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A particle method for elastic and visco-plastic structures

and fluid-structure interactions

Y. Chikazawa, S. Koshizuka, Y. Oka

Abstract A new particle method is proposed for elastic
and visco-plastic structures based on the concept of MPS
(Moving Particle Semi-implicit) method which was de-
veloped for fluid dynamics. Particle interaction models for
differential operators are prepared in MPS method. The
government equations of elastic structures are interpreted
into interactions among particles. These interactions are
equivalent to those of normal and tangential springs.
Therefore the present particle method is simple and
corresponding physical meaning is clear. Model for visco-
plastic structure is represented to replace these elastic
springs into visco-plastic ones. Elements or grids are not
necessary. A tensile plate and a cantilever beam as elastic
structures are analyzed by the present method. The results
are in good agreement with theoretical solutions. Visco-
plastic analysis for creep deformation and fracture of a
cracked plate is also carried out and the result is in good
agreement with an experiment. The present particle
method for elastic structures is combined with MPS
method for fluid-structural interaction problems. Since
both methods are based on the same particle modeling in
Lagrangian coordinates, large deformation of the inter-
faces can be easily analyzed. Water falling on a cantilever
beam is analyzed by the combined method. Crash of
water and resultant displacement of the beam are suc-
cessfully analyzed. Structural analysis in a breakwater is
carried out with wave propagation. The calculated pres-
sure distribution on the breakwater is in good agreement
with a theory.

1

Introduction

We need to analyze moving interfaces in fluid-structure
interaction problems. The mesh will be distorted near the
interfaces in the finite difference and the finite element
methods and the calculation will stop when the displace-
ment of the interfaces is large. Meshless methods are free
from this difficulty. Besides, more and more complex ge-
ometries are required to analyze and mesh generation
often takes more time than the structure analysis. Complex
grid generation process will be much simplified in mesh-
less methods. The meshless methods which have been
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developed for structural analysis are DEM (Diffused Ele-
ment Method) (Nayroles et al., 1992), EFGM (Element Free
Galerkin Method) (Belytchko et al., 1994) and FMM (Free
Mesh Method) (Yagawa et al., 1996). DEM and EFGM
employ moving least-square interpolants which need in-
tegral calculations on background cells. FMM is based on
FEM (Finite Element Method) though it needs no explicit
data of connectivity between nodes. FMM is developed for
large scale analysis on parallel computers. Atluri et al.
developed MLPG (Meshless Local Petrov-Galerkin) and
LBIE (Local Boundary Integral Equation) methods (Atluri
et al., 1998, 1999, 2000a, b, c; Zhu et al., 1998). These
methods are truly meshless in the sense that they do not
need a mesh either for interpolation purpose, or for the
purpose of quadrature-integration of the energy.

MPS (Moving Particle Semi-implicit) method has been
developed for incompressible flow analysis without ele-
ments. Moving interface problems, such as wave breaking,
vapor explosions and boiling, were successfully analyzed
using MPS method (Koshizuka and Oka, 1996, 1998 and
1999). MPS method has also been used for fluid-structural
interaction. Chikazawa et al. (1999) calculated sloshing in
an elastic tank which is treated as a thin structure repre-
sented by particles.

In the present study, a new particle method is proposed
for thick elastic and visco-plastic structures based on the
concept of MPS method which provides particle interac-
tion models for differential operators. The governing
equations of elastic structures are interpreted into inter-
action among particles. This method is combined with
MPS method for fluid-structure interactions involving
large deformation of interfaces.

2
Particle method for elastic structures

2.1

Governing equations

Governing equations for two-dimensional isotropic elastic
structures are
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where i = (u,v) is displacement vector and f = (f;, 1)
is external force vector. A and u are constants that
are expressed by

(1)
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where E is Young’s modulus and v is Poisson’s ratio. The

governing equations can be reduced to diffusion, rotation
and volumetric strain terms.
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Each particle holds four variables: two components of the

displacement vector # = (u,v), rotation R =V x i and

divergence D = V - ii. Rewriting the equations in the
matrix form, we have
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2.2

Modeling to particle interaction

In the MPS method (Koshizuka and Oka, 1996), each
particle interacts with its neighboring particles using a
weighting function.

Le _ r<r,
w(r) =47 - 6
m={gt = ©)
where r;; is the distance between particles i and j, and 7, is
the radius of weighting function (Fig. 1). The interaction

area is limited by r,. Particle number density at particle i is
defined as

n; = Z w(rij) (7)

J#

Fig. 1. Neighboring particles

The particle number density is constant at inside particles
if the configuration of particles is uniform. This constant
value is denoted by n°. The particle number density
decreases on boundaries because there are no particles
outside.

