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Fuzzy structural analysis using a-level optimization

B. Mdller, W. Graf, M. Beer

Abstract In this paper new concepts and developments
are presented for structural analysis involving uncertain
parameters. Based on a classification of the uncertainties
in structural analysis the uncertainty “fuzziness” is iden-
tified and its quantification is demonstrated. On the basis
of fuzzy set theory a general method for fuzzy structural
analysis is developed and formulated in terms of the o-
level optimization with the application of a modified
evolution strategy. Every known analysis algorithm for the
realistic simulation of load-bearing behavior may be ap-
plied in the fuzzy structural analysis in the sense of a
deterministic fundamental solution. By way of example,
geometrically and physically nonlinear algorithms are
adopted in the presented study as a deterministic funda-
mental solution for the analysis of steel and reinforced
concrete structures. The paper also describes coupling
between o-level optimization and the deterministic fun-
damental solution.

1

Uncertainties in structural analysis

The realistic analysis of structures requires reliable (input)
data as well as suitably-matched computational models; as
a rule the data and the model contain uncertainties. In
contrast to deterministic structural analysis, fuzzy struc-
tural analysis takes account of these data and model un-
certainties.

The geometrical, material and loading data required for
structural analysis are more or less characterized by un-
certainties. It is necessary to appropriately take these un-
certainties into consideration.

When carrying out structural analysis the basic concept
of the so-called “toolbox philosophy” (see Hung T.
Nguyen, 1997) is followed. The principal strategy adopted
for solving a problem is defined by the problem itself. The
aim of this approach is to supplement established proba-
bilistic methods in such a way that uncertainties in their
natural form (characteristics) may be more appropriately
accounted for. In this respect the different developments
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do not directly contradict each other but rather constitute
an entirety (see Hung T. Nguyen, 1997; Elishakoft, 1995).
In Elishakoff (1995) the relationship between the proba-
bilistic, fuzzy and convex modeling approaches is formu-
lated as “uncertainty triangle”.

According to Bothe (1993) uncertainty is the gradual
assessment of the truth content of a postulation, which
may be referred to the occurrence of a defined event.
Depending on the particular cause of their occurrence the
various types of uncertainty may be distinguished from
each other and described using suitably-matched “tools”.

If an event (regarding its occurrence), as a random re-
sult of a test, may be observed on an almost unlimited
number of occasions under constant boundary conditions,
this concerns a stochastic uncertainty which may be de-
scribed and investigated using the methods of probability
analysis. If the boundary conditions are (apparently)
subject to arbitrary fluctuations, a comprehensive system
overview is lacking, or the number of observations are
only available to a limited extent, an information deficit
exists. This type of uncertainty is referred to as informal
uncertainty. In contrast to the latter, lexical uncertainty is
characterized by linguistic variables representing quanti-
fied verbal postulations (see Stransky, 1999).

The cause of an uncertainty determines its character-
istics. The uncertain characteristic randomness is assigned
to stochastic uncertainty which may be mathematically
described with the aid of random variables. Informal and
lexical uncertainties are described by the uncertainty
characteristic fuzziness. The uncertainty characteristic
fuzzy randomness arises when the statistical description of
a random variable is informally or lexically uncertain.

Randomness, fuzziness and fuzzy randomness may
occur in the form of data uncertainty as well as model
uncertainty. If the uncertainty is directly included in the
input parameters, this implies the existence of data un-
certainty. If a consideration of uncertainties leads to un-
certain models, this implies the existence of model
uncertainty.

The characteristics of the uncertainty determines the
particular form of a structural analysis as well as the as-
sessment of the structural safety of a construction, as often
carried out subsequently on the basis of different concepts.
The method of probabilistics, fuzzy set theory, convex
modeling and - as a synthesis of the probabilistic method
and fuzzy set theory - the theory of fuzzy random vari-
ables are available as “tools” for this purpose.

Randomness is dealt with using probabilistic methods,
fuzzy randomness is handled using the theory of fuzzy
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random variables, and fuzziness requires the application
of fuzzy set theory. The non-assessed uncertainty
accounted for in convex modeling may be treated as a
special case of fuzziness. Theoretical treatments of convex
modeling are given e.g. in Ben-Haim (1996) and Elishakoff
et al. (1994) present an application for solving optimiza-
tion problems with uncertain input parameters.

The established probabilistic methods are dealt with e.g.
in Spaethe (1987, 1992) or Thoft-Christensen and Baker
(1982); a comprehensive state-of-the-art report is given in
Schiieller (1997); time-dependent processes are reported in
Rackwitz (1999). Although the algorithms are mainly ap-
plicable to the safety assessment of structures, the authors
are also aware of applications for structural optimization
and structural analysis.

Besides the deterministic and semi-probabilistic safety
concepts widely incorporated into standards, which are
nevertheless highly restrictive and inflexible with regard to
assessment, there is an increasing tendency to apply
probabilistic approximation solutions according to first
order reliability method (FORM) and second order
reliability method (SORM). These yield the reliability
index f as a measure of structural reliability. The math-
ematically more complex probabilistic “exact” solution
obtained from an analytical or numerical integration or
a simulation yields the failure probability P¢. Time-
dependent loading processes may be directly included
in the reliability analysis. In order to approximately
account for uncertainties in models of structural sys-
tems the method of stochastic finite elements was
developed.

A basis for the application of probabilistic-oriented
methods is the validity of statistical laws for stochastic
input parameters. As the input data necessary for this
purpose are only available to a limited extent, it is not
possible to reliably define the required distribution func-
tions and statistical parameters. Regarding the uncertain-
ties (presumed to be stochastic) in the statistical
information a probability distribution function can at best
be assumed; with the aid of Bayes theorem it is possible to
update estimates (see e.g. Stange, 1977 or Benjamin and
Cornell, 1970). This criticism of the probabilistic approach
provides a starting point for investigating alternative
methods of accounting for uncertainties - in the sense of
the toolbox philosophy - more accurately.

Human mistakes and errors in the manufacture, use
and maintenance of constructions as well as investigations
under changing boundary conditions (e.g. investigation of
material samples) represent subjective influences on
structural parameters. This gives rise to data as well as
models possessing uncertainties which exhibit no or only
partly stochastic characteristics. The assessment of struc-
tural parameters is both objective and subjective in char-
acter. Depending on the type and extent of the available
information it is possible to apply fuzzy set theory or the
theory of fuzzy random variables. If statistical properties
are entirely lacking, fuzzy set theory is then applied. Un-
certainties are taken into account with the aid of “assessed
intervals”.

The theoretical basics of fuzzy set theory are explained
e.g. in Zadeh (1965); Bandemer and Gottwald (1989) or

Zimmermann (1992). Mapping of the fuzzy input values
onto the result space is based on the extension principle in
combination with the Cartesian product.

In problem-solving applications in structural statics o-
discretization is advantageous for the numerical process-
ing of the fuzzy analysis. Wood et al. (1992) adopt this
method for solving special problems in structural design;
Bonarini and Bontempi (1994) describe the solution of
differential equations containing fuzzy parameters. Meth-
ods relating to more general fuzzy analysis strategies are
presented e.g. in Moéller and Beer (1997a), Moller et al.
(1999).

Various methods are available for applying fuzzy set
theory to assess structural safety. On the basis of possi-
bility theory (see e.g. Dubois and Prade, 1986) the failure
possibility Il is used to describe the safety level; examples
of this are given by Méller (1997), Méller and Beer
(1997b), Moller et al. 1999.

