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Abstract A nonlinear formulation of the Reproducing
Kernel Particle Method (RKPM) is presented for the large
deformation analysis of rubber materials which are con-
sidered to be hyperelastic and nearly incompressible. In
this approach, the global nodal shape functions derived
on the basis of RKPM are employed in the Galerkin ap-
proximation of the variational equation to formulate the
discrete equations of a boundary-value hyperelasticity
problem. Existence of a solution in RKPM discretized
hyperelasticity problem is discussed. A Lagrange multi-
plier method and a direct transformation method are
presented to impose essential boundary conditions. The
characteristics of material and spatial kernel functions are
discussed. In the present work, the use of a material kernel
function assures reproducing kernel stability under large
deformation. Several of numerical examples are presented
to study the characteristics of RKPM shape functions and
to demonstrate the effectiveness of this method in large
deformation analysis. Since the current approach employs
Cm global shape functions, the method demonstrates a
superior performance to the conventional finite element
methods in dealing with large material distortions.

1
Introduction
The analysis of rubber is a challenging task in computa-
tional mechanics due to extremely large deformations and
the nearly incompressible nature of rubber. Many finite
element methods (FEM) have been developed to handle
the volumetric locking resulting from the in-
compressibility constraint. Among them are the mixed
formulation [Herrmann (1965); Key (1969); Tong (1969);
Liu, Belytschko, and Chen (1988)], selective reduced in-
tegration [Malkas and Hughes (1978)], perturbed Lagrange
formulation [Bercovier (1978); Chang, Saleeb, and Li
(1991); Chen, Han, Wu, and Duan (1995c)], pressure
projection method [Chen et al. (1994, 1995a, 1995b)], in-

compressible plane-strain element [Liu, Ong, and Uras
(1985)], and rank-one filtering method [Chen, Pan, and
Chang (1995d)] to suppress pressure oscillation. In addi-
tion to the difficulties in dealing with rubber in-
compressibility, the finite element methods frequently
break down when applied to engineering elastomers, in
which the excessive deformation in rubber components
leads to mesh entanglement.

Recently, considerable research in computational me-
chanics has been devoted to the development of meshless
methods. In these methods, the domain of interest is dis-
cretized by a scattered set of points. The success of
meshless methods is due to the development of new shape
functions that allow the interpolation of field variables to
be accomplished at a global level and therefore avoid the
use of a mesh. These methods are ideal for model refine-
ment, adaptivity, fracture problems, and large deformation
problems. Several meshless methods have been developed,
including Smooth Particle Hydrodynamics (SPH) [Mon-
aghan (1982, 1988), Libersky et al. (1993)], Diffuse Element
Method (DEM) [Nayroles, Touzot, and Villon (1992)],
Element Free Galerkin (EFG) [Belytschko et al. (1994a,
1994b, 1994c, 1995), Lu, Belytschko, and Gu (1994)], and
Reproducing Kernel Particle Method (RKPM) [Liu et al.
(1995a, 1995b, 1995c, 1995d, 1995e, 1996a, 1996b)].

The earliest development in meshless methods was the
SPH method. The foundation of the SPH method is the
kernel estimate introduced by Monaghan (1982, 1988). In
this method, partial differential equations, such as con-
servation laws, are transformed into integral equations,
and the kernel estimate then provides the approximation
to estimate field variables at discrete points. Since the
functions are evaluated only at points, the use of a mesh is
no longer required. The method is quite successful in
dealing with astrophysics involving fluid masses moving
arbitrarily in an infinite domain. However, when the SPH
method is applied to finite domain problems, the method
does not perform as accurately as the finite element
methods [Johnson, Peterson, and Stryrk (1993)].

The first meshless method developed for structural
analysis was due to Nayroles, Touzot, and Villon (1992).
They proposed a Diffuse Element Method that employs
moving least-squares interpolants in conjunction with the
Galerkin method to provide a mesh-free computational
formulation. The accuracy of the method was later im-
proved by Belytschko et al. (1994a, 1994b) and was called
the Element Free Galerkin (EFG) method. In EFG, the
derivatives of interpolants that were omitted in DEM are
included and a more accurate numerical integration
method is employed to enhance solution accuracy. The
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essential boundary conditions are enforced by the use of
the Lagrange multiplier method. Lu, Belytschko, and Gu
(1994) later introduced a modified variational method to
handle essential boundary conditions.

Alternatively, Reproducing Kernel Particle Methods
were proposed by Liu et al. (1995a, 1995b) to improve the
accuracy of the SPH method for finite domain problems.
In this method, the kernel function is modified by in-
troducing a correction function to meet the reproducing
conditions. The resulting modified kernel function exactly
reproduces polynomials to a specific order and thereby
fulfills the completeness requirement. The shape functions
developed from this method were later proven to be
equivalent to moving least-squares kernel interpolants if
linear basis functions were used [Liu, Li, and Belytschko
(1995e)]. Liu et al. (1995c, 1995d, 1996b) also introduced
wavelets as the kernel functions and successfully applied
RKPM to multiple scale analysis.

In this work, we extend RKPM to nonlinear hyper-
elasticity. A material kernel function is introduced to form
displacement shape functions. This development allows
the modeling of highly deformed structure without the
continuous re-adjustment of dilation parameters to ac-
commodate the changing distance between particles. The
material kernel function is particularly useful in a La-
grangian formulation with reference to the original con-
figuration. The method can also be used in a Lagrangian
formulation with reference to current configuration by a
mapping through the deformation gradient. One of the
differences between RKPM and FEM is the treatment of
essential boundary conditions. We first discuss a Lagrange
multiplier method to handle essential boundary conditions
in hyperelasticity. A modified RKPM shape function that
possesses Kronecker delta properties is developed by a
transformation method to impose essential boundary
conditions. The solution existence conditions of RKPM
discretization in hyperelasticity problems are discussed
following the similar analysis presented by Chen, Han,
Wu, and Duan (1995c) for FEM.

In this study, higher-order rubber strain energy density
functions are used to better represent the nonlinear be-
havior of rubber. Several large deformation problems are
analyzed to demonstrate the effectiveness of this method
and to study the effect of the dilation parameter and
particle spacing irregularity on the RKPM solution accu-
racy.

2
Review of rubber hyperelasticity
The behavior of rubber is classified as hyperelastic in
which the strain energy density function can be defined.
The choice of reference configuration influences the ki-
nematics, kinetics, constitutive law, and RKPM formula-
tion. In this paper, the original configuration is selected as
the reference configuration in the RKPM calculation. The
second Piola-Kirchhoff stress and Green-Lagrangian strain
are used as the stress and strain measures, respectively.