Interactions between particles are averaged by the
weighting function. Suppose f is an arbitrary variable,
Laplacian at particle i is modeled as follows

fi = fiw(ry)
(vzf)i: Z 2d 2 1 (8)
# g
where d is the number of space dimensions. Models for
other differential operators, such as divergence, rotation
and gradient, are as follows
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where 7 is a position vector from particle i to j. ; is a unit
vector parallel to 7;; and Sj; is a unit vector perpendicular to
7;; (Fig. 2). More details of the particle interaction models
are explained in a reference (Koshizuka and Oka, 1996).
The rotation model (Eq. (10)) is newly developed in the
present study.

In SPH (Smoothed Particle Hydrodynamics) (Gingold
and Monaghan, 1982), which was developed for compress-
ible flow analysis, another gradient model has been used.

(i+f), d

vr= U i
J#i I

Corresponding to this gradient model, another rotation

model is also developed in the present study as

vxjoy Gt d

i 2T,‘j n;

w(r;) (13)
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Fig. 2. Particle model



Using the above Laplacian model (Eq. (8)), the diffusion
terms in the government equations of elastic structures are
discretized to,

(Vu) = Z%i (ujr_z ui) w(ri)

i ij

2d (v —v;
T
7 ij

The interactions are normalized by n° in place of n; to
consider boundary conditions. Boundary conditions will
be explained in the next subsection. Using Eqgs. (9) and
(10), divergence and rotation at particle i are expressed
respectively as

(14)
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The governing equations are transformed to
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The third terms of the left side represent the volumetric
stress components which are determined by gradient of D;.
The gradient model of Eq. (12) is applied to these terms.
The second terms of left side represent removal of rotation
from the shear stress components. The rotation model of
Eq. (13) is applied to these terms.

The matrix of the left side of Eq. (5) is completely
discretized to Eq. (17) by the particle interaction models.
The matrix equation can be solved by a solver, for ex-
ample, SOR method. This means that the present method
can be applied to static problems (Chikazawa et al.,
1999). Dynamic problems can be solved explicitly by
using the transient governing equation (Koshizuka et al.,
1999).

Displacement of particle j from particle i is ; — ii;. The
displacement vector can be reduced to a perpendicular
component (i; — ;) - 5j5;; and a parallel component
(dj — 1) ?,]?U Equation (14) can be rewritten to
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According to Eq. (18), two particles behave as if they are
connected by two springs: normal and shear springs which
are governed by the parallel and perpendicular compo-
nents of displacement, respectively (Fig. 2). A normal
stress g;; and a shear stress 7;; are given with respect to the
position vector from particle i to j. These two stresses are
obtained from stress tensor ¢ as follows
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The normal stress can be written as
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7ij = 2 (20)

The first term of the right side represents a normal spring
and the second term represents pressure. The shear stress
between two particles is calculated by

(@ — )5  Ri+R
—n
1’1']‘ 2

Rotating motion is removed from the perpendicular
displacement.

23
Boundary conditions

(a) Free boundary
Stress components are zero on free boundaries.

G-7=0 (22)

where 7 is the unit normal vector to the free boundary
surface.

We assume that a particle i exists at the boundary
and a temporal particle j is located outside where
it = (¥; — 7;)/(|r; — 7|) is normal to the free boundary.
When particle interactions are normalized by n° as
Egs. (14) and (17), there is no interaction with the outside
particles. On the other hand, when the interactions are
normalized by n; as Eqs. (15) and (16), the interaction
with the outside particle is the same as that with the inside
particle. This boundary condition is simple but may cause
some error since the interaction is averaged within the
weighting function. Finally Eq. (22) is reduced to

ii; — il = 0
D;=0 (23)
Rj=0

with respect to the temporal particles

(b) fixed boundary
At fixed boundaries, Dirichlet boundary conditions are
given. Temporal particles are also considered as the same
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way as the free boundary. Displacement, divergence and
rotation of temporal particle j are given as follows

ii; =0
Dj=0 (24)
Rj=0

3

Particle method for elasto-visco-plastic structures
The model for visco-plastic structures focused on here is

(25)

where 7 is the reciprocal of the viscosity coefficient, H is
the stiffness coefficient and oy is the yield stress. Strain
between particles i and j is discretized as follows

€vp = y(a — oy — Hevp)

Uvpj

Uyp.i
vp,i
Evp,ij

(26)
Tij

where u,, is visco-plastic replacement. Equation (25) is

discretized as follows

1d old
€vpij ~ Eupi Evp.ij T €vpjij
— = =y|lc—oy—H—= 27
” y 5 (27)
where E(V)Eij is the strain at the old timestep. When particles

are moved by Lagrangian description, ¢°d = 0. H is as-
sumed to be zero in this study. Equation (27) is reduced to

evpij = dty(0 — o) (28)
This equation is similar to elasticity ¢ = E~'¢ substituting
Eby Eyp = &

First, elastic calculation is performed. The particles that
satisfy Von Mises’ yield condition are regarded as visco-

plastic. Next, plastic calculation is performed. Total strain
is expressed by

de = dz, + d&,

where €, and E'VP are elastic and visco-plastic strain,
respectively.

