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Abstract This paper presents the local boundary integral
formulation for an elastic body with nonhomogeneous
material properties. All nodal points are surrounded by a
simple surface centered at the collocation point. Only one
nodal point is included in each the sub-domain. On the
surface of the sub-domain, both displacements and traction
vectors are unknown generally. If a modi®ed fundamental
solution, for governing equation, which vanishes on the
local boundary is chosen, the traction value is eliminated
from the local boundary integral equations for all interior
points. For every sub-domain, the material constants cor-
respond to those at the collocation point at the center of
sub-domain. Meshless and polynomial element approxi-
mations of displacements on the local boundaries are
considered in the numerical analysis.

1
Introduction
The boundary element method (BEM) has become an
ef®cient and popular alternative to the ®nite element
method (FEM). Nevertheless, it is still believed that the
FEM is more versatile and appropriate, mainly when
geometrical and material nonlinearities and nonhomo-
geneous material properties are analysed. This can be
explained by the fact that the fundamental solutions for
the governing equations of such problems are not
available, in general. If Kelvin's fundamental solution
for a homogeneous material problem is used for the
global domain, the global boundary integral equations
have to be supplemented by the integral representations
for displacement gradients in the unique boundary-do-
main intergral formulation (Sladek et al. 1993). Dis-
placement gradients at interior points are expressed in
terms of the displacements and tractions taken at the
boundary nodes. Special regularization techniques are
required for the evaluation of nearly singular integrals in
points lying close to the boundary. If the gradients of

material properties, that occur in the domain integral,
are signi®cant, the domain integral is dominant in the
BIE. To eliminate the dominance of such domain inte-
gral in the global integral equation formulation, an al-
ternative local boundary integral equation (LBIE)
formulation is adopted in this paper for an elastic body
with nonhomogeneous material properties. The LBIE has
been recently introduced by Atluri et al. (1998) for po-
tential problems. Numerical results obtained for a do-
main with homogeneous properties were not sensitive to
the selection of the sub-domain size. Then, the size of
the sub-domain can be selected to be suf®ciently small.
Assuming that the present properties in each sub-do-
main are homogeneous, and are equal to those at the
center point of the sub-domain, a Kelvin type funda-
mental solution is assumed for each small sub-domain.
In such an approach the dominance of the domain in-
tegral is substantially eliminated, and the displacement
gradients in the local domain can be expressed in a
differential form. Then, the LBIE is suf®cient for a un-
ique integral formulation of a nonhomogeneous prob-
lem. On the surface of sub-domain both displacements
and traction vectors are unknown if the standard Kelvin
fundamental solution (Balas et al. 1989) is used. If a
`companion solution' is introduced to the Kelvin fun-
damental solution, so as to give a zero value on the
other hand, to the ®nal fundamental solution for the
displacement on the local boundary, the traction quan-
tity is eliminated in the LBIE, for all interior points. The
displacements on the local boundary and in the interior
of the sub-domain are approximated either by the
moving least-square (MLS) in a meshless implementa-
tion, or by using the standard polynomial interpolation
within the domain elements. The essential idea of
MLS interpolants is that it is only necessary to construct
an array of nodes in the domain under consideration
(Belytschko et al. 1994). Thus, the method is completely
element-free. The standard polynomial elements are
constructed in such a way that the nodes that are
immediately adjacent to the collocation point create the
nodal points of the element over which the displace-
ments are approximated. Then, the whole sub-domain
and its boundary are included into the element. One
attractive property of the MLS, and specially created
polynomial elements, is their continuity of displacements
as well as strains. Numerical implementation is illus-
trated, using problem of road, whose quadrilateral cross-
section has nonhomogeneous material properties, and
which is subjected to a uniform tension.
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2
Boundary-domain integral equations for a body
with nonhomogeneous material properties
Consider an isotropic and linear elastic continuum, whose
Young's modulus depends on the Cartesian co-ordinates,
and whose Poisson's ratio is a constant. Moreover, we shall
assume that the Young's modulus is given by a differen-
tiable function E�x�. Under these assumptions, we can
write the tensor of material coef®cient as

cijkl�x� � l�x�c0
ijkl; l�x� � E�x�

2�1� m� �1�

where

c0
ijkl � 2m=�1ÿ 2m�dijdkl � dikdjl � dildjk

Recall, that m should be replaced everywhere (except Eq.
(1)) by m=�1� m� in the case of plane stress problems. The
tensor c0

ijkl corresponds to a homogeneous, isotropic and
linear elastic continuum with shear modulus l0 � 1 and
Poisson ratio m.