Consider an elastic body which initially occupies a re-
gion XX with boundary CX: The deformation of a material
particle X 2 XX at time t is described by x � u�X; t�; and
the displacement of the particle X is defined by

u�X; t� � u�X; t� ÿ X � x�X; t� ÿ X �2:1�

where u is injective in XX and the deformation is or-
ientation-preserving. We consider the reference frame to
be a rectangular Cartesian system. The deformation gra-
dient, F, Green-Lagrangian strain, E, and Green deforma-
tion tensor, G, are defined by

Fij �
oxi

oXj
�

oui

oXj
� dij �2:2�

Eij �
1
2
�FkiFkj ÿ dij� �2:3�

Gij � 2Eij � dij �2:4�

The 2nd Piola Kirchhoff stress S- the energetically con-
jugate stress of Green-Lagrangian strain – is defined by

Sij �
oW
oEij

�2:5�

where W is the strain energy density function which is
given for a hyperelastic material. The incremental stress-
strain relation is given by

DSij � CijklDEkl �2:6�

where

Cijkl �
o2W

oEijoEkl
�2:7�

and Cijkl is the material response tensor. As discussed by
Chang, Saleeb, and Li (1991), and Chen, Wu, and Pan
(1995a, 1995b), the strain energy density function for
nearly incompressible hyperelastic materials can be writ-
ten as

W�I1; I2; J� �W�I1; I2� � ~W�J� �2:8�

W�I1; I2� and ~W�J� are the distortional and dilatational
strain energy density functions, respectively, given by

W�I1; I2� �
X

1

m�n�1

Amn�I1 ÿ 3�m�I2 ÿ 3�n �2:9�

~W�J� �
k
2
� J ÿ 1�2 �2:10�

where Amn are material constants, k is the bulk modulus,
and I1 and I2 are the reduced invariants proposed by Penn
(1970) to separate the distortional and dilatational de-
formation:

I1 � I1Iÿ1=3
3 �2:11�

I2 � I2Iÿ2=3
3 �2:12�
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and I1; I2; I3 are the first, second, and third invariants of
the Green deformation tensor, respectively, and J � I1=2

3 .
The second Piola-Kirchhoff stress associated with the
strain energy density function defined in Eq. (2.8) is

Sij � 2�K1Iÿ1=3
3 �dij ÿ

1
3

I1Gÿ1
ij �

� K2Iÿ2=3
3 �I1dij ÿ Gij ÿ

2
3

I2Gÿ1
ij �� � PJGÿ1

ij �2:13�

where

Kn �
oW
oIn

; n � 1; 2 �2:14�

It can be shown [Chang, Saleeb, and Li (1991)] that the
hydrostatic pressure P can be related to ~W�J� by

P �
o ~W
oJ

�2:15�

Similarly, the material response tensor is obtained ac-
cording to Eq. (2.7)

Cijkl � Cijkl � ~Cijkl �2:16�

The explicit expressions of Cijkl and ~Cijkl are given in Ap-
pendix A.

3
Reproducing kernel particle method

3.1
Construction of a kernel function
Consider the following kernel estimate of a function u�x�

uR
�x� �

Z

1

ÿ1

U�xÿ s�u�s�ds �3:1�

where uR
�x� is the reproduced function and U�xÿ s� is the

kernel function. If the kernel function is a Dirac delta
function, then uR

�x� exactly reproduces u�x�: In practice,
the domain is finite in structural problems. Furthermore,
the Dirac delta function is difficult to deal with numeri-
cally, and functions such as Gaussian function or spline
functions with small supports are usually used. Hence in
computation Eq. (3.1) is approximated by

ua
�x� �

Z

Xx

Ua�xÿ s�u�s�ds �3:2�

where

Ua�xÿ s� �
1
a

U
xÿ s

a

� �

�3:3�

and a is called the dilation parameter which controls the
size of support. We use ua

�x� to denote the reproduced
displacement generated by the kernel estimate with a

kernel function of support measure a. In SPH applications,
Eq. (3.2) is applied to discretized finite domains, and the
numerical solutions exhibit amplitude and phase errors in
addition to solution deterioration near boundaries. Liu et
al. (1995c) explained this phenomenon by the failure to
meet the completeness requirement. To address this pro-
blem, consider the following Taylor series expansion of
u�s� :

u�s� �
X

1

n�0

�sÿ x�n

n!

u�n��x� �3:4�

where u�n� � dnu=dxn
: Equation (3.2) is rearranged by

substituting Eq. (3.4) into Eq. (3.2) to yield

ua
�x� � m0�x�u�x� �

X

1

n�1

�ÿ1�n

n!

mn�x�u�n��x� �3:5�

where mn�x� is the moment defined by

mn�x� �
Z

Xx

�xÿ s�nUa�xÿ s�ds �3:6�

To preserve N-th order completeness in ua
�x�; the kernel

function has to satisfy the following conditions:

m0 � 1; �3:7�

mk � 0 for k � 1; :::;N �3:8�

Equations (3.7) and (3.8) are called the reproducing con-
ditions (1995d). Not all the kernel functions satisfy these
reproducing conditions. For example, the traditional SPH
method fails to handle bounded domains due to the failure
to meet these reproducing conditions. Liu et al. (1995c)
suggested Eq. (3.2) be rewritten as

ua
�x� �

Z

Xx

Ua�x; xÿ s�u�s�ds �3:9�

and

Ua�x; xÿ s� � Ua�xÿ s�C�x; xÿ s� �3:10�

where Ua�x; xÿ s� is the modified kernel function, and
C�x; xÿ s� is called the correction function. C�x; xÿ s� is
constructed to avoid the difficulties resulting from finite
domain effects and to minimize the amplitude and phase
error. The correction function is expressed by an N-th
order polynomial of �xÿ s�; i.e.,

C�x; xÿ s� �
X

N

i�0

bi�x��xÿ s�i � HT
�xÿ s�b�x�

�3:11�

where

HT
�xÿ s� � �1; xÿ s; �xÿ s�2; . . . ; �xÿ s�N � �3:12�
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bT
�x� � b0�x�; b1�x�; . . . ; bN�x�� � �3:13�

and bi�x�’s are functions of x which are determined
through satisfying the reproducing conditions. By sub-
stituting Eqs. (3.10), (3.11) and (3.4) into Eq. (3.9), one can
obtain

ua
�x� � m0�x�u�x� �

X

1

n�1

�ÿ1�n

n!

mn�x�u�n��x� �3:14�

where

mn�x� �
Z

Xx

�xÿ s�nC�x; xÿ s�Ua�xÿ s�ds

�

X

N

k�0

bk�x�mn�k�x�
�3:15�

The reproducing conditions of this modified kernel func-
tion are

m0�x� � 1 �3:16�

and

mi�x� � 0 for i � 1; . . . ;N �3:17�

Eqs. (3.16) and (3.17) represent the following set of
equations

M�x�b�x� � g �3:18�

where

M�x� �

m0�x� m1�x� . . . mN�x�
m1�x� m2�x� . . . mN�1�x�
� � � �

mN�x� mN�1�x� . . . m2N�x�

2

6

6

4

3

7

7

5

�3:19�

and

gT
� HT

�0� � �1; 0; . . . ; 0� �3:20�

and therefore b�x� can be solved by

b�x� � Mÿ1
�x�g �3:21�

Finally, the modified kernel function Ua�x; xÿ s� is
obtained by

Ua�x; xÿ s� � Ua�xÿ s�C�x; xÿ s�

� Ua�xÿ s�HT
�xÿ s�Mÿ1

�x�H�0�

�3:22�

We remark that if u is an N-th order polynomial, the
reproducing equation in Eq. (3.9) with the modified kernel
Ua constructed to meet reproducing conditions up to the
N-th order exactly reproduces u.