(29)

4
Test calculations for elastic Structures

4.1

Tensile plate

First, a tensile plate is analyzed. The calculation geometry
is shown in Fig. 3. The Young’s modulus E is 107

(kg cm™! s %) and Poisson’s ratio is 0.3. The number

of particles is 289 and r, = 3.0l, where [ is the distance
between adjacent particles. A particle at the center of the
plate is fixed. Top and bottom sides of the plate are free
boundaries. Normal stress is loaded symmetrically on both
left and right sides using this equation

2
=094 1— (l)
16
where g is 1000 (kg cm™! s72). The calculated and ana-
lytical displacement distributions on x = 32 are shown in

Fig. 4. The numerical result is in good agreement with
analytical one.

(30)
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Fig. 4. Replacement of the tensile plate

4.2

Cantilever beam

Next, a cantilever beam is calculated. The geometry is shown
in Fig. 5. The beam is supported at x = 0 and external force
is loaded uniformly at x = 4.0. To compare with an ana-
lytical solution, a fixed boundary conditions is given as

P2+v,
:—6—
u(y) ER 3

v(y) = -2 % {3vly2}

The number of particles is changed from 85 to 4257 with
Te = 3010

The calculated displacement at y = 0.5 is shown in
Fig. 6 where the number of the particles is 153. The

(31)
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Fig. 5. Geometry for a cantilever beam
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Fig. 6. Replacement of a cantilever beam

numerical result is in good agreement with the analytical
solution. Errors are plotted against the number of particles
in Fig. 7 in comparison with those of EFGM (Element Free
Galerkin Method) (Nagashima et al., 1996) and FEM
(Yang, 1986). EFGM is one of meshless methods. This FEM
uses rectangular elements of 4 nodes and each node has 2
degrees of freedom. The error of the present method is
smaller than that of EFGM and larger than that of FEM.
The error decreases below 1% when using 200 particles.
Normal and shearing stress distributions at y = 0 are
shown in Fig. 8 and those of below at x = 2.0 in Fig. 9.
These results agree with analytical solutions but there are
differences near the boundaries. This suggests that the
present method of boundary conditions leads to errors.

5
Result of elasto-visco-plastic calculation

5.1

Analysis of a visco-plastic tensile bar

The geometry is shown in Fig. 10. The length and width of
the bar are 10.0 and 2.5 mm, respectively. The bar is fixed
at the top and loaded uniformly 30 N/mm? at the bottom.
Young’s modulus is 10000 N/mm? and Poisson ratio is 0.0.
H and y is 0.0 and 0.001 day !, respectively. The bar is
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Fig. 8. Distributions of stress components at y = 0

completely yield and visco-plastic replacement is increased
against time. Figure 11 is the calculated replacement at the
bottom. The result is in good agreement with analytical
one.

5.2

Analysis of a creep crack

An analysis for a creep crack is carried out. The geometry
of the calculation is shown in Fig. 12. The width, length
and thickness of the plate are 320, 480 and 1 mm, re-
spectively. The crack length is 128 mm. Young’s modulus
is 206 GPa and Poisson ratio is 0.3. Yield stress is 431 MPa
and 7 is 0.01 h™'. The plate is loaded symmetrically from
the top and bottom.
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Fig. 10. Geometry for a visco-plastic bar

The deformation of the plate is shown in Fig. 13. A
white particle means elastic and black one does visco-
plastic. The line at the center of the plate shows initial
crack. Particle interactions across the crack is set to zero.
The deformation of the plate becomes larger and larger
under the constant load and breaks eventually.

Experimental analysis of creep cracks was studied by
Yokobori et al. [16]. They used smooth, notched (DEN)
and precracked (CT) specimens. They showed the exis-
tence of a master curve for creep deformation. The nor-
malized replacement @ for smooth specimens is

®=0.4(c — ) ,

for DEN specimens
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Fig. 11. Replacement of a visco-plastic bar
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Fig. 12. Geometry of a cracked plate

for CT specimens
O =— (34)

where ¢ and 6 are notch opening and load-line displace-
ment respectively. The calculated replacement is normal-
ized as follows

®=0.25 ) (35)
Go

where { is defined in Fig. 14. Normalized replacement

versus time normalized by fracture time #; is compared

with experiment in Fig. 15. Although there is a little dif-

ference around t/tf = 0.9, the calculated result is in good

agreement with that of experimental.