The stress tensor can be expressed in terms of dis-
placement gradients by

rij�x� � cijkl�x�uk;l�x� �2�
and the equilibrium equations become

cijkluk;l

ÿ �
;j
� ÿXi �3�

Hence and from (1), we may write

c0
ijkluk;lj � ÿ 1

l�x�Xi ÿ
l;j
l
�x�c0

ijkluk;l�x� �4�

Eventually, substituting for the tensor of material con-
stants, c0

ijkl, one obtains the expression corresponding to a
nonhomogeneous isotropic medium:

lui;kk � l
1

1ÿ 2m
uk;ki

� ÿXi ÿ l;i
2m

1ÿ 2m
uk;k ÿ l;j�ui;j � uj;i� �5�

Apparently, it is impossible to ®nd the closed form fun-
damental solution for the operator

c0
ijkl

o
oxl
ÿ o

oxj
� l;j�x�

l�x�
o

oxl

� �
in general.

On the other hand, the fundamental displacements
Ukm�r�, for an elastic homogeneous continuum (the Kelvin
solution for l � 1), satisfy the equation:

c0
ijklojolUkm�yÿ x� � ÿdimd�xÿ y� �6�

and the corresponding fundamental tractions are given by

Tim�g; y� � c0
ijklnj�g�Ukm;l�gÿ y�

Following the derivation of the boundary-domain formu-
lation (Sladek et al. 1993), the integral representation of
displacements in a nonhomogeneous elastic medium can
be written as

uk�y� �
Z

C
bt�1�g�Uik�gÿ y� ÿ ui�g�Tik�g; y�cdCg

�
Z

X
gi�x�Uik�xÿ y�dXx �Wk�y� �7�

where the modi®ed traction vector is de®ned by

ti�g� � l�g�t�i �g� or t�i �g� � nj�g�c0
ijkluk;l�g� �8�

and

Wk�y� �
Z

X

1

l�x�Xi�x�Uik�xÿ y�dXx

gi�x� � 1

l�x�
2m

1ÿ 2m
l;i�x�uj;j�x�

�
� l;j�x��ui;j�x� � uj;i�x��

o
�9�

Due to the singular behaviour of the kernel Tik, the ac-
curacy of the numerical computation of displacements
deteriorates near the boundary. This singularity can be
removed by using the integral identity (Balas et al. 1989)Z

C
Tik�g; y�dCg � ÿdik �10�

In view of (10), we can perform the limit y! f 2 C in
Eq. (7), and derive the nonsingular integral equation
(Sladek et al. 1993)Z

C
�ui�g� ÿ ui�f��Tik�g; f�dCg ÿ

Z
C

t�i �g�Uik�gÿ f�dCg

�
Z

X
gi�x�Uik�xÿ f�dXx �Wk�f� �11�

The boundary integral equation (11) has to be supple-
mented by the integral representation of displacement
gradients at interior points, in order to derive a unique set
of equations, which describe a boundary value problem in
a ®nite body with nonhomogeneous material properties.
Although the problem of singularities has been resolved
successfully in such a formulation, the discretization of
both the boundary and interior domain is required (Sladek
et al. 1993). Consequently, two sets of coupled algebraic
equations, for boundary and interior unknowns, have to
be solved.

Another approach is to use the local boundary integral
equations, valid on the boundaries of simple circular do-
mains around each of the (randomly) distributed nodal
points within the analysed domain. The resulting set of
algebraic equations is sparse.

We have presented above, a boundary integral equation
for a ®nite nonhomogeneous elastic body X bounded by the
boundary C. If, instead of the entire domain X of the given
problem, we consider a sub-domain Xs, which is located
entirely inside X and contains the point y, Eq. (7) becomes

uk�y� �
Z

oXs

bt�i �g�Uik�gÿ y� ÿ ui�g�Tik�g; y�cdCg

�
Z

Xs

gi�x�Uik�xÿ y�dXx �Wk�y� �12�

where oXs is the boundary of the sub-domain Xs.
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On the arti®cial boundary oXs, both displacement and
traction vectors are unknown. In order to get rid of the
traction vector in the integral over oXs, the concept of a
`companion solution' can be utilized successfully (Atluri
et al. 1999). The companion solution is associated with the
fundamental solution Uik and is de®ned as the solution to
the following equations:

~rij;j � 0 on X0s
~Uik � Uik on oX0s

�13�

where X0s and oX0s are the same as those de®ned in Fig. 1.
As usual, X0s is taken as a circle in the present imple-
mentation.