The discretized reproducing equation is obtained by
performing numerical integration in Eq. (3.9). An example
of discretization is to employ the trapezoidal rule to the
reproducing equation to yield

ua
�x� �

X

NP

I�1

Ua�x; xÿ xI�u�xI�DxI �
X

NP

I�1

Wa
I �x�dI

�3:23�

and

Wa
I �x� � Ua�x; xÿ xI�DxI �3:24�

where NP is the total number of particles, and Wa
I �x�’s can

be interpreted as the shape functions of ua
�x�:

In principle, we choose Ua�xÿ xI� to be positive and
have a maximum value at x � xI : The function should
quickly approach zero as jxÿ xI j exceeds a small number
so that the shape function Wa

I �x� associated with node I
has interaction with only a small group of surrounding
nodes to provide computational efficiency. Many kernel
functions have been proposed to achieve this behavior; for
example, the exponential function proposed by Belytschko
et al. (1994a, 1994c) or Gaussian function and cubic spline
function used by Liu et al. (1995a, 1995b). In this paper, we
employ the cubic spline function as the kernel function:

Ua�xÿ xI�

�

2
3ÿ 4�xÿxI

a �
2
� 4�xÿxI

a �
3 for 0 � xÿxI

a

�

�

�

�

�

1
2

4
3ÿ 4�xÿxI

a � � 4�xÿxI
a �

2
ÿ

4
3 �

xÿxI
a �

3 for 1
2 <

xÿxI
a

�

�

�

�

� 1

0 otherwise

8

>

<

>

:

�3:25�

Several remarks are given below:

1. Since Ua is chosen to be a positive function,
1; xÿ s; �xÿ s�2; . . . ; �xÿ s�N
� 	

are linearly in-
dependent with respect to Ua; and hence M is non-
singular.

2. The smoothness of the shape function Wa
I �x� depends

greatly on the smoothness of the kernel function Ua;

i.e., if Ua�xÿ xI� 2 Cm
�Xx�, then Wa

I �x� 2 Cm
�Xx�:

3. The moment matrix M and its derivatives need to be
integrated using the same integration rule as that was
used in the discretization of the reproducing equation
(Eq. (3.23)) to preserve the reproducing conditions in
the discrete sense.

4. In the case where the support of Ua�xÿ xI� does not
intersect with the boundary, i.e., if �xI ÿ a; xI � a�
� Xx; then mn �

R a
ÿa znUa�z�dz; and M degenerates to

constant matrix when particles are equally spaced and
trapezoidal rule is used for integration. Figure 1 shows
that the shape of the modified kernel function
Ua�xÿ xI� (constructed using a set of linear basis
functions f1; xÿ xIg� differs from that of the
original kernel function Ua�xÿ xI� only when
�xI ÿ a; xI � a� 6� Xx:

5. The shape function Wa
I �x� does not possess Kronecker

delta properties, i.e., Wa
I �xJ� 6� dIJ :
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3.2
Multi-dimensional RKPM shape functions
The extension of Ua to the multi-dimensional case can be
achieved by tensor products of the one-dimensional kernel
functions

Ua�xÿ xI� �
Y

nsd

i�1

1
ai

U
xi ÿ xiI

ai

� �

�3:26�

where nsd is the number of spatial dimensions and ai is the
dilation parameter in the i-th dimension. In this con-
struction, the supports of kernel functions are rectangular
and hexahedral in geometries, each with center xI and
dimension 2a1 � 2a2 and 2a1 � 2a2 � 2a3; in two- and
three-dimensional problems, respectively. Alternatively, a
multi-dimensional kernel function can be constructed by

U
dl

a

� �

�

2
3ÿ 4 dI

a

ÿ �2
�4 dI

a

ÿ �3
for 0 � dI

a �
1
2

4
3ÿ 4 dI

a

ÿ �

� 4 dI
a

ÿ �2
ÿ

4
3

dI
a

ÿ �3
for 1

2 �
dI
a � 1

0 otherwise

8

>

<

>

:

�3:27�

where

dI � kxÿ xIk �3:28�

Kernel functions defined using Eq. (3.27) have supports of
circular and spherical shapes, each with center xI and ra-
dius a; in two- and three-dimensional problems, respec-
tively.

The correction function for the multi-dimensional case
is expressed as

C�x; xÿ xI� �
X

N

jaj�0

ba1a2...ansd
�x��x1 ÿ xI1�

a1
�x2 ÿ xI2�

a2

. . . �xnsd ÿ xInsd
�

ansd
�3:29�

where

j a j�
X

nsd

i�1

ai �3:30�

The coefficients, ba1a2...ansd
�x�’s, are determined from the

reproducing conditions. Finally, the multi-dimensional
RKPM interpolation is obtained by

ua
i �x� �

X

NP

I�1

Ua�x; xÿ xI�ui�xI�DVI �
X

NP

I�1

Wa
I �x�dil

�3:31�

where

Wa
I �x� � Ua�x; xÿ xI�DVI �3:32�

and DVI is the volume associated with particle I.

4
RKPM for rubber hyperelasticity

4.1
Variational form and RKPM Galerkin approximation
The simplest and perhaps the most general statement in
finite elasticity is to use the first Piola-Kirchhoff stress rij
and consider the following equilibrium equation

orji

oXj
� bi � 0 in XX �4:1�

where b is the body force per unit undeformed volume.
The body deformation is subjected to the following natural
and essential boundary conditions

rjiNj � hi on Chi
X �4:2�

ui � gi on Cgi
X �4:3�

where h is the surface force per unit undeformed area on
the natural boundary Chi

X ; and g is the prescribed dis-
placement on the essential boundary Cgi

X : For hyperelastic
problem, Eqs. (4.1) and (4.2) can be obtained from the
stationary conditions of the minimization of the following
functional

U�u� �
Z

XX

W�u�dXÿ
Z

XX

uibidXÿ
Z

C
hi
X

uihidC

�4:4�

where W is the strain energy density function. In the finite
element approach, the essential boundary conditions do
not appear in Eq. (4.4) and are imposed by the appropriate
selection of test and trial function spaces such that the trial
functions satisfy essential boundary conditions and the
test functions are homogeneous on the essential bound-
aries. Because shape functions in finite element methods
possess Kronecker delta properties, the aforementioned
kinematic constraints can be easily implemented.

