208

Computational Mechanics 26 (2000) 208-221 © Springer-Verlag 2000

Three-dimensional vibration of cylindrical shell panels — solution
by continuum and discrete approaches

K. M. Liew, L. A. Bergman, T. Y. Ng, K. Y. Lam

Abstract This paper presents a three-dimensional elas-
ticity solution to the free vibration problem of thick cy-
lindrical shell panels of rectangular planform. The natural
frequencies and corresponding mode shapes were ob-
tained for thick cylindrical shell panels and detailed
parametric investigations were carried out. Comparisons
were also made with corresponding finite element simu-
lation results. To validate the accuracy of the results as well
as the stability of the present methodology, comprehensive
convergence studies were also carried out. Further com-
parisons of present results were made with existing ex-
perimental and numerical results (classical, first-order and
higher-order shell theories) available in open literature
and the validity and range of applicability of the various
shell theories examined.

1

Introduction

In view of the vast practical applications of shell structures
which are many and varied such as aerospace, defence,
marine and structural engineering, numerous studies in
this area have been conducted over the years. In the 1950s,
the popular use of cylindrical shells in the structural
components of aircraft, missiles, submarines and rockets
simulated many designers to optimize the shape of these
structural components to best suit the particular applica-
tion. Till today, the basic cylindrical shell structure has
remained. One key area of interest is the development of
simplified shell theories. Various forms of two-dimen-
sional shell theories have been proposed to date. These
range from the simplest classical thin shell hypothesis to
the more complex shell theories which account for the
higher-order effects of shear deformation and rotary
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inertia. The classical thin shell theory first postulated by
Love (1888, 1927) for the analyses of thin elastic shells is
similar to the Kirchoff-Love hypothesis for thin plates in
that Love’s first approximation for thin shells assumes a
state of plane stress and inextensible normals that re-
main straight and normal during deformation. For thin
shells, however, further approximations on the curvatures
should be considered. On the basis of this general thin
shell theory, different two-dimensional shell models have
evolved over the years. These have been developed with
the purpose of providing better descriptions of the phys-
ical phenomena of vibrating shells. Comprehensive re-
views on the various derivations and applications of
various thin shell theories have been reported by Leissa
(1973).

Apart from solutions based on two-dimensional refined
theories, formulations have been developed directly from
the three-dimensional governing equation of linear elas-
ticity. Such publications however remain relatively few in
the literature. The first of such publications was by Arm-
enakas et al. (1969) who presented substantial frequency
results for an infinitely long isotropic hollow cylinder
solved on the basis of a linear, three-dimensional theory of
elasticity. This was followed by the frequency equations
presented by Leissa (1973) for the vibration of closed
circular cylindrical shells. Soldatos and Hadjigeorgiou
(1990) proposed a semi-analytical three-dimensional ap-
proach for the free vibration analysis of cylindrical shell
panels. A three-dimensional displacement field was as-
sumed and the displacement components in the thickness
direction were expanded in terms of a power series.
Numerical results were presented for simply-supported
cylindrical shell panels of various linear properties. The
free vibration analysis of thick shells of revolution based
on general three-dimensional displacement fields has
also been reported by So (1993). A p-Ritz three-dimen-
sional procedure was recently developed for the free
vibration analysis of a class of solids with and without
cavities (Hung et al. 1995; Liew and Hung 1995; Liew et al.
1995a, b).

The above are all global or continuum solution tech-
niques. Several discrete techniques have been developed
from the thin shell theories for the vibration study of shell
panels. Reviews on progress in this research area have
been reported notably by Qatu (1989) and more recently
by Liew et al. (1997). At the forefront of the discretization
approach is the finite element method which has been used
extensively by many researchers to tackle various shell
vibration problems. Deb Nath (1969) employed the



rectangular finite elements to study the free vibration
frequencies and mode shapes of fully clamped aluminium
cylindrical shell panels. The computational results were
validated with the experimentally determined vibration
frequencies. Further finite element solutions to the free
vibration problem of cylindrical shells were reported by
Olson and Lindberg (1969) based on the singly-curved
cylindrical shell finite elements. In their subsequent in-
vestigations, Olson and Lindberg (1971) used the doubly-
curved triangular shell element to probe into the dynamic
characteristics of both singly-curved cylindrical shell
panels and doubly-curved spherical shell panels.