Brown (1979), Brown et al. (1984) recommend the
consideration of influences resulting from human actions,
which are not accounted for in the assessment of operative
structural safety. A consideration of uncertainties in the
mechanical model, similar to the method adopted in
probabilistics (e.g. using stochastic finite elements), is
widely discussed in the literature. For example, Bardossy
and Bogardi (1989), Kam and Brown (1984) consider
models for estimating service life. A method for estimating
the damping and vibration behavior of systems is pres-
ented in Soize (1995). Fuzzy limit state functions, which
may result from uncertainties in limit states, are consid-
ered e.g. in Ching-Hsue Cheng and Don-Lin Mon (1993).
Applications of Bayes algorithm for processing additional
information in combination with fuzzy parameters are
described in Geyskens et al. (1998), Cheung-Bin Lee and
Ju-Won Park (1997) or Chou and Jie Yuan (1993).

As an alternative to a purely probabilistic and possi-
bilistic approach, probability theory in combination with
uncertain input information may be applied.

The probability of a fuzzy event is dealt with in Bothe
(1993), Bandemer and Gottwald (1989) or Zadeh (1968); the
computation is carried out by evaluating a Lebesgue
integral. The description of special problems such as e.g.
yield surfaces in plasticity theory (see Klisinski, 1988) with
the aid of fuzzy parameters leads to uncertain limit states,
which may be interpreted and evaluated as fuzzy events. In
Bardossy and Bogardi (1989) an application is presented
for fatigue problems in service life analysis; crisp values for
P¢ as well as fuzzy failure probabilities may be computed.

The theory of fuzzy random variables provides a
mathematical basis for taking account of uncertainties due
to randomness and fuzziness simultaneously (see e.g.
Kwakernaak, 1978, 1979; Puri and Ralescu, 1986 or Wang
Guangyuan and Zhang Yue, 1992). In Liu Yubin et al.
(1997) the application of fuzzy random variables in reli-
ability theory is described. The individual random vari-
ables possess (besides their randomness) an additional
uncertainty, which may be described by means of fuzzy set
theory. This approach leads to uncertain probability
density and probability distribution functions, uncertain
limit state functions and, as a result of reliability analysis,
to fuzzy values for the failure probability and the reliability



index. In Qiang Song et al. (1997) time-dependent pro-
cesses are also considered.

All procedures for taking account of uncertainties in
structural analysis are linked to deterministic fundamental
solutions obtained from a mechanical analysis of the
system. The computed results only yield reliable prognoses
regarding the behavior of the structure provided the
applied deterministic basic model is capable of describing
the load-bearing behavior in a sufficiently realistic manner.

The numerical simulation of the system behavior of
structures under consideration of geometrical and physical
nonlinearities is the subject of intensive research. A rea-
listic description of nonlinearities including loading and
damage processes is of utmost importance, particularly
when simulating the behavior of reinforced concrete
structures subject to general loading processes. The effi-
cient, deterministic basic model adopted here for the nu-
merical simulation of the load-bearing behavior of plane
(prestressed) reinforced concrete bar structures is de-
scribed in Miiller et al. (1995, 1996, 1998), this model
satisfies the expected requirements. An application ex-
ample is presented in Méller et al. (1997). The coupling of
this model with algorithms for stochastic analysis is de-
scribed in Moller et al. (1999).

In the following, only informal and lexical uncertainties
possessing the characteristic fuzziness are dealt with. The
differences between data uncertainties and model uncer-
tainties are considered. Fuzzy set theory forms the math-
ematical basis for the latter. The overall approach to take
account of, describe, process and evaluate fuzziness may
be subdivided into the following:

- Fuzzification
- Fuzzy structural analysis
— Safety assessment or defuzzification

Fuzzification and fuzzy structural analysis are described in
greater detail in the following.

2
Modeling of fuzzy structural parameters

2.1

Classification of data uncertainty and model uncertainty
As a criterion for distinguishing between data uncertainty
and model uncertainty, assignment of the uncertainty to
the input values or the model is formulated. A definition of
the model concept is used to concretize the distinction
between data uncertainty and model uncertainty. In the
mathematical sense every model represents an abstract
algebra. It may be interpreted as a mapping operator
which maps the input values onto the result values. A
model is thus a self-contained entity which processes
information.

Model uncertainty implies uncertainty in the mapping
operator. This is induced by uncertain structural param-
eters which are exclusively effective within the model and
are thus referred to as fuzzy model parameters. Fuzzy
model parameters are not explicitly mapped onto result
values but only influence the mapping itself. Model un-
certainty is created in the abstraction process, the result of
which is the model. A model possessing model uncertainty

is referred to as an uncertain model. It is characterized by
the fact that crisp input values lead to uncertain model
responses.

All uncertain structural parameters which explicitly
enter the model as input values are referred to as fuzzy
input values. These include all input values external to the
model which have no influence on the model itself but may
be mapped onto the result values by means of the model.
Data uncertainty is not included in the abstraction process
model creation.

The major problem is the demarcation of the model in
any given case. A model comprised of several sub-models
may itself be a sub-model of a higher-ranking model
system. The models of a model system are ordered ac-
cording to hierarchy, whereby interactive relationships
may exist. The decision as to which sub-models may be
grouped to form a model system cannot be made globally.
The specification of model limits is a subjective decision
based on objective information. Accordingly, the distinc-
tion between data uncertainty and model uncertainty is
uncertain in terms of a fuzzy criterion. In structural statics
different mathematical descriptions of real objects and
relationships may be considered as models which are
interlinked.

2.2

Fuzzification of uncertain input and model parameters
Fuzzification is understood to be the specification of the
membership function u(x) of an uncertain set A. The re-
sult of fuzzification is the fuzzy value x. During fuzzifica-
tion informal and lexical uncertainties possessing the
characteristic fuzziness are assessed. These uncertainties
may be uncertainties in the physical structural parameters
as well as uncertainties in the planning, construction,
utilization and damage processes as well as the mainte-
nance and strengthening processes. Human mistakes and
errors as well as uncertain boundary conditions are sub-
jective influences on these processes. By means of fuzz-
ification it is possible to describe mathematically the
effects of these uncertainties on physical structural
parameters (see e.g. Stransky, 1999). In fuzzy structural
analysis all uncertainties are accounted for in the form
of fuzzy values.

In order to specify the membership function of an un-
certain set it is not possible to state a general algorithm.
The only requirement is compliance with the conditions
for membership functions in accordance with the appen-
dix. Additional suggestions and descriptions for the pur-
pose of fuzzification serve as orientation aids, which may
be implemented by the user according to the problem
concerned.

The conceptual starting point for fuzzification is the
definition of the concept uncertain set. This presupposes a
fundamental set X with elements x € X and a subset
A C X. The subset A may be described by a postulation or
may represent an event. In order to specify a membership
function p, (x) the membership of the elements x of the
subset A is assessed gradually.

The fundamental set X may be constructed using
physical structural parameters or linguistic variables. For
the purpose of structural analysis, however, numerical
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Fig. 1. Assessment of the linguistic variable load-bearing
capacity of the foundation soil

values are required. It is therefore necessary to transform
linguistic variables into numerical values (see Stransky,
1999). When assessing the foundation soil it is possible to
adopt e.g. the linguistic variable load-bearing capacity. An
assessment of the load-bearing capacity is carried out by
assigning degrees (linguistic values) high, medium and low
in combination with a selection of modifiers such as ex-
treme and very. These degrees must then be referred to a
numerical scale, which e.g. represents a sustainable soil
pressure. This approach is illustrated in Fig. 1.