In RKPM, on the other hand, shape functions do not
possess the Kronecker delta properties. A Lagrange mul-
tiplier method is employed to introduce the essential
boundary conditions by modifying the functional U to the
following form:

Fig. 1. Kernel Function and modified kernel function
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U�u; k� �
Z

XX

W�u�dXÿ
Z

C
hi
X

ki�ui ÿ gi�dX

ÿ

Z

XX

uibidXÿ
Z

C
hi
X

uihidC
�4:5�

where k is the Lagrange multiplier. Note that the mini-
mization problem of Eq. (4.4) subjected to constraint
conditions (4.3) is equivalent to a saddle point problem of
Eq. (4.5). Taking the variation of Eq. (4.5) leads to

dU�u; k� �
Z

XX

dEijSijdXÿ
Z

C
gi
X

dki�ui ÿ gi�dC

ÿ

Z

C
gi
X

duikidCÿ
Z

XX

duibidXÿ
Z

C
hi
X

duihidC

�4:6�

For arbitrary dui 6� 0 and dki 6� 0; the stationary condi-
tions are
Z

XX

dEijSijdXÿ
Z

C
gi
X

duikidCÿ
Z

XX

duibidX

ÿ

Z

C
hi
X

duihidC � 0 �4:7�

and
Z

C
gi
X

dki�ui ÿ gi�dC � 0 �4:8�

Note that
R

XX

dEijSijdX �
R

XX

dFijrijdX: We shall now con-

sider incremental small deformations superimposed on a
finitely deformed configuration. Let n and v denote the
load step counter and iteration counter, respectively.
Suppose the body force, the surface traction, and pre-
scribed displacements at �n� 1�-th load step are given,
and the deformation state of the body at �n� 1�-th load
step and v-th iteration is known. We are seeking the in-
crements Du 2 H1 and Dk 2 H0

; defined by
xv�1

n�1 � xv
n�1 � Du and kv�1

n�1 � kv
n�1 � Dk; such that for all

du 2 H1 and dk 2 H0 the following incremental equations
are satisfied,

Z

XX

1
2

Fpi
odup

oXj
� Fpj

odup

oXi

� �v

n�1

" #

�Cijkl�
v
n�1

�

1
2

Fqk
oDuq

oXl
� Fql

oDuq

oXk

� �v

n�1

� �

dX

�

Z

XX

odui

oXj
�Tijkl�

v
n�1

oDuk

oXl
dXÿ

Z

C
gi
X

duiDkidC

�

Z

XX

dui�bi�n�1dX�
Z

C
hi
X

dui�hi�n�1dC

ÿ

Z

XX

�dEijSij�
v
n�1dX�

Z

C
hi
X

dui�ki�
v
n�1dC �4:9�

Z

Cgi
X

dkiDuidC �
Z

Cgi
X

dki�gi ÿ ui�
v
n�1dC �4:10�

where Tijkl � dikSjl is the initial stress tensor and H1 and
H0 denote Sobolev spaces with degree one and zero, re-
spectively. To construct discrete RKPM equations, the
discrete displacements are formulated by

Dua
i �

X

NP

I�1

Wa
I Ddil and dua

i �
X

NP

I�1

Wa
I ddil where the sub-

script ‘‘a’’ refers to the RKPM discretization measured by
the dilation parameter a. As discussed by Belytschko, Lu,
and Gu (1994a), a simple linear Lagrange interpolation
function H1�c�; where c is the curvilinear coordinate along

the boundary, can be used to interpolate Dka
i �

X

NB

I�1

HIDkil

and dka
i �

X

NB

I�1

HIdkil on the essential boundaries dis-

cretized by NB points. The final RKPM discrete incre-
mental equations are

K G
GT 0

� �v

n�1

Dd
Dk

� �

�

Df
Dq

� �v

n�1
�4:11�

where

K � KM
� KG

�4:12�

Df � f ext
ÿ f int

�4:13�

KG
IJ �

Z

XX

BGT

I TBG
J dX �4:14�

KM
IJ �

Z

XX

BMT

I CBM
J dX �4:15�

GIJ � ÿ

Z

XX

Wa
I HJIdX �4:16�

f ext
I �

Z

XX

Wa
I bdX�

Z

C
hi
X

Wa
I hdC�

Z

C
gi
X

Wa
I k

adC

�4:17�

f int
I �

Z

XX

BGT

I NdX �4:18�

DqI �

Z

Cgi
X

HIV�uÿ g�dC �4:19�

For two-dimensional problems,

BG
I �

oWa
I

oX1
0

0 oWa
I

oX2
Wa

I
oX2

0

0 oWa
I

oX1

e
Wa

I
X1

0

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

�4:20�
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BM
I �

F11
oWa

I
oX1

F21
oWa

I
oX1

F12
oWa

I
oX2

F22
oWa

I
oX2

F11
oWa

I
oX2
� F12

oWa
I

oX1
F21

oWa
I

oX2
� F22

oWa
I

oX1

eF33
Wa

I
X1

0

2

6

6

6

6

4

3

7

7

7

7

5

�4:21�

C �

C1111 C1122 C1112 C1133

C2222 C2212 C2233

C1212 C1233

sym C3333

2

6

6

4

3

7

7

5

�4:22�

T �

S11 0 S12 0 0
0 S22 0 S21 0

S21 0 S22 0 0
0 S12 0 S11 0
0 0 0 0 S33

2

6

6

6

6

4

3

7

7

7

7

5

�4:23�

I �
1 0
0 1

� �

�4:24�

V �
v11 0

0 v22

� �

;

vii �
1 if displacement in i-th direction is prescribed

0 otherwise

�

�4:25�

N �

S11

S22

S12

S33

2

6

6

4

3

7

7

5

�4:26�

e �
1 for axisymmetric
0 for plane strain

�

�4:27�

The Lagrange multiplier method has several drawbacks:

1. The coefficient matrix in Eq. (4.11) is not positive
definite, and also not banded.

2. A different set of interpolation functions are needed
for displacement defined in the domain and for
Lagrange multipliers defined on the boundaries.

3. The Lagrange multipliers defined on the essential
boundaries need to be solved in addition to the dis-
placements at each incremental step in nonlinear
computation.

To alleviate these difficulties, a direct transformation
method is introduced in the next section.

4.2
A direct transformation method
The need to employ the Lagrange multiplier method in the
RKPM formulation discussed in the previous section is
because the RKPM shape function does not pass through
data. With this knowledge, we shall develop a modified
RKPM shape function that possesses Kronecker delta
properties.
Recall the RKPM shape functions for ua:

ua
i �X� �

X

NP

I�1

Wa
I �X�diI �4:28�

Letting ^dij � ua
i �XJ�; we have the following conditions:

^dij �
X

NP

I�1

Wa
I �XJ�diI �

X

NP

I�1

AIJdiI �4:29�

or

diI �
X

NP

K�1

Aÿ1
KI

^diK �4:30�

where

AIJ � Wa
I �XJ� �4:31�

By substituting Eq. (4.30) into Eq. (4.28), one can obtain

ua
i �X� �

X

NP

I�1

Wa
I �X�diI �

X

NP

I�1

X

NP

K�1

Wa
I �X�A

ÿ1
KI

^diK

�

X

NP

K�1

^Wa
K�X�^diK �4:32�

where

^Wa
K�X� �

X

NP

I�1

Aÿ1
KI Wa

I �X� �4:33�

Note that ^Wa
I �XJ� �

X

NP

K�1

Aÿ1
IK Wa

K�XJ� �
X

NP

K�1

Aÿ1
IK AKJ � dIJ ;

and ^diI � ua
i �XI� is the nodal value of ua

i .
We shall now deal with a minimization problem using

the functional given in Eq. (4.4). The corresponding var-
iational statement is:
Given W; b; h; g; find u 2 H1

g �H
1
g � fv : v 2 H1

; vi � gi
on Cgi

Xg�; such that for all du 2 H1
0 ; �H

1
0 � fv : v 2 H1

;

vi � 0 on Cgi
Xg�; the following equation is satisfied:

dU�u� �
Z

XX

dEij�u�Sij�u�dX

ÿ

Z

XX

duibidXÿ
Z

C
hi
X

duihidC � 0 �4:34�

Let dua and ua be the RKPM approximation of du and u,
respectively. The problem statement of the Galerkin ap-
proximation is:
Given W; b; h; g; find ua

