

;

� 2l0

�

I ÿ
1
3
�1 
 1�

�

�51�

is split in a similar way and the viscoelastic approach is
applied only to the isochoric term.

2.3
Finite viscoelasticity
An extension of the presented formulation to finite strains
is easily accomplished because the generalized Maxwell-
element is chosen as the underlying viscoelastic material
structure. The rheological elements in parallel preserve the
linear structure of the formulation even for the generalized
Maxwell-material at finite strains.

The basis for the shown isochoric finite viscoelasticity is
a determination of deviatoric stresses in the reference
configuration (see Eq. (67) for the definition of
DEV (�))

DEV Sn�1
� DEV Sn�1

0 �

X

N

j�1

Hn�1
j �52�
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which are the elastic and viscoelastic parts of the second
Piola-Kirchhoff stress tensor. The description in the re-
ference configuration is required in order to preserve the
principle of objectivity. Based on the linear rate equation
for the internal stress variables Hj

_Hj �
1
sj

Hj � cjDEV _S0 �53�

the convolution integral and, subsequently, the recurrence
relation

Hn�1
j � cj

Z tn�1

0
exp ÿ

tn�1 ÿ s
sj

� �

d DEV ^S0�s�
ds

ds

� exp ÿ

Dt
sj

� �

Hn
j

� cj

1 ÿ exp ÿ

Dt
sj

� �

Dt
sj

�

DEV Sn�1
0 ÿ DEV Sn

0

�

�54�

for the stress update are derived. The formulation for finite
strains is developed by analogous steps as for small strains
in the preceding subsection. Similarly to the geometrically
linear case already shown, the stress quantities DEV Sn

0 , Hn
j

where j � 1; :::; N of the nonlinear elastic large strain
model have to be stored throughout one time step. A push-
forward transformation of the second Piola-Kirchhoff
stress tensor utilizing the current deformation gradient
Fn�1

dev sn�1
� U�DEV Sn�1

�
�

� Fn�1DEV Sn�1
�Fn�1

�

T

�55�

yields the Kirchhoff stresses in the current configuration.
Thus, the total stress tensor

sn�1
� Jn�1U 0 n�11 � dev sn�1

�56�

is composed of the elastic hydrostatic pressure and the
computed viscoelastic deviatoric part. In Eq. (56) ^U�J�
denotes the volumetric strain energy function which is
given in terms of the Jacobian J. The derivative with re-
spect to J is indicated by U 0

�

dU
dJ .

The algorithmic material tensor has its central sig-
nificance especially for the solution procedure of a non-
linear system to equations when using a Newton
algorithm. It results in a quadratic rate of convergence at
least in the neighbourhood of the solution. The tangent
modulus is computed as the linearization of the stress
integration procedure, i.e. the derivative of the stress
tensor with respect to the right Cauchy-Green strain tensor

Cv;n�1
iso

:� 2
oSn�1

iso

oCn�1 � 1 �
X

N

j�1

cj

1 ÿ exp ÿ

Dt
sj

� �

Dt
sj

8

<

:

9

=

;

Ce;n�1
iso

�57�

and yields a fourth order material tensor in the reference
configuration. From (57) the important conclusion can be
drawn that the structure of the viscoelastic material tensor
Cv;n�1

iso
for the algorithm shown is similar to the accom-

panying elastic tensor Cc;n�1
iso

which is merely modified by
a scalar quantity. This result leads to a very efficient nu-
merical implementation of the viscoelastic formulation.
Moreover, it is possible to form the viscoelastic tangent
Cv;n�1

iso
directly in the current configuration

C
v;n�1
iso

� U Cv;n�1
iso

� �

�

� 1 �
X

N

j�1

cj

1 ÿ exp ÿ

Dt
sj

� �

Dt
sj

8

<

:

9

=

;

U Ce;n�1
iso
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�

� 1 �
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cj

1 ÿ exp ÿ

Dt
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8

<

:

9

=

;

Ce;n�1
iso

�58�

and to avoid time-consuming push-forward transforma-
tions by the deformation gradient U�Cv;n�1

iso
�
�

. Therefore,
the constitutive rate equation reads

Lv�s� � Cv
: d �59�

as the Lie-derivative of the Kirchhoff stress tensor with the
rate of deformation tensor d and the total tangent operator
for an isochoric viscoelasticity

C
v;n�1

� C
e;n�1
vol

� 1 �
X

N

j�1

cj

1 ÿ exp ÿ

Dt
sj

� �

Dt
sj

8

<

:

9

=

;

C
e;n�1
iso

�60�

in the current configuration. It is given as an important
result of this subsection. The analogy of the elastic (74)
and the viscoelastic tangent modulus (58) is restricted only
to the principal structure of these fourth order tensors
because the contribution of the viscoelastic stress tensor
sn�1 (56) to Ce;n�1

iso
(60) (see Eq. (74) for the general form)

is determined through the integration of the material
history (Eqs. (52) to (56)). Only in case of a hyperelastic
approach the stresses s are computed directly from a
strain energy function (Eq. 71).