Membership functions for physical structural parame-
ters may be specified on the basis of samples. Besides the
measured values it is thereby necessary to take account of
the extent of sampling, possible errors in measurement
and other inaccuracies, estimates by experts or expert
groups, experience gained from comparable problems and
additional information where necessary. The membership
functions obtained represent a subjective assessment re-
flecting objective conditions. It is appropriate to select
simple functional forms for u,(x), e.g. linear or polygonal
functions.

When specifying the membership functions a distinc-
tion may be drawn between two principal approaches. If
the fundamental set X is a discrete finite set with known
elements, each element may then be directly assessed us-
ing a membership value. Connecting the points defined in
this way by interpolation functions or a point-to-point
polygon yields the membership function.

In the case of a continuous or infinite fundamental set X
a quasi-infinite number of points must be assessed. In this
case a crisp set representing a kernel set of the uncertain
set may first be defined (Fig. 2). The boundary regions of
this crisp kernel set are subsequently “smeared” by
assigning membership values u,(x) < 1 to the near-

boundary elements and allowing the branches of the 1, (x)
to approach p,(x) = 0 monotonically beyond the bound-
aries of the crisp kernel set. By this means, elements which
are not members of the crisp kernel set, but nevertheless
lie “in proximity”, are assigned membership values
Ua(x) > 0. This approach may be extended if several crisp
kernel sets for different membership levels (see a-level
sets) are selected and the yu,(x) are defined in level in-
crements. The branches of the membership functions may
thereby be described using different functional forms.
Existing data comprised of samples may be utilized in the
form of histograms. Smooth histograms are valuable as a
“first draft” for the sought u,(x).

The fuzzification method is demonstrated by the exam-
ple of the compression strength i, of sandstone. Figure 2
shows the recorded and normalized histogram for 16 in-
vestigated sample blocks and two fuzzification alternatives.

3

Fuzzy structural analysis

Fuzzy structural analysis implies the analysis of a structure
with the aid of a crisp (or uncertain) algorithm applied to
fuzzy values for input and model parameters. In fuzzy
structural analysis the deterministic algorithms for statical
and dynamic computations are adopted as a deterministic
fundamental solution.

3.1

Deterministic fundamental solution

In the following, a geometrically and physically nonlinear
analysis algorithm for plane (also prestressed) bar struc-
tures after Miiller et al. (1995, 1996, 1998) is applied by
way of example as the deterministic fundamental solution
for fuzzy structural analysis.

By means of this realistic simulation algorithm complex
loading processes are treated in an incremental-iterative
manner under consideration of all essential nonlinearities.
In addition to the evaluation of equilibrium conditions for
the displaced system, the geometrical nonlinearities are
taken into account by including the quadratic terms in the
strain-displacement relationships. This permits the in-
vestigation of system states characterized by large dis-
placements and moderate rotations.

Physical nonlinearities, especially reinforced concrete
nonlinearities, are accounted for by applying uniaxial,
explicitly formulated material laws for the determination
of stress at cross-sectional points. Account is thereby
taken of progressive material damage, cyclic loading and
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unloading (including the Bauschinger effect), monotonic
and cyclic hardening of steel, contact forces associated
with crack closure in concrete, and tension stiffening.

Internal force interaction is alternatively included in the
analysis with the aid of an M-N interaction model or an M-
N-Q interaction model. The cross-sectional stiffnesses are
determined numerically; for this purpose the cross-section
is subdivided into layers, whereby reinforcement steel
forms separate layers. In order to construct the stiffness
matrices and compute the responses in bars, integration
increments are specified along each bar and the system of
differential equations for the bars is numerically inte-
grated. It is presupposed that the bar cross-sections re-
main plane.

The incremental-iterative treatment of the loading
process is carried out by means of a modified Newton-
Raphson method or a pathfollowing algorithm with gen-
eralized displacement control (normal plane iteration). In
the case of dynamic investigations a modified Newmark
operator after Argyris and Mleynek (1988) is applied for
the numerical time-step integration. The dynamic equi-
librium condition is evaluated iteratively for every bar
integration point at each time step.

3.2

Aim of fuzzy structural analysis

The aim of fuzzy structural analysis is to map fuzzy input
values and fuzzy model values onto result values with the
aid of an analysis algorithm (deterministic fundamental
solution).

The results z; of the fuzzy structural analysis are also
fuzzy values. They may be computed from the n fuzzy
input values X; and the p fuzzy model values 1, by means
of the extension principle in combination with the Carte-
sian product between uncertain sets (see e.g. Zadeh, 1965;
Bothe, 1993 or Moller et al., 1999). A distinction is thereby
made between two operators:

1. The mapping operator
z=(z1,...,2,...,Zm) = f(x1,...,%i,...,Xy), which
here represents the analysis algorithm, transforms all
points x in the space of the fuzzy input values Xx;
(x-space) into the space of the fuzzy result values z;
(z-space).

2. The max-min operator determines the membership
values p(z) for the result points.

The mapping operator f(x) represents the computational
model M for the fuzzy structural analysis. The fuzzy
model values m, are introduced into the model M, which,
owing to

f=M(my, ... 10, 1) (1)

becomes the uncertain mapping operator f. The fuzzy
model values 1, are also treated according to the rules of
fuzzy set theory. The uncertain mapping operator f is
determined from Eq. (1) as a mapping of the fuzzy model
values m, onto f. This mapping is treated mathematically
in the same way as the mapping of the fuzzy input values
x; onto the fuzzy result values z;. For this reason only the
processing of the fuzzy input values x; using the crisp
mapping operator f is described in the following.

Applying the extension principle, the fuzzy input values
X; in the x-space form the uncertain input set X and are
mapped onto the uncertain result set Z in the z-space. The
fuzzy result values z; are contained in Z.

The extension principle is hardly practicable in the case
of complex mapping operators, as its application requires
discretization of the support of the uncertain input set X -
e.g. using a point mesh. This leads to numerical problems
(see Moller et al., 1999).

In order to develop a suitable method for processing
fuzzy input values and fuzzy model parameters the con-
cept of a-discretization is adopted. Procedures which ex-
ploit the special properties of the mapping operator or
additional information concerning the mapping are sug-
gested e.g. in Bonarini and Bontempi (1994) or Wood
et al. (1992). In the following a method is derived which
permits the use of mapping operators without special
properties.

3.3
a-Discretization of fuzzy values
Fuzzy values may be discretized with the aid of a-level sets
(see Fig. 3). The o-level sets A;, ok, i=1,...,n of the
fuzzy input values A,,...,A;,...,A, form the n-dimen-
sional crisp subspace X, of the x-space. For o = 0 the
crisp support subspace is obtained. The crisp subspace X,
for the two fuzzy input values x; = A, and X, = A, and the
a-level oy is presented in Fig. 4. If the fuzzy input values
are convex uncertain sets, between which no interaction
exists, an n-dimensional hypercuboid is obtained. Non-
convex fuzzy input values lead to a disjoint subspace X, .
If interaction exists, the shape of the subspace X, gener-
ally departs from the shape of the n-dimensional hyper-
cuboid; the formation of “voids” in X, is possible.
Between the two subspaces X, and X, for o; and o the
following relationship holds

X, CX,, Yoy, ox €051], o > o (2)

It follows that all subspaces X, are contained in the sup-
port subspace X, _. If o may take on all real values in the
interval [0; 1], the entirety of X, then forms the uncertain
input set X; o is equal to the membership values of the
subspaces X, . For selected values ax € [0; 1], on the other
hand, the uncertain input set X is discretized (Fig. 4).
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Fig. 3. o-level sets
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a-Level optimization
All fuzzy input values are discretized using the same
number of o-levels oy, k =1, ..., r. For each fuzzy input
value x; = ANI- on the level o the a-level set 4;,, is then
assigned to x;, and all A;,, form the crisp subspace X, .
With the aid of the mapping operator z = f(x;, ..., x,) it
is possible to compute elements of the a-level sets B;,, of
the fuzzy result values z; = Bj,j = 1, ..., m on the a-level
ak. The mapping of all elements of X, yields the crisp
subspace Z, of the z-space.