2 H1
g ; such that for all dua

2 H1
0 ;

the following equation is satisfied

dU�ua
� �

Z

XX

dEij�dua
�Sij�u

a
�dX

ÿ

Z

XX

dua
i bidXÿ

Z

C
hi
X

dua
i hidC � 0 �4:35�
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Note that ua and dua satisfy the following boundary
conditions,

ua
i �XI� �

X

NP

J�1

^Wa
J �XI�

^diJ � gi�XI� 8I 2 ggi �4:36�

dua
i �XI� �

X

NP

J�1

^Wa
J �XI�d^diJ � 0 8I 2 ggi �4:37�

where ggi denote a set of particle numbers in which the
associated particles are located on Cgi

X . Since ^Wa
I �XJ� � dIJ ;

the unknown coefficients can be directly obtained:

^diI � gi�XI� 8I 2 ggi �4:38�

d^diI � 0 8I 2 ggi �4:39�

The equation described in Eq. (4.35) is solved in-
crementally and the problem statement for the incremental
equation is:
Given bn�1; hn�1;Dgn�1; xv

n�1; Fv
n�1; Sv

n�1; find Dua
2 H1

Dg ;

such that for all dua
2 H1

0 ; the following incremental
equation is satisfied:

Z

XX

1
2

Fpi
odua

p

oXj
� Fpj

odua
p

oXi

� �v

n�1

" #

�Cijkl�
v
n�1

�

1
2

Fqk
oDua

q

oXl
� Fql

oDua
q

oXk

� �v

n�1

� �

dX

�

Z

XX

odua
i

oXj
�Tijkl�

v
n�1

oDua
k

oXl
dX

�

Z

XX

dua
i �bi�n�1dX�

Z

C
hi
X

dua
i �hi�n�1dC

ÿ

Z

XX

�dEijSij�
v
n�1dX �4:40�

By substituting Eq. (4.28) into Eq. (4.35), in conjunction
with the tangent operator in Eq. (4.40), the following dis-
cretized RKPM incremental equilibrium equation is ob-
tained:

^KD ^d � D^f �4:41�

where

^K � Kÿ1KKÿT
�4:42�

D^f � Kÿ1
�f ext

ÿ f int
� �4:43�

D^d � KÿTDd �4:44�

Kij � AijI �4:45�

and I is the identity matrix. Note that Kÿ1f ext and Kÿ1f int

are the nodal external force and internal force vectors,
respectively. Consequently, the point load can be directly
applied.

4.3
Material and spatial kernel functions

4.3.1
Material kernel function
In Lagrangian computation, the RKPM particles coincide
with material particles throughout deformation. In the
present work, a Lagrangian formulation is used in hyper-
elasticity and all the kinematic and kinetic variables are
referenced to the original configuration. Therefore, the
RKPM shape function, and more precisely, the kernel
function, is to be constructed in the original configuration.
One can express the kernel function in the original con-
figuration, referred to as material kernel function, in the
following form:

UX
a X ÿ XI� � �

1
a

U
kX ÿ XIk

a

� �

�4:46�

This material kernel function UX
a �X ÿ X1� has fixed sup-

port size in the original configuration and has a de-
formation dependent support size when mapped to the
current configuration. The support of the function covers
the same set of material particles with a fixed dilation
parameter a when the structure deforms. This material
kernel function fits naturally into the Lagrangian for-
mulation, since in this paper the Lagrangian RKPM ma-
trices are integrated over the original configuration.

When the Lagrangian formulation is referenced to the
current configuration, the material kernel function is
constructed by mapping the current position vector x to
X �uÿ1

�x; t� to yield

UX
a �u

ÿ1
�x; t� ÿ uÿ1

�xI ; t��

�

1
a

U
kuÿ1

�x; t� ÿ uÿ1
�xI; t�k

a

� �

�4:47�

We remark that when the material kernel function is
employed in the Lagrangian formulation with reference to
the current configuration, the spatial derivatives of the
material kernel function are obtained by the following
chain rule:

oUX
a �X ÿ XI�

oxi
�

oUX
a �X ÿ XI�

oXj
Fÿ1

ji

�

�

�

�

�X�uÿ1
�x;t�

XI�uÿ1
�xI ;t�

�4:48�

The characteristics of the material kernel function are il-
lustrated in the following one-dimensional uniaxial ten-
sion problem,

x � u�X; t� � �1� t�X �4:49�

or

X � uÿ1
�x; t� �

x
�1� t�

�4:50�

The material kernel function expressed in the material
coordinate is
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UX
a �X ÿ XI� �

1
a

U
jX ÿ XIj

a

� �

�4:51�

and the expression in the spatial coordinate is

UX
a uÿ1

�x; t� ÿ uÿ1
�xI; t�

ÿ �

�

1
a

U
jxÿ xI j

�1� t�a

� �

�4:52�

The material kernel function, plotted in the original and
current configurations, is shown in Fig. 2. Note that in this
example, U is taken as a cubic spline function, the RKPM
particles are equally spaced, and the dilation parameter a
is selected so that the support of UX

a covers five particles in
the undeformed configuration. As can be seen in Fig. 2, UX

a
has a fixed support size, 2a, in the undeformed config-
uration, and has deformation dependent support size of
2a�1� t� when mapped to the current configuration. The
support of UX

a covers the same set of particles throughout
the deformation with a fixed a and therefore is classified as
a ‘‘Lagrangian-typed’’ kernel function. In computational
solid mechanics, a material kernel function is more sui-
table in RKPM computation using a Lagrangian formula-
tion with reference to either the original or current
configuration.

4.3.2
Spatial kernel function
One can also define the kernel function in the current
configuration as follows:

Ux
a�xÿ xI� �

1
a

U
k xÿ xIk

a

� �

�4:53�

This spatial kernel function can also be expressed in ori-
ginal configuration by the mapping x � u�X; t�; i.e.,

Ux
a u�X; t� ÿ u�XI; t�� � �

1
a

U
ku�X; t� ÿ u�XI; t�k

a

� �

�4:54�

Equations (4.53) and (4.54) indicate that the spatial kernel
function Ux

a has fixed support size in current configuration
and has deformation dependent support size when ex-
pressed in the original configuration. These properties of
spatial kernel can be illustrated in the same uniaxial ten-

sion problem as defined in Eq. (4.49). The spatial kernel
function expressed in the spatial coordinate is

Ux
a�xÿ xI� �

1
a

U
j xÿ xI j

a

� �

�4:55�

and the expression of the spatial kernel function using the
material coordinate is

Ux
a�u�X� ÿ u�XI�� �

1
a

U
j �1� t��X ÿ XI� j

a

� �

�4:56�

As presented in Fig. 3, Ux
a has fixed support size, 2a, in the

current configuration, and has deformation dependent
support size, 2a=�1� t�; when mapped to the original
configuration. The number of particles covered under the
support varies with deformation when the dilation para-
meter is fixed. Since the spatial kernel function has a fixed
support size in the current configuration, it is a ‘‘Eulerian-
typed’’ kernel function. As can be seen in this uniaxial
tension example, the spatial kernel function will encounter
numerical instability when t > 1 if no re-adjustment in the
dilation parameter is performed, whereas the material
kernel function avoids this difficulty. Although the spatial
kernel function with a fixed dilation parameter is less
adequate for structural problems, the function naturally
fits the Eulerian formulation in which case the RKPM
particles are fixed in space.