The modi®ed test function U�ik � Uik ÿ ~Uik has to satisfy
the governing equation (6). Then, the integral represen-
tation (12) is valid also for modi®ed fundamental solution
U�ik. On a circle oXs, this fundamental solution is zero due
to the second condition (13). Hence, we can write

uk�y� � ÿ
Z

oXs

ui�g�T�ik�g; y�dCg

�
Z

Xs

gi�x�U�ik�xÿ y�dXx �Wk�y� �14�

for the source point y located inside X and

uk�f� �
Z

Ls

ui�g�T�ik�g; f�dCg � lim
y!f

Z
Cs

ui�g�T�ik�g; y�dCg

ÿ
Z

Cs

t�i �g�U�ik�g; f�dCg �
Z

Xs

gi�x�U�ik�xÿ f�dXx �Wk�f�

�15�
for the source point located on the global boundary
f 2 Cs � C. Note that oXs � Ls [ Cs with Cs � oXs \ C.
The BIE (15) is written in the limit form in contrast to
Eq. (11). Such an expression of the BIE is appropriate
(Sladek et al. 1999), if the unknown displacements are
known only digitally as it appears in the case of the
MLS approximation. The explicit expression of the
modi®ed test function can be found in (Atluri et al.
1999).

The introduction of the companion solution in this
case mainly aims at simplifying the formulation and re-
ducing the computational cost. The unknown traction
vector t�i �g� on Cs (see Fig. 1) can be considered as in-
dependent variable, and a simple approximation scheme
can be used. Thus both displacements, as well as trac-
tions at the global boundary may appear in the ®nal al-
gebraic equations as independent unknown variables. If
the direct differentiation of displacement approximation
is used in Eq. (8) for the traction vector, only one un-
known (displacement) will appear in the ®nal algebraic
equations.

3
The MLS approximation scheme
In general, a meshless method uses a local interpolation to
represent the trial function with the values (or the ®cti-
tious values) of the unknown variable at some randomly
located nodes. The moving least squares (MLS) approxi-
mation may be considered as one of such schemes, and
is used in the current work. Consider a sub-domain Xx,
the neighbourhood of a point x and denoted as the domain
of de®nition of the MLS approximation for the trial
function at x, which is located in the problem domain X.
To approximate the distribution of function u in Xx, over a
number of randomly located nodes fxig; i � 1; 2; . . . ; n,
the MLS approximant uh�x� of u; 8 x 2 Xx, can be de®ned
by

uh�x� � pT�x�a�x� 8 x 2 Xx �16�
where pT�x� � �p1�x�; p2�x�; . . . ; pm�x�� is a complete mo-
nomial basis of order m; and a�x� is a vector containing
coef®cients aj�x�; j � 1; 2; . . . ;m which are functions of
the space coordinates x � �x1; x2; x3�T. For example, for a
2-d problem

pT�x� � b1; x1; x2c; linear basis m � 3 �17a�
pT�x� � b1; x1; x2; �x1�2; x1x2; �x2�2c;

quadratic basis m � 6 �17b�
The coef®cient vector a�x� is determined by minimizing a
weighted discrete L2 norm, de®ned as

Fig. 1. Local boundaries, the support of nodes and the
domain of de®nition of the MLS approximation
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J�x� �
Xn

i�1

wi�x��pT�xi�a�x� ÿ ûi� �18�

where wi�x� is the weight function associated with the
node i, with wi�x� > 0. Recall that n is the number of
nodes in Xx for which the weight functions wi�x� > 0
and ûi are the ®ctitious nodal values, and not the nodal
values of the unknown trial function uh�x� in general
(Atluri et al. 1999). The stationarity of J in Eq. (18) with
respect to a�x� leads to the following linear relation be-
tween a�x� and û

A�x�a�x� � B�x�û �19�
where

A�x� �
Xn

i�1

wi�x�p�xi�pT�xi�

B�x� � �w1�x�p�x1�;w2�x�p�x2�; . . . ;wn�x�p�xn��
Solving for a�x� from Eq. (19) and substituting it into
Eq. (16) give a relation

uh�x� � UT�x� � û �
Xn

i�1

/i�x�ûi; uh�xi� � ui 6� ûi ;