Once the largest element z;,,, and the smallest element
Zj 1 of the a-level set B;,, have been found, two points of
the membership function u(zj) = up (z) are known
(Fig. 5). In the case of convex fuzzy result values the u(z;)
are thus completely described. The determination of z;,,,
and zj,,; replaces the max-min operator of the extension
principle. The search for the smallest and largest elements
may be formulated as an optimization problem. The ob-
jective functions

(3)

zj = fi(x1, ..., %) = Max|(xy, ..
(4)

Zj :f}‘(xl, .
xn) € X,,

M 7x1’l) 6 Xo{k

;Xn) = Min|(xy,...,x,) € X,

must be satisfied. The requirements (x;, ...,
represent the restrictions of the optimization problem.
Equations (3) and (4) are satisfied by the optimum
points x,,,. For each fuzzy result value precisely two
optimum points in the crisp subspace X, belong to each
o-level ay. The optimization task according to Egs. (3)
and (4) for all a-levels o and all fuzzy result values z; is
referred to as a-level optimization. In order to solve the

mapping operator z = f(x,...,x,) may be used; these
include uniqueness, biuniqueness, continuity, monoto-
nicity and dimensionality of the x-space and z-space.

If the mapping operator has no special properties, the
optimum points x,,, are located arbitrarily in X, ; other-
wise the search for the x,,, may be limited to parts of X, -
e.g. on the “boundary”.

If

(1) every crisp subspace X, is coherent and
(2) the mapping operator is continuous and unique,

the fuzzy result values z; are then convex uncertain sets. If
no interaction exists between the fuzzy input values x;,
condition (1) is satisfied when all A; = x; are convex
uncertain sets. If condition (2) is not complied with, the
o-level optimization yields envelope curves of the actual
membership functions of the fuzzy result values.

3.5

Fuzzy structural analysis procedure — optimization strategy
The optimization problem according to Eqs. (3) and (4) is
characterized by the following:

(1) The optimization variables are continuous.

(2) The objective function is generally in the form of an
algorithm, i.e. only implicit. It is only possible to formulate
the objective function explicitly in simple cases.

(3) The value range of the xy, ..., x, is defined on every
a-level by the crisp subspace X, . If no interaction exists
between the fuzzy input values X;, the subspace X, is then
bounded by hyperplanes, which are perpendicular to one
another and each perpendicular to one coordinate axis x;.
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Fig. 5. Mapping of the fuzzy
input values x; and X, onto the

(4) Between the subspaces X, |ox € [0; 1] the rela-
tionship X, C X, |o; > oy exists.
All result values

Z, = flas s xn) [ (%1, %) € X, ()

of the subspace Z, are therefore also result values z, in

the subspace Z, with (xi,...,x,) € X, . For every result
point z, belonging to the subspace Z,, u(z;) > ; holds.

Owing to the fact that o; > oy, the condition u(z,) > o is
also satisfied, i.e. all points z, € Z, also belong to the a-

level oy; 2, € Z,, holds (Fig. 6).

(5) The optimization problem for each of the m fuzzy
result values z; on each of the r a-levels ox must be solved
twice, i.e. (2-m-r) times in total.

Features (1)-(4) characterize an optimization problem
without special properties which might be exploited
numerically. The extent of the numerical computation is
mainly determined by the objective function representing
the mechanical model adopted (e.g. linear, nonlinear). The
optimum points may lie within the subspace X, as well as
on the “boundary” or in the “corners”.

As hardly any information is available a priori the
method of solution should be independent of assumptions

fuzzy result value z; by map-
ping of all a-level sets A;,,
onto the o-level sets Bj,,
concerning the position of the optimum points. Owing to
feature (5) multiple solution of the optimization problem
is necessary. The a-level optimization thus demands a
robust optimization technique which is independent of the
type and behavior of the objective function or restrictions
and is capable of reliably finding global optima. Standard
optimization methods are only partly suitable for this
purpose. For this reason a compromise solution is devel-
oped by combining evolution strategy, the gradient
method and the Monte-Carlo method.

The combination of directed and non-directed search
techniques is advantageous compared with a purely di-
rected search technique when seeking global optima; a
mixed technique is less sensitive in relation to less
“well-behaved” objective functions. By taking advantage of
existing information concerning the behavior of the
objective function the number of “unnecessary” compu-
tations of objective function values (leading to poorer
results) is reduced. If the available information is
insufficient, random-oriented methods are applied. The
developed method of solution is described in the fol-
lowing and illustrated graphically by way of example in
Fig. 7.
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o, optimization o
0.0 > 0.0
X

The optimization problem is described by the input val-
ues x; € X;, i = 1,...,n, the result value z; € z; and the al-
gorithm for computing the objective function value (e.g.
statical or dynamic analysis). The restrictions (x1, ..., x;,)
€ X,, are obtained from the interaction relationships be-
tween the fuzzy input values X;; these restrict the definition
region of the objective function z; = fj(x1, ..., x,). If no
interaction exists between the convex fuzzy input values X;,
the permissible domain is obtained as an n-dimensional
hypercuboid (subspace) in the x-space. In Fig. 7 the per-
missible domain X, for the o-level o = o; = 0 (support
subspace) is shown as a rectangle.

The basis for the compromise solution is a (1+1) evo-
lution strategy, which is matched to the optimization
problem by modification. The starting point for the opti-
mization is specified with aid of uniformly distributed
random numbers U € [0; 1) (or their realizations u;) in
the subspace X, (permissible domain for «); this serves
as the first parent point x% (represented as O in Fig. 7).

o] _

X =X g+ Ui (Xi gy — Xigg); i=1,...,n (6)

A mutation of the properties of the parent point is then
simulated by generating an offspring point in its proximity
according to the random principle. This represents a de-
parture from the classical evolution strategy procedure.
For the offspring points x9*!/ a maximum and minimum
distance

(q+1] [q]

max_d,':max)x. —xP; i=1,...,n (7)

1 1

min _d; = min‘x[qﬂ] —X1, i=1,...,n (8)

1 1

from the parent point x4 is specified directionally (in
terms of coordinates). The subspace defined by max _d;
and min _d; assigned to the parent point x4 (local search
domain) is an n-dimensional hypercuboid. The specifica-
tion of max _d; and min _d; by compressing the support
subspace is advantageous.

max _d; = ¢; - (xi, w=0r — Xi, a1:01> |0 < <1
i=1,....n (9)
., n (10)

If no interaction exists between the fuzzy input values X;,
a similarity relationship exists between the local search

min di=¢, -max d;|0<c, <1; i=1,..