4.4
Numerical procedures
In nonlinear problems, incremental and iterative proce-
dures are required. This section outlines the numerical
procedures for RKPM hyperelasticity computation. For
illustration purposes, we define the following notations:

XI
X : domain of support of the shape function Wa

I �X�
associated with particle XI

SA
: fXI : XA 2 XI

Xg � a set of particles in which the
domain of support associated with each particle
covers XA:

NA: number of particles in set SA

Figure 4 demonstrates an RKPM discretization. In this
simple example, SA

� fXI ;XJ ;XKg and NA = 3.

Fig. 2. Material Kernel Function
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In the flow chart of RKPM nonlinear computation for
hyperelasticity given below, the transformation method is
used to impose essential boundary conditions. Suppose
that we are currently at the �n� 1�-th solution step and
�v� 1�-th iteration step (the scripts n� 1 and v� 1 are
dropped for simplicity):

1. Loop over integration zone
1.1. Loop over integration points XA

1.1.1. Loop over all particles XI 2 SA

1.1.1.1. Compute the shape function: Wa
I �XA�

1.1.1.2. Compute the material derivatives of shape
function: oWa

I
oXi
�XA�:

1.1.2. End of particle loop
1.1.3. Compute deformation gradient:

Fij�XA� �
X

NP

I�1

oWa
I

oXj
�XA�diI

h i

� dij

1.1.4. Use deformation gradient to compute the fol-
lowing quantities at integration point XA
Green-Lagrangian strain Eij�XA�; and Green
deformation tensor Gij�XA�;

reduced invariants I1�XA�; I2�XA�; J�XA�

second Piola-Kirchhoff stress Sij�XA�

material response matrix C�XA�

1.1.5. Use second Piola-Kirchhoff stress to compute
the following matrices at integration point XA

stress vector N�XA�

initial stress matrix T�XA�

1.1.6. Loop over particles X1 2 SA

1.1.6.1. Form gradient matrices BG
I �XA�;BM

I �XA�

1.1.6.2. Form internal force vector f int
I and ex-

ternal force vector f ext
I , and assemble re-

sidual force DfI
1.1.7. Loop over particle XJ 2 SA

1.1.7.1. Form gradient matrices BG
J �XA�;BM

J �XA�

1.1.7.2. Form and assemble material and geo-
metric stiffness matrices KG

IJ ;KM
IJ

1.1.8. End of particle loop
1.2. End of integration point loop

2. End of integration zone loop
3. Transform stiffness matrix and force vector and Solve

^KD^d � D^f
4. Transform D^d to Dd, and update displacements
5. If converged, update displacements, n n� 1 and go

to the next solution step; otherwise, v v� 1 go to the
next iteration.

5
Solution existence in RKPM discretized hyperelasticity

5.1
Overview of the existence conditions in hyperelasticity
The sufficient conditions of the solution existence of a C0

finite element discretization in nearly incompressible and
incompressible hyperelasticity have been discussed by
Chen and Han, Wu, and Duan (1995c) based on the ex-
istence results proved by Charrier, Dacorogna, Hanouzet,
and Laborde (1988). Since in the present approach the
RKPM employs Galerkin approximation in conjunction
with RKPM shape function of class Cm, we shall reexamine
the solution existence conditions of RKPM discretization
for hyperelasticity problems based on the existence results
proved by Charrier et al. (1988). The following standard
notations defined at the undeformed configuration are
used for the function spaces,

Lq
�XX� �

(

v :

Z

XX

jv�X�jqdXX <1

)

; 1 � q � 1 ;

�5:1�

Fig. 3. Spatial Kernel Function

Fig. 4. Graphical Representation of RKPM discretization
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L1�XX� � v : ess supX2XX
jv�X�j <1

� 	

; �5:2�

and for the Sobolev spaces

W1;q
�XX�

� v 2 Lq
�XX� :

ov
oXi
2 Lq
�XX�;

� �

;

1 � i < 3g; 1 � q <1; �5:3�

WI;1
�XX�

� v 2 L1�XX� :
ov
oXi
2 L1�XX�;

� �

; 1 � i < 3 ;

�5:4�

Wl;q
�XX; R3

� � W1;q
�XX�

� �3
�5:5�

The existence results of the hyperelasticity problem proved
by Charrier et al. (1988) are summarized as follows:

Theorem 5.1 Assume the deviatoric strain energy density
function W; the volumetric strain energy function ~W; the
external energy Uext

; and the material deformation satisfy
the following conditions:

(a) The deviatoric strain energy density function W is
assumed to be expressed in the following form,

W�I1; I2� � w�Jÿ1=3$u; adj�Jÿ1=3$u�� �5:6�

where

w�A;B� �
X

M

i�1

ai�tr�A
TA��ai=2

�

X

N

i�1

bi�tr�B
TB��bi=2

� c

�5:7�

with coefficients ai; ai; bi; bi satisfying the following
conditions:

ai > 0; ai �
3
2
; bi > 0; bi � 3 �5:8�

(b)The volumetric strain energy density function
~W�J� � kG�J� is assumed to satisfy

G : �0;�1� ! �0;�1� is convex; �5:9�

limJ!0
�

G�J� � �1 �5:10�

G�J� � cJc for some c > 0 and c > 1;

when J is large enough;

�5:11�

G�J� � 0 if and only if J � 1 �5:12�

(c) Let a � maxfai; 1 � i � Mg and b � maxfbi; 1 � i
� Ng; then the following conditions are assumed to be
satisfied:

p �
3ac

a� 3c
>

3
2
; q �

3bc
2b� 3c

;

1
p
�

1
q
�

1
a
�

1
b
�

1
c
<

4
3

�5:13�

(d) The external energy Uext is assumed to be a continuous
functional of V where

V � fu 2 W l;p
�XX; R3

� : adj $u 2 �Lq
�XX��

3�3
;

det $u 2 Lc
�XX�;

det $u > 0 almost everywhere in XX;ui

� gi on Cgi
Xg �5:14�

(e) There exists a / 2 V such that the potential energy
U�/� <1; where

U�/� �
Z

XX

W�I1�/�; I2�/�� � ~W�J�/��
� �

dXÿ Uext

�5:15�

If conditions (a)–(e) are satisfied, then there exists a
u 2 V; such that

U�u� � inffU�/� : / 2 Vg �5:16�

Note that assumptions (5.6) to (5.13) are needed in a
mathematical proof of the existence of a solution of the
hyperelasticity problem. In practical problems, these as-
sumptions are not always satisfied; for example, a
Mooney-Rivlin material. It has been shown by Chen et al.
(1995b) that although some material strain energy density
functions do not satisfy those conditions, the solution still
exists.