3
Experimental investigations
After having introduced the mathematical and the nu-
merical model, some aspects of experimental evaluation
and parameter identification will be considered in the
following subsections.

3.1
Time-temperature superposition principle
In this paper we are looking at thermorheologically simple
materials and, therefore, the time-temperature corre-
spondence principle is applicable. Its fundamental idea is
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that time and temperature have an equivalent influence on
viscoelastic properties of polymers: an increasing tem-
perature corresponds to an extension of the time scale of
the experiment or to a decreased load frequency in a dy-
namic experiment. Conducting measurements at various
temperatures can be interpreted as an affinitive shift of the
modulus-time or modulus-frequency diagram along the
time or frequency axis. The correspondence principle is
formulated mathematically for a modulus M as

^M�T1; t� � ^M
�

T2;
t

aT

�

�61�

at two different temperatures T1; T2 and time t. In (61)
frequency x and time t have an equivalent meaning, but it
has to be pointed out that frequency is a reciprocal time
quantity. The correspondence principle postulates the
existence of a corresponding data with the same value M at
temperature T2 for measured modulus M at temperature
T1, but at a different time quantity t and x, respectively. In
(61) aT is the factor to shift the modulus M along the time
scale according to the temperature increment
DT � T2 ÿ T1. Fig. 4 illustrates the shifting of a fictitious
series of experimental data. Here, results of a relaxation
experiment in the time interval t1 < t < t2 are plotted in
logarithmic scales for the modulus M which is determined
at different temperatures T1 < T2 < T3 < T4. The corre-
spondence principle provides the means to transform the
experimental data to a continuous material curve at a
constant temperature T1.

3.2
WLF-equation
Williams, Landel and Ferry (1955) introduced a quantita-
tive relation for the correspondence principle named after
them. The shifting factor at is given explicitly by

log aT � ÿ

17:4 �T ÿ TG�

51:6 � �T ÿ TG�
�62�

in a nearly universal manner. The constants 17.4, 51.6 vary
slightly for different polymers and the only material con-
stant required is the glass transition temperature TG ser-
ving as a reference temperature. This relation (62) is based
on the ‘free volume theory’ (see e.g. Eisele (1990)). Gen-
erally, the validity of the WLF-equation is indicated in the
range of

TG < T < TG � 100 �63�

in degrees Celsius.

3.3
Master-curves
In carrying out structural analyses, material moduli are
needed over a large time scale or frequency scale. For
technical reasons, the data are determined only within a
limited range. But these measurements are performed at
different temperatures. The experimentally determined
material curves are shifted using the time-temperature
correspondence principle, to give a continuous graph over
a large time scale, the so-called master-curve. This fre-
quency-dependent representation is a standard form in
polymer physics. An inverse Fourier-transform of the
complex modulus

Fÿ1
�ĉ��x� � ĉ0�x� � iĉ00�x�� � ĉ�t� �64�

would yield the accompanying diagram in the time do-
main. Generally, master-curves are utilized in the para-
meter-identification procedure.

The investigation on hand approximates the trans-
formed data by an analytical fourth order polynomial. The
coefficients of the terms are chosen by the least squares
method. Usually, these material curves are given in terms
of frequency.

Figure 5 shows that real part c0 and the imaginary part c00

of a normalized complex relaxation modulus c� for a
certain rubber material. The broken lines represent the
transformed experimental data while the solid curve de-
picts its polynomial approximation. Both moduli c0, c00 are
strongly frequency-dependent for the material considered
here, i.e. stiffness and damping characteristics vary with
frequency x at which an oscillation occurs.

3.4
Parameter-identification
After having introduced the mathematical and the nu-
merical model and, subsequently, having commented on
experimentally determined characteristics, the model has
to be identified with the measured quantities. We make
use of the generalized Maxwell-element and, thus, the
constitutive quantities to be chosen are lj, sj (see
Eq. (27)).

A large number of papers on this topic have been pub-
lished. Among others Baumgaertel and Winter (1989) as
well as Emri and Tschoegl (1993) developed algorithms to
fit the mathematical model to measured data. Here, a
collocation method mentioned by Tschoegl (1989) is taken
to determine constitutive parameters. This simple and
pragmatic procedure yields the constitutive data. An as-
sessment of the experimental results and a deeper insight
into the mathematical model could bring sophisticated
identification methods used e.g. by Mahnken and Stein
(1994) which represent a large field of research.