7 X onto the fuzzy result value z by a-level
optimization with z, = f(x;) as an ele-
or ment of the a-level sets for o; and oy

domain and the support subspace X, _, (permissible do-
main for o; = 0). If interaction exists, the local search
domain may be oriented to the form of X, _, using the
restrictions for the x;. The distance bounds max _d; and
min _d; are independent of the a-level o. Figure 7 shows
the bounds of the local search domains assigned to the
parent points x/7 (indicated by @) as dotted rectangles (for
min _d;) and solid rectangles (for max _d;).

The first offspring point x7! of xl is generated within
this local search domain (between the dotted and solid
lines in Fig. 7) by means of an uniform distribution of
U € [0; 1).

[q+1]

X; :xgq]—i—z-(ui—O.S)-max,di; i=1,...,n

(11)
For at least one i the condition

1<i<n (12)
must be fulfilled. Based on the parent point x/7 an off-
spring point x/97! is first determined. A test is carried out
to check whether its objective function value

i )

mm¢g¢:wwhﬁw

zj[qﬂ] = ﬁ(x[lqﬂ], ..., 7™ is an improvement compared

with z][q] :fj(x[lq], e

provement is obtained, advancement is made along the
randomly selected direction until no further improvement
in the objective function value is possible.

, x4} of the parent point. If an im-

x4t = . ylat]

—1 .« .
q+7] < z][.qﬂ ] for minimum

search

[
Zj

+r—1 —1 .
- &[q ] zJ[qH] > zJ[qH I for maximum ;
search

r=1,2,3,...

(13)

The step increment thereby remains constant. The last
improved point x977*! then becomes the current parent
point. In Fig. 7 these step sequences are indicated by the
points ®.

If the offspring point x/4! determined randomly from

Egs. (11) and (12) does not lead to an improvement in the
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j
by © in Fig. 7), the next offspring point x\92| is positioned

at the same distance as x/9*!! from the parent point x4 in
the opposite direction.

[qH] ][’Hl] > zq] for minimum search
!

q+1] < z

(14)
z for maximum search

If the offspring point x[q“] shows no further improve-
ment in the value of z7'~, the pomt x973 is determined
randomly on the basis of xq] (as in the computatlon of
x9*1) using Egs. (11) and (12). The point x[9*3 is eval-
uated in the same way as for x9*1. This procedure is
presented on a large scale in Fig. 7, which also shows the
sequence of the placed points. The points 0, 1 and 2 are
a result of advancements along the initial direction with
improvement of the functional values of the objective
function; these are obtained from Eq. (13). Points 3, 5
and 7 were defined randomly, whereas 4 and 6 were

using Eq. (14).

If no improvement in the objective function value z][q]
achieved after a glven number np of point pairs
(xlat2r+1l - xlat2r42]) with r = 0, 1, 2 ..., the distance
bounds min _d; and max _d; are reduced. After further
unsuccessful steps the search is considered to be at an end
and the last parent point is then interpreted as being the
optimum point X, (plotted as @ in Fig. 7).

On the boundary of the permissible domain (subspace
X,,) the search algorithm distinguishes between randomly
placed points computed from Egs. (11) and (12) and di-
rected specified points obtained from Eq. (13) or (14).

If the “randomly placed point” x/9+! does not satisfy all
of the restrictions (xi, ..., x,) € X, , the respective co-
ordinates x[ 1 (of those wh1ch do not adhere to the re-
strictions) are corrected. In this case the coordinates of the
boundary of X, are chosen for x£q+1]. If no interaction
exists between the X;, the following holds

is

[q+1] _ [q+1]

i(new)_xls‘xklxi 1i=1,...,n

(15)

< xl‘, Otkl;
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3\ Fig. 8. Modified evolution strategy, be-
havior of the search algorithm along the

boundary of the permissible domain x,,

i 1 . ds to th dinate x7"" a5 dret min- Th
xEl(l:evl) = Xi, nr x[q ] > Xigy i=1,....n (16) corresp[(()lrLl s to the same coordinate x;' ' as drel min e

point x(new is determined from
If the point x7 found in this way does not comply
=( . . latrl _  lqtr=1] (xlatr _ ylatr-1]
with the distance bound min _d; according to Eq. (12), Xinew) — X +6 (5 x ) (20)

this point is rejected. The coordinate search is continued
with the random determination of x4t (Egs. (11)
and (12)).

If the restrictions (xy,...,x,) € X, for the “directed
specified point” x[7" are not completely fulfilled, the co-
ordinates x£q+r] concerned are placed (as for randomly
placed points) on the boundary of X, (Fig. 8). If no in-
teraction exists between the x;, Eqs. (15) and (16) may be
applied. The distance bound min _d; is then checked using
Eq. (12). For this purpose the coordinate xEqH] is deter-
mined, which falls short of the minimum distance min _d;
by the least relative distance

d;
drel min — lrrllax (mln d> (17)

If drel min > 1.0, no coordinate x[qH] falls short of the dis-

tance bound min _d;; the point xE has been found. If the
requirement of minimum dlstance 1s not complied with
(i.e. drelmin < 1.0), all d; values (see Eq. (12)) are propor-
tionally increased by the factor (Fig. 8)

1 ( . >
’ 2 drel,min drel,max

in which

d;
drel max — max
i=1,.., max _d;

is the minimum relative deficit below the maximum
distance max _d;. In accordance with Eq. (10) drel max

(18)

(19)

If no interaction exists between the x;, the coordinates
"), which are already boundary values of X, . (e for

which xq+ I x; ol OF x[q+ T or)> Are retamed and no

longer consrdered in Eq. (20), see Fig. 8. On account of

Eq. (18) the coordinate xE(new) belonging to drel min is thus
placed exactly between min _d; and max _d;. In the case of
“no interaction between the x;” the distance bound

max _d; is retained for alli =1,...,n.

For the point xEq w]> comphance w1th the restrictions

(x1,...,x,) € X, is checked; individual coordinates of

xE’f:]) are corrected as required, e.g. using Egs. (15) and
(16). If the point x thereby lies in a corner of X, (i.e.
of the permissible c(lomaln) a check is no longer necessary

for the distance bounds and the objective function value
for ggi:v?) is computed. Otherwise, the distance bounds
min _d; and max _d; are rechecked. If all conditions are
satisfied, x[ ]) is evaluated.

If max d is exceeded, the value of the corresponding

lq+7]

coordinate x;.,, must be reduced in such a way that the

equals sign holds in

[q+r] . x[.qurfl]

max _d; > d; = |x (21)
Compliance with the restrictions is rechecked; coordi-
nates are corrected where necessary and the procedure is
continued using Eq. (17). This procedure is repeated as
required until all conditions for x w]) are satisfied or a

corner position in X, is attarned



If the condition min _d; is not complied with, only the
steps according to Eqs. (17)-(20) are included in the se-
quence to be repeated.

When searching for optimum points x,,, use may be
made of the inclusion properties of the subspaces X, and
X, for oy < a; according to Eq. (2). If it is necessary to
check the point x/? on the a-level o < o; for optimality
(which has already been evaluated for o = ;), the existing
functional value z7 for o = o; is then used. A recompu-
tation of z][q] is no longer necessary; see feature (4) of the
optimization problem.

The use of existing points x/7 with a known objective
function value z7 leads to an improved efficiency of the
method. An endeavor is thus made to include existing
points in the “proximity” of a newly-located point in the
search for an extreme value. The proximity is defined with
the aid of a direction-dependent distance Ad; referred to
the distance bound max _d;.