The limiting behaviour of the nearly incompressible
problem when the parameter k!1 (or e � 1

k! 0) was
also discussed by Chen, Han, Wu, and Duan (1995c).

5.2
RKPM discretization in hyperelasticity
In this section, we simply assume that the hyperelasticity
problem (5.16) has a solution. Then we consider an RKPM
discretization of the minimization problem (5.16). In
RKPM, the deformation of material, u�X; t�; is inter-
polated by the shape function ^Wa

l �X� of class Cm and we
denote this RKPM discretized material deformation by
ua
�X; t�: An RKPM space V

a
is defined by

V
a
� ua

2 Cm
�XX� : ua

2 spanf ^Wa
I g

NP
I�1

� 	

�5:17�

Since the shape function ^Wa
I �X� possesses Kronecker delta

properties, the essential boundary conditions can be re-
presented exactly by functions in V

a
. A set for RKPM

approximation is defined as

Va
� ua

2 V
a
: det $ua

>

�

0

almost everywhere in XX;u
a
i � gi on Cgi

X

o

�5:18�
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The RKPM discretization of problem (5.16) is to find
ua
2 Va

; such that

U�ua
� � inf U�/a

� : /a
2 Va

f g �5:19�

The hypotheses (5.6) to (5.13) of Theorem 5.1 are assumed
to be satisfied and the functional Uext is continuous on Va.
Since we have

ua
2 W1;1

�XX; R3
� ; �5:20�

det $ua
2 L1�XX� ; �5:21�

adj $ua
2 L1�XX�� �

3�3
: �5:22�

Thus, for any p; q; c 2 �1;1� and in particular for p; q; c
satisfying Eq. (5.13), we have

ua
2 W1;p

�XX; R3
� ; �5:23�

det $ua
2 Lc
�XX� ; �5:24�

adj $ua
2 Lq

�XX�� �

3�3
: �5:25�

Also for ua
2 Va

;U�ua
� <1: Under conditions (5.23) to

(5.25), the proof by Chen and Han et al. (1995c) can be
adapted to show that problem (5.19) has a solution.

Note that if Wa
I �X� is used as the RKPM shape function

and a Lagrangian multiplier method is employed to en-
force the essential boundary conditions, then the mini-
mization problem becomes a saddle problem and the
existence conditions discussed in this section are not
applicable.

6
Numerical Examples
The strain energy density function given in Eqs. (2.8)–
(2.10) is employed in the following study. Unless specified,
the material properties A10 = 0.373 MPa, A20 = )0.031
MPa, A30 = 0.005 MPa, k � 105 MPa taken from Chen et al.
(1995b) are used in the numerical examples. The Cubic
spline with a correction function constructed by satisfying
linear reproducing conditions is used as the modified
kernel function, and a normalized dilation parameter is
defined by

ri �
ai

2dmax
i

�6:1�

where ri and dmax
i are the normalized dilation parameter

and the maximum particle distance in i-th direction, re-
spectively. Unless specified otherwise, Gauss quadrature of
�

���

n
p

� 2� � �
���

n
p

� 2�; with n the total number of particles
in the integration zone is used for RKPM domain in-
tegration.

6.1
Uniaxial tension-compression of a plane-strain rubber unit
A 1.0 cm � 0.25 cm plane-strain rubber unit is subjected to
tension and compression along the axial direction. To
generate uniaxial deformation, no constraints are imposed

in the lateral direction on the two ends. In this problem,
the displacement field in the structure at any instant of
time is linear, and the nonlinear stress-strain behavior is
due to material nonlinearity. Therefore, RKPM with a
modified kernel function that satisfies reproducing con-
ditions in a linear field is expected to provide a very ac-
curate solution for this problem.

To study the effect of particle irregularity on the solution
accuracy, two particle models as shown in Fig. 5 are used
in the analysis. A total of 4� 1 equal-sized integration
zones are used to perform numerical integration. The
specimen is stretched to 10 times of its original axial
length in tension, and is compressed until the deformed
axial length reaches 1/10 of its original size. In Fig. 5, the
reduced stress is defined by t=�k2

ÿ kÿ2
� with t the axial

Cauchy stress and k the axial stretch ratio.
Both regularly spaced and irregularly spaced particle

models, with various dilatation parameters, ri � 0:5; 0:75;
1:0; are used in the analysis. The predicted reduced stress
versus stretch ratio are compared against the in-
compressible solution in Fig. 5. Since material kernel
functions are used in the analysis, there is no need to
readjust dilatation parameter during deformation. In this
example, the dilation parameter, particle density, and
particle distribution have no effect on the results. This is
expected, because the employed modified kernel function
satisfies reproducing conditions in the linear field. The
progressive deformations of the irregularly spaced particle
model are plotted in Fig. 6. The numerical errors in this
problem are due to the finite bulk modulus being used in
the analysis.

6.2
Simple shear test
A test specimen of 0.25 cm � 1.0 cm is subjected to a
simple shear deformation. According to the laboratory
simple shear test fixture, the thickness of the specimen
remains constant while sheared. The same particle models
as used in example 6.1 are used for this analysis. Similarly,
4� 1 integration zones are employed to perform numer-
ical integration.

Fig. 5. Rubber under uniaxial tension-compression
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The test specimen is sheared to an engineering shear
strain of 200%. Since material kernel functions are em-
ployed in the formulation, the dilation parameters are kept
constant throughout the course of deformation. The ana-
lysis results, obtained from the two discrete particle
models with various normalized dilation parameters of
ri � 0:5; 1:0; 2:0 are compared with the simple shear
solution and experimental data in Fig. 7. A very good
agreement is observed between the numerical solution,
simple shear solution [Rivlin (1940)], and experimental
data [Yeoh (1990)]. Similar to the uniaxial tension-com-
pression problem, the magnitude of normalized dilation
parameter does not affect the analysis results in this pro-
blem.

6.3
Inflation of an infinitely long rubber tube
This problem exhibits a nonlinear displacement field and
nonlinear load-displacement response. An infinitely long
tube, with inner radius of 6 cm and outer radius of 8 cm, is

analyzed by an axisymmetric RKPM formulation with
constraints introduced in the axial direction to impose
plane-strain condition as shown in Fig. 8 (a). A total of
nine particles are used to discretize the thickness of the
tube. Three sets of regularly and irregularly spaced parti-
cles as shown in Fig. 8 (a) are used to model the tube. Four
equally-spaced integration zones are used in radial direc-
tion for numerical integration.

The pressure-displacement curves calculated by the
three particle models are compared against the analytical
solution [Chen et al. (1995b)] in Fig. 8 (a). The irregularly
spaced model (c) generates a somewhat stiffer solution.
The effect of the dilatation parameter on the RKPM solu-
tion is studied in Fig. 8 (b). In this study, regularly spaced
particles are used to model the problem. As can be seen in
Fig. 8 (b), when a small dilation parameter is used, the
structure behaves stiffly. An accurate solution can be ob-
tained by the use of a larger dilation parameter in the
radial direction.