�20�
where

UT�x� � pT�x�Aÿ1�x�B�x�
Both Gaussian and spline weight functions with compact
supports can be considered in a numerical analysis (Zhu
et al. 1998; Atluri et al. 1999). The Gaussian weight func-
tion can be written as

wi�x� � exp�ÿ�di=ci�2� ÿ exp�ÿ�ri=ci�2� 0 � di � ri

0 di � ri

�
�21�

where di � jxÿ xij; ci is a constant controlling the shape of
the weight function wi and ri is the size of support. The
size of support ri should be large enough to have a suf®-
cient number of nodes covered in the domain of de®nition
to ensure the regularity of matrix A.

Substituting the MLS approximation (20) for displace-
ments into the modi®ed traction vector t�i de®ned by Eq.
(8), we get

t��g� � N�g�D
Xn

j�1

Bj�g�ûj �22�

where matrix N correspond to normal vector

N�g� � n1 0 n2

0 n2 n1

� �
the stress-strain matrix D is given by

D � 2

1ÿ 2m

1ÿ m m 0

m 1ÿ m 0

0 0 �1ÿ 2m�=2

264
375

for plane strain problem

D � 2

1ÿ m

1 m 0

m 1 0

0 0 �1ÿ m�=2

264
375

for plane stress problem

and

Bj�g� �
/j;1 0

0 /j;2

/j;2 /j;1

24 35
Now, the local boundary integral equations (14) and (15)
considered at nodal points fi result in the linear system
of algebraic equations for unknown ®ctitious nodal val-
uesXn

j�1

/j�fi�ûj �
Xn

j�1

Z
Ls

T��g; fi�/j�g�dCgûj

ÿ
Xn

j�1

lim
y!fi

Z
Cst

T��g; y�/j�g�dCgûj

�
Xn

j�1

Z
Csu

U��g; fi�N�g�DBj�g�dCgûj

ÿ
Xn

j�1

Z
Xs

U��x; fi�
1

l�x�Gj�x�dCxûj

�
Z

Csu

T��g; fi��u�g�dCg ÿ
Z

Cst

U��g; fi��t��g�dCg

�23�
where Cst and Csu are the traction and displacement
boundary sections of Cs with Cs � Cst [ Csu, the pre-
scribed quantities are denoted by bar and Ls is a part of the
local boundary oXs, which is not located on the global
boundary C. For those interior nodes located inside the
domain X; Ls � oXs and the boundary integrals over Csu

and Cst vanish in Eq. (23).
The explicit expression of the matrix Gj is given by

Gj�x� �
"

2 1ÿm
1ÿ2m l;1/j;1 � l;2/j;2

2m
1ÿ2m l;1/j;2 � l;2/j;1

2m
1ÿ2m l;2/j;1 � l;1/j;2 2 1ÿm

1ÿ2m l;2/j;2 � l;1/j;1

#
If displacement components are prescribed at a boundary
point fi 2 C, the discretized LBIE (23) can be replaced by
the approximation formula

u�fi� �
Xn

j�1

/j�fi�ûj �24�

Thus, fi in Eq. (23) is either an interior node or nodal
point on Cst. That is why the integral of the kernel T�
over Csu is not singular. The limit of the singular integral
over Cst can be evaluated numerically, by using a regular
quadrature accurately, provided that an optimal trans-
formation of the integration variable is employed before
the integration (Sladek and Sladek 1998; Sladek et al.
1999).
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4
Polynomial approximation elements
The local boundary integral equations (14) and (15) can
also be transformed into a system of algebraic equations,
by using a standard polynomial approximation of dis-
placements over certain domain. In contrast to the MLS
approach the nodal displacements are computed directly
in this case. To analyse a boundary value problem for a
nonhomogeneous elastic body, the nodal points are to be
spread over the whole domain including the boundary.
Around each nodal point f a domain element Sf is con-
structed for approximation purposes. Neighbouring nodes
are utilized in such a construction as shown in Fig. 2.

Over the domain element, the displacement can be ex-
pressed approximately in terms of their values at nodal
points and interpolation polynomials as follows (Balas
et al. 1989)

ui�g� �
Xn

a�0

ui�ga�Na�n1; n2� �25�

where n is a number of element nodes. Note that such an
approximation is employed in the LBIE approach only
over the sub-domain Xs (Fig. 2). Tractions and displace-
ment gradients are obtained from the approximation (25)
by differentiation. Thus, the only unknowns are the nodal
values of displacements.