Ad;=c¢q-max d; | 0 < ¢y <1 (22)

For every newly-placed point x/? a test is carried out to
check whether this point lies in the proximity of the
known point x”! with the known objective function value
z If

j

i=1,...,n

Ad; > ‘xgq] - xE.P] : 1,...,n (23)
then

is specified and the optimum search is continued.

All points which have already been evaluated in one
extreme value search - i.e. optimization for one o-level,
one fuzzy result value and one optimization objective
(minimum or maximum) - are designated by x[?]. These
points x!?) are unable to produce improved results within
the same extreme value search. It is further assumed that
an improvement in the results is no longer possible using
points in the proximity of the x!?! points. For these ran-
domly or directed specified points x4/ determined in this
extreme value search a test is carried out using Eq. (23) to
check whether a point x/?! is located in their proximity. If

A

this is the case, x4 is not evaluated; the optimization
search is continued with a new point x/9.

The described procedure combines elements of diffe-
rent optimization methods (evolution strategy, gradient
method, Monte-Carlo method). The random specification
of offspring points within the distance bounds min _d;
and max _d; corresponds to the simple Monte-Carlo
method. In the event that no interaction exists between
the x; and that the local search domains bounded by
min _d; and max _d; form n-dimensional hypercuboids, the
most probable, randomly selected search direction runs
parallel to one of the spatial diagonals of the permissible
domain. In the case of uniform distribution of the
randomly selected points x/9*"] within the local search
domain assigned to the point x/?, the functional value of
the probability density function is

po = f(x'1"7)
1
[TL,(2 max_d;) — [[:L,(2 - min _d;)
1
“ 2 (1— o) - TT7, (max d))

If the angles between the coordinate axes x; and the vector
(xlat7] — xl1) are designated by ¢;, the functional value of
the probability density function for the randomly selected
search direction as a function of ¢; may be stated as
f(@la*7). The line determined by the direction of the vector
(xl9*7) — xl4) originating in x4/ intersects the planes x; =
xl[q] + min _d; and x; = xgq] + max _d;. The line segment Al
between the two intersection points for min _d; and max _d;
(for the same i), located at the shortest distance from point
x4, runs within the local search domain (Fig. 9).

The product of the length Al and the constant py yields

the functional value of the probability density function
Folatry — o (max _d; — min _d;)

(25)

[cos 0/ 2
_ po-(1—c;) max_d;

| cos o

The values of min _d;, max _d; and cos ¢; must be referred
to the coordinates x; for which x; = xE.q] 4+ min _d; and

X, + max_d, +

M+ min d, T i

[a]

P, xlard

=

X, 4

Mo
d

- min_d, T

X, - max_d, T

I I
[q]

x,' Y- min_d, x,[ 9+ min d,

X1[q] -max_d, Xl[q]

™,
y

X Fig. 9. Random determination of the

[a] . .
X, ¥+ max_d, search direction
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X = xl[q] =+ max _d; form the limit points for Al. The de-
nominator in Eq. (26) is the absolute value of the direction
cosine between x; and (x4t — x4)). For cos ¢, = 1, i.e. in
the direction +x;, the function f(¢/7*"!) possesses local
minima; f(l9*") increases with decreasing cos ¢;. For
angles @l9t7], for which the reference coordinate x; changes
(edges or corners of the local search domain), “kinks”
occur in the function f(¢!4*")); local maxima of the func-
tional value occur here. The global maximum of f(@l4*"])
lies in the direction of a corner of the local search domain.

The search for optimum points is thus strongly guided
towards the corners of the permissible domain (i.e. to-
wards the corners of the subspace X, ), where the Xopt Ar€
located in the case of monotonic mappings. The direction
of the largest departure from X, is preferred compared
with other directions. The larger the factor c, then the less
pronounced are these characteristics.

The progressive search in a fixed direction for im-
provement of the solution corresponds to an improved
gradient method. The random determination of this di-
rection avoids the numerical computations necessary to
determine the gradient.

The flexibility of the algorithm is realized by means of
variable control parameters. These must be specified for
the particular problem concerned. The following control
parameters were introduced:

(1) Maximum number np of randomly specified off-
spring points (starting from the same parent point)
without improvement of the result.

(2) Number of refinement stages n; for the distance
bounds min _d; and max _d;.

(3) Maximum directional step increment max _d; relating
to the support of the fuzzy input value x;; factor ¢, in
Eq. (9).

(4) Minimum directional step increment min _d; relating
to max _d; according to (3); factor ¢, in Eq. (10).

(5) Maximum directional distance Ad; for the reuse of
existing points instead of the newly-placed ones, re-
ferred to the maximum step increment according to
(3); factor ¢4 in Eq. (22).

(6) Reduction of the maximum step increment for each
refinement stage of the distance bounds, referred to
the respective current maximum step increment ac-
cording to (3); factor ¢s in
max dj(pew) = C5 - Max _d; (27)

(7) Termination limits for the relative improvement of
the result in the last n, steps, referred to the maxi-
mum difference in the functional values of the ob-
jective function within an extreme value search;
factor c¢ in

min _Az; = cs - max‘zj[q] — zj[p]

;o qFp (28)

Termination occurs when

2977 5 29 for maximum

[a] lg+1] search
z' —z

min _Az; > max
J r=1,...,n, z][‘ﬁr]

search
(29)

< z][q] for minimum

If the parameter according to (1) is active, a jump occurs
into the next refinement step for the distance bounds. If
the number of refinement steps according to (2) is also
exhausted, the optimization is terminated and the opti-
mum point is taken to be localized. Alternatively, termi-
nation occurs when the criterion according to (7) becomes
active.

Due to the direct or indirect orientation of all distance
dimensions at the support of the respective fuzzy input
value X; (independent of the a-level) a decrease in the
defined distances with increasing o is avoided. The com-
putational effort and the accuracy of the results are thus
the same for all o, i.e. all points defining the membership
function of a fuzzy result value are determined to the same
accuracy. For large o, the permissible domain X, may be
very small compared with the support subspace X, _, and
hence also very small compared with the local search do-
main. For an extreme value search with coarse accuracy
requirements this may mean that (starting from the first
parent point x%) all additional points in the permissible
domain X, do not satisfy the requirement for the mini-
mum distance min _d; according to Eq. (12). The optimi-
zation is then (corresponding to the selected control
parameters) continued with the next refinement step or
terminated. An orientation of the distance dimensions to
the respective permissible domain X, would then lead to
an increase in the search accuracy and thus to an increase
in the computational effort with increasing o.

The identification of global optima is not always guar-
anteed even using well-matched parameters. A post-com-
putation is thus carried out in order to raise the success
probability. After the completion of all optimizations for
the selected a-levels all of the stored results z; of the points
x considered (observing the respective restrictions
(x1,...,x,) € X,,) are rechecked for optimality. When
improving the results the algorithm is restarted at the
“best” points found. At the end of these additional com-
putations the post-computation is repeated. When no
(significant) improvement is obtained, the a-level opti-
mization is considered to be completed.

The principle of the post-computation is illustrated in
Fig. 10 for the a-level o = 0.40. All points x are plotted for
which the objective function values z; are known from
previous optimizations; the point @ has not yet been
evaluated. The optimum points x_,, identified in the op-
timizations on the five a-levels considered (here: only for
one optimization objective in each case) are denoted by A.
All points x to be checked for optimality for o = 0.40 are
represented by O; these lie in the marked (solid lines)
permissible domain (subspace X, ). A comparison of the
results z; obtained at points O with the current optimum
obtained so far (at A) yields an improved result at point
@. Repeated optimization for o = 0.40 with the identified
point & results in the new optimum point x,, indicated by
@®. The final post-computation leads to no improvement in
the result.