The effect of the dilation parameter on the solution ac-
curacy is also studied by calculating the relative energy
error in the following form,

eE
�

URKPM
�ua
�p�� ÿ Uexa

�u�p��
Uexa
�u�p��

�6:3�

where URKPM is the internal stored energy calculated using
the RKPM solution ua,

U�ua
�

RKPM
�

Z

XX

W�I1�u
a
�; I2�u

a
�; J�ua

��dX

and Uexa is the internal stored energy calculated using
analytical solution. The relative energy error of the reg-
ularly spaced particle model calculated at an internal
pressure of 0.46 MPa is shown in Fig. 8 (c). The results
indicated that the smaller normalized dilation parameter
leads to a higher energy error. As the normalized dilation
parameter increases, the energy error generally decreases.
The relative energy error is less than 0.2% when r � 1:6:

Fig. 6. Deformation of rubber under uniaxial
tension and compression

Fig. 7. Rubber shear test
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The 360 degree undeformed and deformed structures
generated by sweeping one particle line in the circumfer-
ential direction are plotted in Fig. 8 (d).

6.4
Disk inflation problem
A disk inflation problem is analyzed to examine the ability
of RKPM to handle large rotation and large strain. A disk
with a radius of 7.45 in (18.923 cm) and thickness of
0.25 in (0.635 cm) is subjected to a uniform pressure load.
The material properties obtained from Chang et al. (1991)
are A10 = 80 psi (0.5516 MPa), A01 = 20 psi (0.1379 MPa),
and k � 105 psi (689.5 MPa). The edge of the disk is simply
supported. This problem is analyzed by finite element and
RKPM for comparison. Three 4-node finite element me-
shes, each with 10� 1 elements (22 nodes), 10� 2 ele-
ments (33 nodes), and 100� 3 elements (404 nodes) are
used for finite element analysis. In this finite element
formulation, pressure is projected onto a constant field to
avoid locking. A 22-node particle model generated using
the coarse finite element model is used for RKPM com-
putation. A total of 10� 1 integration zones are used for
the RKPM domain integration.

A maximum pressure of 0.207 MPa is applied with 207
incremental steps. The analysis results are compared in
Fig. 9. The finite element response is stiff when the coarse
mesh with only one layer of elements in the thickness of

the disk is used. The refined 10� 2 finite element mesh
generates softer results, yet diverged at an earlier stage.
The reproducing kernel particle method, on the other
hand, is able to provide results similar to the very refined
finite element solution (404 nodes), with far fewer degrees

Fig. 8a–d. Inflation of rubber tube: (a) Effect of particle spacing (b) Effect of dilation parameter (c) Relative energy error vs. dilation parameter
at pressure = 0.46 MPa (d) Undeformed and deformed geometries

Fig. 9. Inflation of rubber disk: comparison of RKPM and FEM so-
lution
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of freedom (22 nodes). The RKPM deformed shapes are
plotted in Fig. 10.

6.5
Analysis of a silentbloc rubber bushing assembly
A typical rubber bushing contains a rubber insert and two
concentric metal sleeves. A Silentbloc bushing is as-
sembled by shooting the rubber insert between two lu-
bricated metal sleeves. This problem analyzes rubber
deformation induced by the assembly process. The geo-
metries as shown in Fig. 11. and the neo-Hookean material
property of A10 = 2.298 MPa are obtained from Tseng,
Satyamurthy, and Chang (1987). The inner and outer radii
of metal sleeves are 1.93 cm and 4.37 cm, respectively. The
bulk modulus is taken to be k � 103 MPa.

Since the metal sleeves are much stiffer than the rubber
insert, only the rubber insert is modeled, and the metal
sleeves are treated as frictionless rigid surfaces. The pro-
blem is analyzed by RKPM with normalized dilation
parameters of ri = 0.8, 0.9, 1.0 and finite elements (as
shown in Fig. 11) for solution comparison. The analysis is
performed by 50 incremental steps, and only half of the
axisymmetric structure is modeled due to symmetry. In
this problem, an analytical solution is not available, and
therefore the finite element solution obtained from the
725-node mesh is considered as the benchmark for com-
parison.

Since in bushing design the axial dimension on the outer
radius of the assembled bushing determines the amount of
space required for installation, we compare the deformed
axial displacements on the outer radius in Table 1. The 56-
node RKPM solution is able to approach the much refined

725-node finite element solution as the normalized dila-
tion parameter approaches 1.0. The deformed geometries
of the assembled bushing are plotted in Fig. 12.

7
Conclusion
A Reproducing Kernel Particle Method for the nonlinear
analysis of rubber is presented. This paper proposed sev-
eral approaches essential to nonlinear hyperelasticity
analysis. The major achievements in this work are:

(1) By the use of a material kernel function, the con-
tinuous re-adjustment of the dilation parameter in
large deformation problems is not required.

(2) A modified RKPM shape function is constructed to
allow the direct prescription of essential boundary
conditions. The Lagrange multiplier method for hy-
perelasticity is also discussed.

Fig. 10. Inflation of rubber disk: progressive deformations

Fig. 11. Analysis of Silentbloc bushing assembly: problem description

Table 1. Comparison of axial displacements on the outer radius of assembled bushing

FEM FEM FEM RKPM RKPM RKPM
56 nodes 195 nodes 725 nodes 56 nodes 56 nodes 56 nodes
(42 elements) (168 elements) (672 elements) r1 = r2 = 0.8 r1 = r2 = 0.9 r1 = r2 = 1.0

2.316 cm 2.284 cm 2.256 cm 2.224 cm 2.236 cm 2.256 cm

Fig. 12. Analysis of Silentbloc bushing assembly: deformed geome-
tries
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(3) The solution existence conditions in RKPM dis-
cretized hyperelasticity problems are discussed.

(4) The results show absence of volumetric locking in
RKPM large deformation analysis of nearly in-
compressible hyperelasticity. Similar observation was
also reported in Belytschko, Lu, and Gu (1994a) using
EFG for linear problems.

(5) For the same level of accuracy, RKPM requires far
fewer degrees of freedom compared to FEM.

In this study, the effectiveness of RKPM is examined by
solving a set of incompressible hyperelasticity problems
such as tension, compression, shear, and inflation. The
application to engineering elastomers is demonstrated in
the analysis of rubber bushing. The numerical examples
indicate that the selection of the dilation parameter is
critical to solution accuracy. The relationship between the
RKPM energy error and dilation parameter is character-
ized in the inflation problem. The advantages of RKPM
over FEM become more clear when dealing with extremely
large deformations. Although in this study RKPM de-
monstrates a promising potential for large deformation
problems, a more systematic approach on the appropriate
selection of the dilation parameter needs to be made for
the method to be more robust.

Appendix
Explicit expressions of material response tensor
The explicit expressions of the material response tensor
for nearly incompressible material with the strain energy
density function given in Eqs. (2.9)–(2.10) are
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