In this paper, the three-dimensional Ritz method is
extended to the vibration study of thick cylindrical shell
panels and detailed parametric investigations are carried
out. Results obtained are compared with corresponding
finite element simulation results using MSC/NASTRAN.
Comprehensive convergence studies are also carried out
to validate the accuracy of the results as well as the
stability of the present methodology. Further compari-
sons of present results are also made with existing ex-
perimental and numerical results available in open
literature. The validity and range of applicability of the
existing classical, first-order and higher-order shell the-
ories are commented.

2
Theory and formulation

2.1

Problem definition

Consider a homogeneous, isotropic, cylindrical shell panel
of length a, width b, and thickness h, as shown in Fig. 1.
The displacement components of the cylindrical shell
panel are defined in a cylindrical co-ordinate system
(r,0,z). At the mid-surface, a chordwise principle radius
of curvature R,, is defined. The subtended angle y is
related to the width g, and radius R,, of the cylindrical
shell by

v =2 sinl(é) (1)

The top and bottom surfaces of the cylindrical shell panel
are assumed to be free from stresses. At a general point
within the shell domain, the displacement is resolved into
uy, U, and us in the radial, circumferential and longitu-

Fig. 1. Geometry and dimensions of a cylindrical shell panel

dinal directions with respect to the polar cylindrical ref-
erence frame. The boundary conditions of the edges are
either free (F), freely supported (S) or clamped (C). The
freely supported (S) boundary condition constrains the
transverse deflection and the in-plane deflection tangential
to the edge. The in-plane deflection normal to the edge, on
the other hand, is set free. This study covers cylindrical
shell panels with cantilevered (CFFF), freely supported
(8SSS) and fully clamped (CCCC) boundary considered.
For the cantilevered case, it is required that the three
displacement components are constrained at the clamped
edge (z = 0). The vibration characteristics of these cylin-
drical shell panels are to be determined.

2.2

Method of solution R

The linear elastic strain energy component V for a shell
panel in a cylindrical co-ordinate system can be written in
an integral form as

ro /2 b/2
V:E/ / /[(1—v)él+2v§2+(1—2v)é3]rdrd0dz
ri —y/2 —b/2
(2)
where
N E
E= 3
2(1—|—v)(1—2v) ( )
él = gfr + 8%0 + 8§z (4)
& = Epzz + ErrEoo + 00822 (5)
53 = 83(7‘ + gfz + géz (6)

and E is Young’s modulus, v is Poisson’s ratio, and the
strain components in cylindrical polar co-ordinate for
small deformation are given as

@ul
o — A 7
b =3, (7)
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b00 = r + rdo (8)
6u3
Ez7 = 5 (9)
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bre = 0z Or (11)
. auz 6u3

&z = aiz‘l‘m (12)

For free vibration analysis, the kinetic energy T can be
expressed as

r, /2 b/2

f—p// / (4} + i3 + i3|rdrd6dz

ri —y/2 —b/2

(13)
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u = 61‘1 Uy = 61‘2 usza—:; p= (14) &k
where p is the mass density, and ¢ is time.
For linear, small-strain, simple harmonic motion, the
displacement components assume the following forms

uy(r,0,z,t) = Uy(r,0,2)e"; a=1, 2, 3 (15)

where o denotes the frequency of vibration and U, the

non-dimensional displacement amplitude functions.
For generality and simplicity in the subsequent deri-

vations, the cylindrical co-ordinates (r, 0, z) are trans-

formed into a set of non-dimensional parameters

(%1, X2, x3) by the following relations

N
>
W
=

r=1[(ro+ 1)+ (ro —1);%] (16)
0 = 7% (17)
. L12
z = bXx; (18) mijnk
in which $ = /2 and b = b/2.
The non-dimensional displacement amplitude functions
are approximated by sets of one-dimensional functions
W5 (%1) in the radial direction, and two-dimensional func-
tions ¢;,(x2, X3) in the circumferential and chordwise
directions in the form
N
Uy (X1, X2, X3) ZZC (X2, X3P (X1) (19)
m=1 n=1 ~13
in which (« =1, 2, 3), and C},, are the unknown coeffi- mink =
cients.
Let IT be the energy functional given by
N=v-T (20)

where V and T are the maximum strain and kinetic en- km]nk
ergies of the plate which are derived by substituting
Eq. (19) into the respective energy expressions in Egs. (2)
and (13) with the periodic component eliminated.
The minimisation of the functional in Eq. (20) with
respect to the coefficients

oIl
s =0 a=123 (21)
leads to the governing eigenvalue equation of the form
(f( - EZM)C =0 (22)
where
Pl f12 712 .
.|k kT ok K
K= k22 k23 (23)
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R m!' 0 0
M= m*? 0 (24) 55
Sym m>? mjnk —
and
c={c ¢ c}' (25)