The combination of the modified evolution strategy
with a post-computation for each fuzzy result value on all
selected a-levels leads to a qualitatively improved solution
of the a-level optimization. The probability of finding
global optima increases considerably. Based on the inclu-
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sion relationship between the subspaces X, and X, for
different o; and oy according to Eq. (2) it may be con-
cluded that the magnitudes of the computed optima z;,,;
and z;,,, behave monotonically in relation to the associ-
ated o-values ok. In view of the latter the convexity of the
fuzzy result values z; is guaranteed.

4
Examples

4.1

Statical fuzzy structural analysis

The effects of different fuzzy values are investigated for the
plane reinforced concrete frame shown in Fig. 11. The
system is modeled using three bars. Fifty integration in-
crements are chosen for each bar and each cross-section is
subdivided into 60 layers. The geometrically and physi-
cally nonlinear analysis is carried out using the material
laws for reinforcement steel and concrete after Oetes (see

permissible domains for a, = 0.00; 0.20; 0.60; 0.80 and 1.00

on

e checked

"better " point from the post-computation; new starting point

Fig. 10. Post-computation for oy = 0.40

Miiller et al., 1995). Tension stiffening and the effects of
stirrup reinforcement are accounted for in the concrete
material law.

The loading process is comprised of dead weight, hor-
izontal load Py, vertical nodal loads v - Py, and the line
load v - po. After applying dead weight the horizontal load
Py is introduced; Py, and p, are finally increased incre-
mentally using the load factor v.

Investigation I - model uncertainty, computation of a
fuzzy system reaction and the fuzzy failure load
When modeling the structure it is necessary to define the
arrangement of the reinforcement steel. The tolerances in
the laying of reinforcement steel are accounted for in the
investigation as fuzzy values. These represent an example
of model uncertainty.

The distances h;, h, and hs (Fig. 12) between the
cross-sectional boundaries and the position of the rein-
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v Py, VP, v - Py,
e - re ol [Ty
— 2
cross-sections: 50 /35 cm | | viu(3) 3 @ 4
(all bars) |
v 42 16 mm | P, = 10kN
Py, = 100 kN
% |20 16 mm g : Po = 10kNm™
| S (1) 3)
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£ =620 Nmm? o = 23Nmm?, E, =20328 Nmm? g 11
&,m = 2.0 %o fo=40Nmm?, e, = 5.0 % frame (plane); structure, cross-
Em = 15% v =02 sections, materials, statical
v =03 system with loading

forcement steel are prescribed at each end of the bars. In
the cross bar the reinforcement arrangement is also
specified in the middle of the bar. The distances hy, h,
and h3 are considered to be independent of each other;
the reinforcement arrangements at the various prescribed
locations are also independent of each other. Assuming a
tolerance of =5 mm in the laying of the reinforcement
steel, hy, h, and h; become fuzzy values. For the case in
question a simple fuzzification of the values h; is applied.
The fuzzy model values h; are described by the fuzzy
triangular numbers

hi = (hison — 5, Hisoll, ison + 5) [mm] (30)

A consideration of the fuzzy model values h; when mod-
eling the bars leads to the uncertain model reinforcement
arrangement. The system shown in Fig. 11 contains 21
fuzzy model values.

The remaining model and input values are assumed to
be deterministic. The rotational spring stiffness k,, relating
to the fixing of the columns in the foundation soil is
specified by

=

& h]Aplzm = 66 mm

hZ,plan =250 mm

m ~ e ) 434 o
'QM

Fig. 12. Planned arrangement of the reinforcement

ky, = 5.0 MNm rad™!

(31)
The described loading process is simulated up to global
system failure. The fuzzy result values are the horizontal
displacement of node 3 ¥y(3) for all increments of the
loading process and the load factor vg,, (g + p = struc-
tural analysis under consideration of geometrical and
physical nonlinearities) for the fuzzy failure load. The
three a-levels a; = 0.00, o, = 0.50 and o3 = 1.00 are cho-
sen for the computation. The fuzzy load-displacement
dependency for ¥y(3) is presented in Fig. 13; the load
factor vg,, for the fuzzy failure load is approximately
described by the fuzzy triangular number

Vgip = (6.27, 6.43, 6.59) (32)

Investigation II - data uncertainty, computation

of a fuzzy system reaction

The investigation of the frame shown in Fig. 11 is repeated
with altered structural parameters. The reinforcement ar-
rangement is deterministically assumed to be in the

g L

6.59
63F=========3= e
6.27

Vu(3) [em]

Fig. 13. Fuzzy load-displacement dependency for vy(3) and
o; = 0.00 and o3 = 1.00
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Fig. 14. Fuzzy load-displacement dependency for vy (3) and
op = 0.00 and o = 1.00; fuzzy result v (3)

planned position. The fuzzy input values are now the load
factor v and the rotational spring stiffness k,. These are
modeled as fuzzy triangular numbers

7= (5.5, 5.9, 6.7) (33)
and
k, = (5.0, 9.0, 13.0) [MNm rad '] (34)

the values of v and k, describe data uncertainty.

The fuzzy result value is the horizontal displacement of
node 3 ¥y(3). The investigation is carried out for the o-
levels o; = 0.00, ot = 0.144, o3 = 0.25, oty = 0.50, ai5 = 0.75
and o = 1.00. Figure 14 shows the fuzzy load-displacement
dependency for «; = 0.00 and o = 1.00 and the fuzzy re-
sult ¥ (3). For a; = 0.00 global system failure occurs before
the attainment of v,, = 6.7; the search for maximum vy (3)
yields the result vy(3),, — oo on this a-level.
Investigation III - data uncertainty, computation
of the fuzzy failure load
The load factor vg,, of the fuzzy failure load for global
system failure (for geometrically and physically nonlinear
behavior) is computed as the fuzzy result value. In contrast
to investigation II, only the rotational spring stiffness ac-
cording to Eq. (34) enters the analysis as a fuzzy input
value. The loads Py, and p, are incrementally increased
with v until global system failure is attained. For the
purpose of comparison the (quasi-crisp) failure load rep-
resented by v;,, under exclusive consideration of physical
nonlinearities, and the fuzzy failure load represented by vy,
under exclusive consideration of geometrical nonlineari-
ties, are computed. The results for 17g+p and v, are com-
pared in Fig. 15. The load factor vy is approximately
described by the fuzzy triangular number

ROV A
1.00T7T —— — — — — K — — — 7 /7
|
~ |
v, | Vo
0.50 T |
|
|
0.00 ! — >
6.43 7.24 7.63 8.11 v

Fig. 15. Load factors Vg, and v, of fuzzy failure loads for global
system failure; considered nonlinearities: p = physical, g+p =
geometrical and physical

Vg = (27.15, 32.70, 37.60) (35)

This example demonstrates the decisive influence of the
deterministic fundamental solution on the quality of the
results.

4.2

Dynamic fuzzy structural analysis

The plane reinforced concrete frame with a prestressed
cross bar according to Fig. 16 is investigated under dy-
namic transient loading. The system is modeled using
three bars. 49 integration increments are chosen for the
cross bar and 40 integration increments for the columns.
Each of the cross-sections are subdivided into 60 layers.
The geometrically and physically nonlinear analysis is
carried out using the material laws after Ma, Bertero and
Meskouris, Kritzig (see Meskouris et al., 1988) for rein-
forcement steel and concrete. Contactforces associated
with fracture closure and the effects of stirrup reinforce-
ment are accounted for in the concrete material law; ten-
sion stiffening is neglected in this case.