6
Analysis of fluid-structural interaction

6.1

Water falling on cantilever beam

The present method for structures is applicable to fluid-
structural interaction problems involving large deforma-
tion of interfaces. Fluid and structures are analyzed by
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Fig. 14. Definition of zeta

MPS and the present method, respectively. Pressure dis-
tributions on the structures are obtained by the fluid flow
analysis and they are used as the boundary condition in
the structure analysis. In the structural calculation, elastic
particles are directly moved according to the displacement
as fully Lagrangian description. The moved elastic parti-
cles are treated as a fixed wall in the fluid calculation.
However in this calculation displacement of the structure
is small enough to neglect. Only the free surface of the
fluid suffer large deformation.

Figure 16 shows the geometry of the present problem of
fluid-structural interaction. A water drop impinges on to a
cantilever beam and displacement in the beam is solved.
The number of particles is 474 and the time step is
1.0 x 1073, Figure 17 shows the calculated displacement in
the beam. The water drop is largely deformed, which can
be calculated by MPS method. In FEM, modeling of the
contact between the fluid and the beam is generally com-
plex. In the particle methods, the particles begin interac-
tion when they are closer than r,.

200 sec Fig. 13. Deformation of a cracked plate
0.7 ' T ' T i
| — calc. |
0.6
o smooth(ex.) |
057 ]
o CT(ex.) i
-
047 + DEN(ex.) ! 1
(=} -
0.3] Jﬁ ]
*
by
0.2 +;+B 4
+++ bA
- + P! B
0.1 v Wl A
nA -2 +-P+ *
O i 1 1 1 1

0 0.2 0.4 0.6 0.8 1 1.2

tif

Fig. 15. Deformation vs. time

6.2

Waves propagation against a breakwater

The geometry is shown in Fig. 18. Waves are generated by
a vertical wall, called wave maker, which moves as follows

A(x) = Agsin(t/T) (36)
where Aj is 0.01 (m) and T is 1.0 (s). The number of

particles is 5878 and the time step is 2.0 X 10> using
Runge- Kutta scheme. Using this scheme, we can make the
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pressure calculation more stable. The waves propagate as

shown in Fig. 19. The shape of the waves is that of clapotis
which does not causes wave breaking. MPS method can

time(sec)

Fig. 20. Wave height at the breakwater

solve wave breaking as well as larger deformation of the

waves (Koshizuka 1998). In this calculation, wave breaking
is not solved since and the calculated wave breaking can

not be compared with analytical solution.

in Fig. 21. We can see a good agreement with the analytical
solution which is estimated from the wave height using

The calculated wave height at the breakwater is shown Sainfluo’s theory. Figure 22 shows Sainflou’s approxima-

in Fig. 20. Total force loaded on the breakwater is shown tion (Sainflou 1928) of the pressure distribution on the
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Fig. 23. Pressure distribution on the breakwater (5.16 s)
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Figure 23 shows the pressure distribution on the break- ;,;': i
water when the wave height becomes the maximum at nrm
5.16 s. It is also in good agreement with the theory. Dis-
placement in the breakwater is shown in Fig. 24. 516

.16sec

7

Conclusion
A new particle method for elastic and visco-plastic struc-

tures is developed. In this method, no element is used and
particle interactions are modeled by the same way as MPS
method which was developed for fluid flow analysis. Par-

Fig. 24. Displacement of the breakwater (x10°)

ticles behave as if they are connected by normal and tan-
gential springs. A tensile plate and a cantilever beam are
solved by the present method. The results are in good

pl

Fig. 22. Theoretical of pressure distribu-

tion (Sainflou 1928)
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agreement with analytical solutions. The present method is
also applied to visco-plastic structures. The calculated
result of deformation of a visco-plastic bar agrees with
analytical solution. Creep deformation and fracture of a
cracked plate is calculated and the result is in good
agreement with experiments.

This method is combined with MPS method for the
analysis of fluid-structural interactions. Water falling on a
cantilever beam is analyzed by the combined method.
Impingement of water and resultant displacement of the
beam are successfully obtained. Structural analysis in a
breakwater and fluid flow analysis of waves are simulta-
neously carried out. The calculated pressure distribution
on the breakwater is in good agreement with an analytical
solution. The displacement distribution in the breakwater
is also obtained.

The present study shows that the new particle method
developed here can be applied to fluid structure interac-
tion problems. Large deformation of interfaces will be
solved without the mesh distortion using the present
method. Such application, which should be accompanied
by verification calculations, remains as a future study.
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