The explicit form of the respective elements in the stiffness
submatrices k* are given by:
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and the elements in the mass submatrix m* are given by

= (0°) 0, (52)
i = (7)) (33)
miz = (190) 000, (34)
where
A =1(1-2v)A, (35)
Ay =2(1+) (36)
and
! ! d+e 10 (= =
(idefg) _ // 0 ¢m(X2,X3)
") ap Oxd Ox¢
-1 -1
6f+g¢ﬁ(x2,563)
x |[—L— """ |dx, dx 37
[ x,0xt ]x2x3 (37)
1
e\ [ [WE@E)] O @E) ] .
), | [ P oo
ﬁ(fl) =3 [(ro + 1) + (1o — 11)%1] (39)

in which ((); () = (1,2,3); (1,2,3)).
The eigenvalues obtained from Eq. (22) are given by

/Al:me P

¢ (40)

which is redefined in terms of non-dimensionalized fre-
quency parameter A of the following form that is inde-
pendent of h:

J= a2

a
pR—— 41
R i (41)
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Admissible displacement functions

The admissible functions adopted in Eq. (19) are sets of
one Y (x;) and two-dimensional ¢}, (X;,x,) orthogonal
polynomial functions. Details of these orthogonal poly-
nomial functions have been given earlier by Liew et al.
(1995). To be able to use the procedures given by Liew
et al. (1995), one needs to know the basic functions
which are defined by the boundary conditions of the
cylindrical shell panels. In this study, we consider only
the shell panels with CFFF, S§SS and CCCC boundary
conditions.

The one-dimensional polynomial functions vy (x;) ap-
proximate the displacement variations in the thickness
direction of the cylindrical shell. These functions are
constructed to satisfy the boundary conditions of the shell
at the top and bottom surfaces (r = r; and r,). Since the
top and bottom surfaces of the shell panel are assumed to
be free from stresses, the following one-dimensional basic
functions are chosen for the present analysis

Yi(x) =1

in which (¢ =1, 2, 3).
The two-dimensional functions ¢7 (X,,X3) approximate

the displacement variations of the shell panel in both the

spanwise and chordwise directions. The general forms of

the functions are:

o CFFF shell panels

(42)

¢?(322,5C3) = (323 + 1), o = 1, 27 3 (43)
e SSSS shell panels
(%2, %) = (& — 1) (%3 — 1)* (44)
I; (:)i = (:')% =
xt=1¢2 O =0and O =1 (45)
3, O =1and @] =0
e CCCC shell panels
Pr(xp%3) = (- 1D(E—1); a=1,2,3  (46)

Apart from satisfying the boundary conditions of the cy-
lindrical shell panels, the two-dimensional polynomials
also account for the symmetry classes of the vibration
modes. For the CFFEF shell, the vibration modes can be
divided into symmetry (S) and antisymmetry (A) modes
with respect to the x;x, plane. For the SS5S and CCCC shell
panels, the vibration modes are divided into four distinct
families of symmetry classes. These are the doubly sym-
metry (SS), symmetry antisymmetry (SA), antisymmetry
symmetry (AS) and doubly antisymmetry (AA) modes.
The symmetry consideration are accounted for in the
choice of the two-dimensional generating functions.
Details of the functions are given in Liew et al. (1995).