The structure is constructed from prefabricated parts
and the frame corners are rigidly connected on site. The
fixture of the columns in the foundation soil is modeled by
means of linear-elastic rotational springs (Fig. 17).

The simulated loading process, including system mod-
ification, is comprised of the following components:

1. Simultaneous prestressing of all tendons in the cross
bar according to the specified prestressing force without
the effects of dead weight, grouting of the conduits.

2. Application of the dead weight of the columns, hinged
connection of the columns and the cross bar at the
frame corners and application of the dead weight of the
cross bar.

3. Transformation of the hinged joints at the frame cor-
ners into rigid connections.

4. Application of additional translational mass at the
frame corners and along the cross bar (statical loads Py
and ppyv in Fig. 17).

5. Introduction of dynamic loading (Py(t), pru(t) and
psu(t) in Fig. 17) due to the horizontal acceleration a
according to the normalized load-time function.

The stiffness of the rotational springs (the same at each
column base) and the horizontal acceleration are modeled
by the fuzzy triangular numbers
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tendon parameters: Fig. 16. Reinforced concrete
for every tendon: A, = 3cm’> p=0.18 conduits: dy =40 mm frame (plane); structure, cross-
F, =292 kN B=0.4°m" wedgeslip: Ad= 0mm sections, materials

pm{(t)
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Prv
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— normalized load-time function:
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— v n 2
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— oo+ = >
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loads: Py, = 49.05kN Pspo =2 My Pyo =a- M’ ) Fig. 17. Statical system (final state) with
Pry = 17.658 KNm'' Pruo =@ My a = horizontal acceleration statical and dynamic loading
IE(/, = (7.0, 9.0, 11.0) [MNm rad ! (36) integration is At = 0.025 s. The time dependency of the
horizontal fuzzy displacement vy (¢) of the left-hand
and frame corner up to t = 2.5 s is plotted in Fig. 18. For the
a = (0.35, 0.40, 0.45) [g] (37) Ppurpose of comparison the results of a linear deterministic

For the purpose of determining a suitable time step At for
the numerical time-step integration the first three natural
angular frequencies for the linear case and k, = 9.0
MNm rad ! were computed to be w; = 14.48 57!, w, =
68.43 s~ and w; = 108.64 s~!. It is assumed that the
prescribed loading excites the system exclusively at the
first natural frequency. The time step for the numerical

investigation for p(vyg(t)) = 1.0 are also plotted.

The fuzzy result for the magnitude of the largest
bending moment Mg (absolute value) at the right-hand
column base is plotted in Fig. 19 and compared with the
results of the linear analysis for pu(Ms) = 1.0. The stress-
strain dependencies for the inner concrete layer ((Din
Fig. 16) and the outer reinforcement layer (@ in Fig. 16)
for the right-hand column head are also plotted in
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Fig. 18. Time dependency of the fuzzy displacement vy(t)

Fig. 19 for k, = 7000 kNm rad~! and a = 0.45 g (1 = 0)
up to t = 2.5 s. The material laws for hysteresis material
behavior include the effects of material damping

(Fig. 18).

5

Conclusions

The present paper indicates the way in which uncertain
input values and model values may be described and ap-
plied in fuzzy structural analysis. Existing uncertainty is
quantified on the basis of fuzzy set theory, with the in-
clusion of expert knowledge. These (partly subjective)
assessed uncertainties in the fuzzy input values and fuzzy
model values are mapped onto the fuzzy result values by
means of special fuzzy analysis algorithms; the assessment
of uncertainties is thereby retained. For the deterministic
fundamental solution coupled with fuzzy analysis all
known algorithms for structural analysis may be imple-
mented.

The uncertain results of fuzzy structural analysis permit
an improved assessment of load-bearing behavior under
consideration of uncertainties. These may also provide a
starting point for safety assessment on the basis of new
concepts. Besides the application of possibility theory for
evaluating the uncertainty fuzziness, a combination of
fuzziness and randomness (based on the theory of fuzzy
random variables) may also be successfully implemented
on the basis of fuzzy first order reliability method
(FFORM); see Moller et al. (1999).

Appendix

Several mathematical definitions

In classical set theory the membership of elements in re-
lation to a set is assessed in binary terms on the basis of a
crisp condition. An element either belongs or does not
belong to the set under consideration. As a further de-
velopment of classical set theory, fuzzy set theory permits
the gradual assessment of the membership of elements

in relation to a set; this is described with the aid of a
membership function. An uncertain set is defined as

follows: 563

Definition 1 - uncertain set

If X represents a fundamental set and x are the elements of
this fundamental set, to be assessed according to an un-
certain postulation and assigned to a subset A of X, the set

A= {(x, (%)) |x € X}

is referred to as the uncertain set of X. u,(x) is the
membership function (characteristic function) of the un-
certain set A. The uncertain set A is also referred to as a
fuzzy value x.

The following holds for the functional values of the
membership function u,(x)

(A1)

pa(x) >0 VxeX (A2)
If

sup[ua(x)] =1 (A3)
xeX

holds, the membership function is referred to as
normalized.

Definition 2 - support of an uncertain set

The support S(A) of an uncertain set A is a crisp set. This
contains the elements

S(A) = {x € X| py(x) > 0} (A4)

Definition 3 - convex uncertain set

An uncertain set A is referred to as convex if its
membership function u,(x) monotonically decreases on
each side of the maximum value, i.e. when the following
applies

(M) linear nonlinear OOA 65(®) [N mm™] 0B(®% [N mm~] A
1.0 analysis fuzzy . - ‘0 - >
(n=1.0) analysis 3¢ / - ;f ’/ )/ f 1
/ P74 15 UL
/ LA > /
] # 25 b
0.0 T 1 } 1 ) -360 /‘7 P -35 !
81.78 141.84 182.76 222.60 4, 45
Mg [kNm] 0 8.0 16.0 £ [%] -4.0 0.0 4.0 € [%o]

Fig. 19. Largest fuzzy bending moment Ms (absolute value) at the
right-hand column base; stress-strain dependencies for concrete

(at @) and steel (at )
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fa(2) > minpg (x1), fia(x3)]

Vxl,xZ,x3€Xmit x1 <x, <x3 (A5)

Definition 4 - fuzzy number

A fuzzy number 4 is a convex, normalized uncertain set
A C R, whose membership function is at least segmen-
tally continuous and has the functional value u,(x) =1
at precisely one of the x values. This point x is referred
to as the mean value of the fuzzy number. Fuzzy
numbers with a linear membership function are referred
to as fuzzy triangular numbers. These may be repre-
sented with the aid of the number triplet a = (x, x2, x3),
whereby x; and x; are the interval bounds of the sup-
port and x, is the mean value with the functional value

fa(x2) = 1.

Definition 5 - a-level set
From the uncertain set A the crisp sets

Ay, = {x € X[ py(x) > o) (A6)

may be extracted for real numbers o; € [0, 1]. These crisp
sets are called o-level sets. All a-level sets A,, are crisp

subsets of the support S(A). For several a-level sets of the
same uncertain set A the following holds:

Ay C A, Yoo €[0,1] with o; < o (A7)
If the uncertain set A is convex, each a-level set A, is an

interval [x,,;; X,,,] in which

Xyt = minfx € X | py (x) > o] (A8)

Xy = maxlx € X | 4(x) > o] (49)
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