Now, the singular LBIE collocated at f 2 C can be re-
written in a regularized form, since the polynomials Na are
known in a closed form, in contrast to /i�x� in the MLS
approach. Similar to Eq. (11) we can writeZ

oXs

�ui�g� ÿ ui�f��T�ik�g; f�dCg ÿ
Z

Cs

t�i �g�U�ik�gÿ f�dCg

�
Z

Xs

gi�x�U�ik�xÿ f�dXx �Wk�f� �26�

where the integral identity (10) has been utilized with in-
tegration over oXs. The LBIE collocated at interior nodes f
can be obtained from (14) by simply changing y � f,

and in view of the above mentioned identity, this LBIE
is formally equivalent with Eq. (26). If the collocation
point fi is lying on the boundary C, the isoparametric
coordinates �n1; n2� are transformed into polar coordinates
�q;u� with its origin at fi. In performing such a trans-
formation new polynomials Pa are de®ned on Sf as (Balas
et al. 1989). Then, we can write along oXs:

�ui�g� ÿ ui�f��

� q
Pn

a�1 ui�ga�Pa�q;u� for f 2 CPn
a�1 ui�ga�Pa�ni; n2� ÿ ui�f� for f 62 C

(
�27�

Finally, the nonsingular LBIE given by Eq. (26) takes the
discretized form

ÿ u�f�
Z

Ls

T��g; fi�dCg �
Xn

a�1

u�ga�
"Z

Ls

T��g; fi�PadCg

�
Z

Cs

qPaT��g; fi�dCg ÿ
Z

Cs

U��g; fi�N�g�DBa�g�dCg

ÿ
Z

Xs

U��x; fi�
1

l�x�Ga�x�dCx

#
� 0 �28�

Recall that the integrals over Cs disappear if fi 62 C. Note
that the de®nitions of the matrices Ba and Ga are the
same as in the MLS approximation case �Bj;Gj�. Only
the digital shape functions /j are replaced by the poly-
nomial shape functions Pa.

5
Numerical example
Consider a quadrilateral cross-section �2a� 2a� subjected
to a uniform tension r22 � p in the x2-direction, assuming
a non-homogeneous material behaviour:

l � l0�1� ajx2j�2; l0 �
E0

2�1� m�

Fig. 2a,b. Quadrilateral element for approximation of displacements on the local boundary oXs. a Interior node, b boundary node
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with E0 � 1:23� 105 MPa, m � 0:35 and a � 0:5. Owing to
the symmetry, it is suf®cient to analyse only a quarter of
the cross section. Plane strain conditions are assumed in
this example. Several equidistant node distributions, with
a total number of nodes N � 121; 49; 25 are considered in
numerical analysis.

A comparison of both the numerical methods (LBIE with
MLS approximations and polynomial element approxima-
tions, respectively) with the FEM results (Sladek et al. 1993),
for vertical and horizontal displacements is presented in Fig.
3, with N � 121. Quite a good agreement of results is ob-
served for the FEM and the LBIE/polynomial element re-
sults. The LBIE/MLS results are very sensitive to the
selection of free parameters �ci; ri� in the weight function
(22). The dependence of the traction norm error, de®ned as

r �
Z a

0

r22�x1; 0�dx1 ÿ pa

� �
1

pa
� 100 �%� ;

on the weight function parameter ci and the size of support
ri is illustrated by Fig. 4.

Next, ci � 0:074 and ri � 0:8 are considered. The stress
r22 distribution along x1-axis is presented in Fig. 5.

The stress norm error is 1.7% for the (LBIE/polynomial
element) results, and ÿ1:73% for the (LBIE/MLS) results.
The in¯uence of the mesh size on the accuracy of the LBIE
element analysis can be observed on Fig. 6. The displace-
ment error is related to the FEM results at the point �0:; a�.
Similarly, the stress r22 is compared with FEM stress at
�0:; 0:� in the relative traction error. The highest accuracy
is received for the ®nest mesh as could be expected.

Fig. 3. Vertical and horizontal displacements along x2-axis
and lateral side of the square �x1 � a�, respectively.

Fig. 4. Dependence of the traction norm error on the weight
function parameter ci and size of support ri, respectively
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