3
Results and discussion

3.1

Convergence studies

The reliability and accuracy of the frequency parameters
obtained in this study are established through convergence
tests and comparison studies. Table 1 shows the im-
provement on the frequency parameters /A, for the canti-
levered cylindrical shell at different solution sizes. The rate
of convergence of the frequency parameters for the cy-
lindrical shells with SSSS and CCCC boundary conditions
are examined in Table 2. Through these convergence tests,
the optimum number of terms required in the present
formulation for reliable solutions can be determined. For
the CFFF shells, the aspect ratios (b/a) are fixed at 1 and 3
for the convergence test. The thickness ratios (h/a) are
taken as 0.1 (moderately thick) and 0.5 (thick). The shal-
lowness ratio for all the cases considered in the conver-
gence study is fixed at a/R,, = 0.5 which corresponds to a
fairly shallow shell.

It is observed in Table 1 that the eigenvalues converge
monotonically downwards towards the exact value as
higher number of terms are assumed in the polynomial
shape functions. The number of terms N, for the one-
dimensional thickness function and the degree of
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Table 1. Convergence of frequency parameters 2 = wa+/p/E for a cantilevered cylindrical shell of rectangular planform
(radius of curvature a/R,, = 0.5)

Thickness No. of terms Symmetry classes and mode sequence number
ratio h/a P, N
S-1 S-2 S-3 S-4 A-1 A-2 A-3 A-4
(a) Cylindrical shell of square planform (b/a = 1)
0.01 P=5N=3 0.053564 0.095578 0.19601 0.35014 0.033414 0.17543 0.20600 0.36828
P=6,N=4 0.052372 0.092382 0.14514 0.27838 0.032374 0.12957 0.19453 0.27848
P=7,N=5 0.052178 0.091978 0.14512 0.27362 0.032235 0.12871 0.19401 0.27214
P=7,N=6 0.052177 0.091978 0.14411 0.27361 0.032235 0.12870 0.19398 0.27212
P=8 N=5 0.052131 0.091925 0.14400 0.27338 0.032200 0.12858 0.19397 0.27187
P=9,N=5 0.052084 0.091863 0.14390 0.27314 0.032167 0.12848 0.19395 0.27167
P=10,N=5 0.052071 0.091858 0.14383 0.27308 0.032157 0.12841 0.19394 0.27155
0.5 P=5N=3 0.45004 1.6030 1.7482 2.2544 0.67581 0.79013 1.8048 2.3002
P=5N=5 0.44359 1.5932 1.6535 2.2406 0.66905 0.78273 1.7731 2.2004
P=6,N=5 0.44359 1.5930 1.6532 2.2405 0.66904 0.78273 1.7729 2.2000
P=5N=6 0.44319 1.5924 1.6524 2.2402 0.66865 0.78245 1.7727 2.1994
P=5N=7 0.44296 1.5921 1.6520 2.2402 0.65844 0.78230 1.7727 2.1991
P=5N=38 0.44281 1.5919 1.6518 2.2401 0.66832 0.78221 1.7727 2.1989
P=5N=9 0.44271 1.5918 1.6516 2.2401 0.66825 0.78215 1.7726 2.1988
(b) Cylindrical shell of rectangular planform (b/a = 3)
0.5 P=5N=3 0.17201 0.98754 1.6012 2.3514 0.32787 0.75642 1.6120 2.4767
P=5N=5 0.16805 0.94077 1.5839 2.3242 0.32109 0.74511 1.4538 2.2436
P=6,N=5 0.16805 0.94053 1.5836 2.3240 0.32188 0.74496 1.4537 2.2434
P=5N=6 0.16770 0.93918 1.5826 2.3079 0.31956 0.74439 1.4523 2.2409
P=5N=7 0.16751 0.93828 1.5818 2.3064 0.31926 0.74403 1.4515 2.2398
P=5N=38 0.16733 0.93744 1.5814 2.3046 0.31905 0.74382 1.4507 2.2388
P=5N=9 0.16731 0.93735 1.5812 2.3044 0.31893 0.74370 1.4507 2.2388
Table 2. Convergence of frequency parameters A = wa+/p/E for a cantilevered cylindrical shell of rectangular planform
subject to different boundary conditions (radius of curvature a/R,, = 0.5)
Thickness No. of terms  Symmetry classes and mode sequence number
ratio h/la P, N
SS-1 SS-2 SS-3 SA-1 SA-2 SA-3 AS-1 AS-2 AS-3 AA-1  AA-2  AA-3
(a) Cylindrical shell with simply-supported edges (SSSS)