The shifted and smoothed data of Fig. 5 are approxi-
mated by Maxwell-elements, equally distributed along the
logarithmic frequency axis (see Fig. 6). The contributionsFig. 4. Time-temperature superposition principle
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of separate rheological elements, the cumulative curve and
smoothed experimental data are plotted. Only for simpli-
city the material parameters have been chosen on the basis
of the loss modulus c00 in this case. Therefore, dis-
crepancies between experiment and model curve are found
for the storage modulus c0. The deviation of measured data
and mathematical approximation could e.g. alternatively
be distributed to both the real and the imaginary part
when a refined identification algorithm is used.

4
Numerical examples
In this section, numerical examples are presented to il-
lustrate the characteristics of the material formulation and
to show the good performance of the algorithm.

Example 4.1. The viscoelastic model is tested by uniaxial
geometrically linear and linear elastic simulations using a
50 mm long sample discretized by one tri-linear finite
element. The constitutive parameters of the generalized
Maxwell-element consisting of 14 separate rheological
elements in parallel are chosen according to the material
given in Fig. 6. The specimen is excited by a step function
F�0� � F�t� � const. which starts oscillating about an

equilibrium position. Large amplitudes are rapidly re-
duced and the dynamic response converges against the
state of equilibrium (Fig. 7). The envelope of this viscously
damped free-vibration test is an exponential curve which
can clearly be seen.

Further characteristics of dissipative materials are ex-
plained in a path-controlled extension-compression test.
The sample is subjected to a cyclic deformation up to a
maximum of � � �10%. The load-deflection curve ex-
hibits a hysteresis (Fig. 8) which is a measure for the en-
ergy dissipated within one cycle of loading. If the
deformation is carried out at different periods T, i.e. at
different strain rates _�, the slope of the hysteresis increases
or decreases. This effect has its roots in the frequency-
dependent stiffness of viscoelastic materials (see Fig. 6).
Similarly, a frequency-dependent loss factor tan d is found.

Example 4.2. Half of a 50 mm long nearly incompressible
�m � 0:4995� rubber cylinder is modelled by 54 tri-quad-
ratic mixed brick-elements (according to the formulation
of Simo and Taylor (1991)). The specimen has fixed
boundary conditions at the top and is attached to a stiff
steel plate at the bottom. This steel plate is loaded by a
constant force F. The viscoelastic constants are chosen

Fig. 5. Master-curves, shifted and
smoothed data

Fig. 6. Master-curves, experimental data
and mathematical model
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according to Fig. 6. In contrast to example 4.1, the con-
tribution of the elastic spring is neglected, i.e. c0 � 0; to
yield a softer material.

Fig. 9 shows the state of deformation at different times t
of this creep test. Maxwell-elements with short relaxation
times sj deform fast at the beginning of the simulation and
the creep process slows down with represent to time.

Example 4.3. A particular challenge for ‘‘computational
mechanics’’ is the finite element analysis of tires. A variety
of difficult topics are involved, such as nearly in-
compressible material, very stiff reinforcing fibres and
elastic and inelastic properties of rubber material. As an
example relevant to an industrial application, the dyna-
mically excited cutout of a tire tread is considered
(Fig. 10).

The local phenomena of a vibrating tire tread can be
studied using a cutout which is modelled exactly through
the thickness. Merely the dimensions in the tread plane are
restricted. The admissibility of this model reduction is
investigated by Jagusch, Kaliske and Rothert. The em-
ployed discretization is divided up into 208 mixed brick-
elements with quadratic shape functions. Orthotropic fibre
layers are represented by 128 membrane-elements.

The reduced tread model is used to simulate vibrations.
Perpendicular to the surface the sample is excited by a step
load F�0� � F�t� � 10 N. The model is composed of iso-
tropic rubber layers idealized by the Neo-Hooke model
and orthotropic membranes according to the de St.
Venant-Kirchhoff approach. Making use of a second de-

scription, the elastic model is extended by the viscoelastic
approach. The viscoelastic constitutive parameters are
identified by using master-curves for the different rubber
components.

The plots in Fig. 11 depict the response u of the area
where the load is applied as a function of time. The
geometrically and physically nonlinear computations were
carried out for an elastic and a viscoelastic modelling.
The elastic response is characterized by an oscillation
about the state of equilibrium which is superimposed by a
large number of harmonic vibrations. The result is dif-
ferent when the viscoelastic model is applied. The excited
area vibrates at a dominating frequency of approximately
f � 850 Hz. Contributions of high frequency are also
found. But the amplitudes are strongly damped so that
the vibration changes over into a viscous relaxation
process.

5
Conclusions
A generalized Maxwell-model is derived from basic con-
siderations. To formulate the elastic component, any
elastic constitutive approach is suitable. Certain emphasis
is given to a volumetric-isochoric split of the deformation
and, here, the isochoric part is related to the viscoelastic
model. This constitutive assumption is confirmed by ex-
periments and is valid for a large number of materials.