0.2 P=5 N=4 1.0556 2759 3.9297 1.9283 23396 4.3556 1.9483 2.2804 4.3283 3.3412 3.8559 3.8967
P=6,N=4 1.0556 2.7596 3.9297 1.9283 23396 4.3556 1.9483 2.2804 4.3283 3.3412 3.8559 3.8967
P=5 N=6 1.0555 27596 3.9242 1.9283 2.3385 4.3556 1.9483 2.2791 4.3283 3.3378 3.8559 3.8967
P=5 N=7 10555 27596 3.9242 1.9283 2.3385 4.3556 1.9483 2.2791 4.3283 3.3378 3.8559 3.8967
P=5 N=8 1.0555 2759 3.9242 1.9283 2.3385 4.3556 1.9483 2.2791 4.3283 3.3378 3.8559 3.8967
P=5N=9 1.0555 2759 3.9242 1.9283 2.3385 4.3556 1.9483 2.2791 4.3283 3.3378 3.8559 3.8967

0.5 P=5 N=4 18397 27626 4.3082 1.9278 3.4838 4.3581 1.9483 3.4312 4.3063 3.8276 3.8967 4.6159
P=6,N=4 18397 2.7626 4.3082 1.9278 3.4838 4.3581 1.9483 3.4312 4.3063 3.8276 3.8967 4.6159
P=5N=6 18361 27626 4.3067 1.9278 3.4651 4.3579 1.9483 3.4121 4.3060 3.8276 3.8967 4.5771
P=5N=7 18361 27626 4.3067 1.9278 3.4650 4.3579 1.9483 3.4121 4.3060 3.8276 3.8967 4.5769
P=5 N=8 18361 27626 4.3067 1.9278 3.4650 4.3579 1.9483 3.4121 4.3060 3.8276 3.8967 4.5769
P=5N=9 18361 27626 4.3067 1.9278 3.4650 4.3579 1.9483 3.4121 4.3060 3.8276 3.8967 4.5769

(b) Cylindrical shell with fully clamped edges (CCCC)

0.2 P=5 N=4 1.6744 4.3468 4.4461 2.8805 3.7386 5.1572 2.7993 3.7484 5.1958 3.8082 4.4358 5.4292
P=6,N=4 1.6744 4.3467 4.4461 2.8804 3.7385 5.1572 2.7993 3.7482 5.1957 3.8082 4.4357 5.4290
P=5N=6 1.6708 4.3307 4.4294 2.8721 3.7373 5.1369 2.7911 3.7469 5.1754 3.7959 4.4354 5.4272
P=5 N=7 1.6707 4.3305 4.4291 2.8718 3.7370 5.1367 2.7908 3.7466 5.1751 3.7955 4.4353 5.4269
P=5N=8 16705 4.3299 4.4285 2.8716 3.7370 5.1361 2.7906 3.7466 5.1746 3.7952 4.4353 5.4268
P=5N=9 1.6705 4.3299 4.4285 28715 3.7370 5.1361 2.7905 3.7466 5.1745 3.7952 4.4353 5.4268

0.5 P=5 N=4 23636 53178 5.4495 3.6838 3.7550 5.4930 3.5209 3.8014 5.5594 4.3750 4.8139 5.3730
P=6,N=4 23636 5.3178 5.4495 3.6838 3.7550 5.4930 3.5209 3.8014 5.5594 4.3750 4.8139 5.3730
P=5 N=6 23460 5.2682 5.3947 3.6569 3.7492 5.4708 3.5017 3.7882 5.5378 4.3715 4.7741 5.3627
P=5 N=7 23448 5.2658 5.3919 3.6553 3.7483 5.4703 3.5004 3.7870 5.5373 4.3713 4.7720 5.3611
P=5 N=8 23440 5.2643 5.3903 3.6544 3.7480 5.4700 3.4996 3.7865 5.5370 4.3712 4.7708 5.3606
P=5 N=9 23438 5.2640 5.3900 3.6541 3.7476 5.4699 3.4994 3.7862 5.5369 4.3711 4.7706 5.3601




polynomials P, for the two-dimensional surface functions
are increased steadily to achieve converged solutions. The
natural frequencies of the CFFF shells are presented in two
symmetry classes. It is observed that for the CFFF shell,
the computed frequency parameters improve with higher
order terms being assumed in the two-dimensional func-
tions. Comparatively, the influence of the number of terms
N, of the one-dimensional polynomial functions on the
rate of convergence of the eigenvalues is less significant. It
is established that reliable frequency parameters for a thin
(h/a = 0.01) cantilevered shell can be obtained with two-
dimensional functions of polynomial order P = 10 and
one-dimensional functions of total number of terms

N = 5. As the shell thickness increases, reasonably con-
verged solutions are obtained at P =5 and N = 9.

For the cases considered in Table 2, the shells possess
four symmetry classes of vibration and thus the number of
terms needed in the deflection functions for converged
solutions are relatively fewer than that for the CFFF
shells (which have only two types of symmetry modes).

It is observed that both the SSSS and CCCC cylindrical
shells require the same number of terms for converged
solutions. To ensure that the frequency solutions used in
the subsequent discussion are sufficiently accurate,
appropriate number of terms of the one- and two- di-
mensional polynomial functions are employed in the
solution process.

Further, present three-dimensional convergence char-
acteristics are compared with FEM results generated by the
commercial software MSC/NASTRAN using 8-noded solid
elements. The results are presented in Table 3 for shell
panels of square planform with thickness ratio h/a = 0.5
and shallowness ratio a/R,, = 0.5. The CFFF, SSSS and
CCCC boundary conditions were all considered. The FEM
results display reasonably well converged results when
using a 50 x 50 x 10 grid size or 25,000 elements. It is also
observed that the present three-dimensional elasticity so-
lutions agree very well with the FEM results generated by
MSC/NASTRAN for all the three boundary condition cases
with less than 1% difference between the two sets of results.

Table 3. Convergence of frequency parameters 1 = wa+/p/E for a cantilevered cylindrical shell of square planform by three-

dimensional elasticity theory and FEM using MSC/NASTRAN (radius of curvature a/R,,

= 0.5, thickness ratio h/a = 0.5)