Fig. 7. Free-vibration test

Fig. 8. Cyclic test

Fig. 9. Creep test

Fig. 10. Tire segment and tread cutout
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It is shown that the main theoretical and numerical as-
pects of this geometrically linear and nonlinear viscoe-
lastic formulation are identical. A stress-update in the
reference configuration is necessary for finite viscoelasti-
city to fulfil the principle of objectivity. The symmetrical
material operator can be derived analytically as a linear-
ization of the stress integration algorithm. No restriction
to the reference configuration is required for the compu-
tation of the material tensors in the case of isotropic elastic
properties at finite strains.

The description is completed by comments on experi-
mental evaluations and on parameter identification to put
the mathematical and numerical model into practice. The
combination of the viscoelastic approach we have pre-
sented with the finite element method provides an efficient
numerical tool for large scale computations of time- and
frequency-dependent materials.

Appendix

A
Definitions
The definition of the deviator of a second order tensor (�)
in the current configuration is given by

dev ��� :� ��� ÿ

1
3

tr ���1 �65�

and the deviator of a fourth order tensor ��� in the current
configuration is

dev��� :���� ÿ
1
3

1 
 ���� : 1� ÿ
1
3
���� : 1� 
 1

�

1
9
�1 : ��� : 1�1 
 1

�66�

where 1 is a second order unit tensor. In the reference
configuration the deviator of a second order tensor ac-
cording to

DEV��� :� ��� ÿ

1
3
�C : ����Cÿ1

�67�

is used where Cÿ1 is the inverse of the right Cauchy-Green
tensor.

B
Finite elasticity
A brief representation of finite elasticity in the current
configuration is shown for a better understanding of the
viscoelastic approach. The accompanying elastic for-
mulation in the reference configuration is easily obtained.
Further details concerning finite elasticity are presented
e.g. by Simo and Taylor (1991), van den Bogert and de
Borst (1994) and Miehe (1994). Atluri and Reissner (1989)
discuss in detail the volumetric and isochoric kinematic
split (see e.g. equation (69)) as well as variational theorems
for incompressible and nearly incompressible elasticity.

A fundamental kinematic quantity to describe de-
formation is the deformation gradient F. It defines the
symmetrical right Cauchy-Green tensor C :� FTF and the
symmetrical left Cauchy-Green tensor b :� F FT . By line-
arization of the Lagrangian strain tensor E � 1

2 �C ÿ G�
where G is the metric tensor in the reference configuration
the small strain measure ε :� Elin is obtained. On the basis
of strain tensor invariants e.g. for b

Ib � tr b

IIb �
1
2
�tr2 b ÿ tr b2

�

IIIb � det b � J2

�68�

constitutive elastic models are formulated.
In the context of this study the deformation gradient is

splitted multiplicatively

F � �J
1
31�F �69�

which goes back to Flory (1961) to yield a volume-pre-
serving part Fiso � F (det F � 1� and the volumetric de-
formation Fvol � J

1
31�det F � J�: With this quantity at

hand we define e.g. the volume-preserving part b � F F
T

of
the left Cauchy-Green tensor.

The elastic and inelastic properties of a certain material
often exhibit different behaviour with respect to volu-
metric or deviatoric deformations. This phenomenon is
taken into account by applying an additive split of the
strain energy function

W �
^U�J� � ^W�Ib; IIb� �70�

as the constitutive basis of the elastic properties. The first
part U is a function of the volume-change J while the
second term W is determined by the invariants Ib; IIb of
the volume-preserving part of the left Cauchy-Green ten-
sor b. Instead of an invariant based function a formulation
in terms of principal stretches could be employed (see e.g.
Ogden 1982).

The Kirchhoff stress tensor s and the accompanying
material tensor in the current configuration Ce are ob-
tained analytically. Because of the additive structure of the
strain energy, the stress tensor

s � svol � siso � JU 01 � 2 dev
� oW

ob
b
�

�71�

Fig. 11. Free-vibration test of a tire tread
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is splitted into the hydrostatic pressure and the deviatoric
component. In order to obtain an iterative solution pro-
cedure for the nonlinear system of equations, the resulting
formulation is linearized in closed form. Similarly to the
computation of the stresses the general form of the elastic
tangent operator

C
e
� C

e
vol
� C

e
iso

�72�

is composed of a volumetric

Ce
vol
� J2U 00

�1 
 1� � J U 0

�1 
 1 ÿ 2I� �73�

and an isochoric material tensor

C
e
iso
�

2
3

tr s
�

I ÿ
1
3
�1 
 1�

�

ÿ

2
3
�dev s
 1

� 1 
 dev s� � 4 dev b
o2W

ob
2 b

" #

�74�

where 1 and I are second order and fourth order unity
tensors, respectively. First and second order derivatives of
U with respect to J are denoted U 0 and U 00.
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