Solution method

No. of terms Symmetry classes and mode sequence number

and grid size

S-1 S-2 S-3 S-4 A-1 A-2 A-3 A-4
(a) Cantilevered cylindrical shell (CFFF)
P =5 N=3 045004 1.6030 1.7482 2.2544 0.67581 0.79013 1.8048 2.3002
P=5 N=5 044359 1.5932 1.6535 2.2406 0.66905 0.78273 1.7731 2.2004
Present 3-D P=6,N=15 0.44359 1.5930 1.6532 2.2405 0.66904 0.78273 1.7729 2.2000
P=5 N=6 044319 1.5924 1.6524 2.2402 0.66865 0.78245 1.7727 2.1994
P=5 N=7 044296 1.5921 1.6520 2.2402 0.65844 0.78230 1.7727 2.1991
P =5 N=28 044281 1.5919 1.6518 2.2401 0.66832 0.78221 1.7727 2.1989
P =5 N=9 044271 1.5918 1.6516 2.2401 0.66825 0.78215 1.7726 2.1988
FEM using MSC/ 20 x 20 x 4 0.44347 1.5945 1.6451 2.2438 0.6692 0.7836 1.7757 2.2025
NASTRAN 30 x30 X 6 0.44181 1.5885 1.6479 2.2354 0.6667 0.7807 1.7690 2.1945
40 X 40 X 8 0.44108 1.5859 1.6453 2.2318 0.6657 0.7794 1.7661 2.1909
50 X 50 X 10 0.44106 1.5858 1.6452 2.2317 0.6656 0.7794 1.7660 2.1908
SS-1 SS-2 S§S-3  SA-1  SA-2 SA-3 AS-1  AS-2  AS-3 AA-1 AA-2 AA-3
(b) Cylindrical shell with simply-supported edges (SSSS)
0.5 P=5 N=4 18397 27626 4.3082 1.9278 3.4838 4.3581 1.9483 3.4312 4.3063 3.8276 3.8967 4.6159
P=6,N=4 18397 2.7626 4.3082 1.9278 3.4838 4.3581 1.9483 3.4312 4.3063 3.8276 3.8967 4.6159
P=5 N=6 18361 27626 4.3067 1.9278 3.4651 4.3579 1.9483 3.4121 4.3060 3.8276 3.8967 4.5771
P=5 N=7 18361 27626 4.3067 1.9278 3.4650 4.3579 1.9483 3.4121 4.3060 3.8276 3.8967 4.5769
P=5 N=28 18361 2.7626 4.3067 1.9278 3.4650 4.3579 1.9483 3.4121 4.3060 3.8276 3.8967 4.5769
P=5 N=9 18361 27626 4.3067 1.9278 3.4650 4.3579 1.9483 3.4121 4.3060 3.8276 3.8967 4.5769
FEM using MSC/ 20 x 20 x 4 1.8414 2.7706 4.3191 - 3.4751 4.3704 - 3.4219 4.3184 3.8386 3.9080 4.5901
NASTRAN 30 x 30 x 6 1.8347 2.7605 4.3034 - 3.4623 4.3545 - 3.4094 4.3028 3.8245 3.8937 4.5733
40 X 40 X 8 1.8320 2.7566 4.2973 - 3.4574 4.3484 - 3.4046 4.2966 3.8193 3.8882 4.5669
50 X 50 X 10 1.8320 2.7565 4.2971 - 3.4573 4.3482 - 3.4045 4.2964 3.8191 3.8880 4.5667
(c) Cylindrical shell with fully clamped edges (CCCC)
0.5 P=5 N=4 23636 5.3178 5.4495 3.6838 3.7550 5.4930 3.5209 3.8014 5.5594 4.3750 4.8139 5.3730
P=6,N=4 23636 5.3178 5.4495 3.6838 3.7550 5.4930 3.5209 3.8014 5.5594 4.3750 4.8139 5.3730
P=5 N=6 23460 5.2682 5.3947 3.6569 3.7492 5.4708 3.5017 3.7882 5.5378 4.3715 4.7741 5.3627
P=5 N=17 23448 5.2658 5.3919 3.6553 3.7483 5.4703 3.5004 3.7870 5.5373 4.3713 4.7720 5.3611
P=5 N=28 23440 5.2643 5.3903 3.6544 3.7480 5.4700 3.4996 3.7865 5.5370 4.3712 4.7708 5.3606
P=5 N=9 23438 5.2640 5.3900 3.6541 3.7476 5.4699 3.4994 3.7862 5.5369 4.3711 4.7706 5.3601
FEM using MSC/ 20 X 20 x 4 2.3474 5.2728 5.3990 3.6604 3.7537 5.4790 3.5055 3.7925 5.5463 4.3785 4.7787 5.3690
NASTRAN 30 X 30 x 6 2.3389 5.2530 5.3788 3.6466 3.7397 5.4585 3.4922 3.7783 5.5254 4.3621 4.7607 5.3489
40 x 40 x 8 2.3351 5.2445 5.3701 3.6406 3.7337 5.4497 3.4866 3.7723 5.5166 4.3550 4.7530 5.3404
50 X 50 X 10 2.3350 5.2443 5.3699 3.6405 3.7335 5.4495 3.4864 3.7721 5.5163 4.3548 4.7528 5.3402
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3.2
Comparison studies
The reliability of the frequency results obtained in the
present formulation for cylindrical shells is further estab-
lished by comparing with existing experimental and
numerical results available in the literature. For this pur-
pose, a cantilevered (CFFF) steel fan blade of square
planform with length a = b = 12.0 in., thickness
h = 0.120 in. and radius R,, = 24.0 in. is considered. The
CFFF steel fan blade has been experimentally tested by
Olson and Lindberg (1971). The vibration frequencies are
compared in Table 4 together with the finite element re-
sults, the classical thin plate solutions and the present
three-dimensional elasticity solutions. In the present cal-
culation, the standard material properties (E and p) of
steel are assumed. The finite element results are extracted
from the work of Olson and Lindberg (1969, 1971) and
Walker (1978). The classical thin plate solutions, on the
other hand, have been computed by Leissa et al. (1981)
and Lim and Liew (1994) from the Rayleigh-Ritz method.
From Table 4, it is observed that the present three-di-
mensional solutions are applicable for the analysis of thin
shells and the results are in good agreement with the ex-
perimental results and analytical Kirchoff-Love thin shell
solutions.

Further comparisons with the experimental results are
carried out for a fully clamped (CCCC) aluminum cylin-
drical shell. The experimental and computational fre-

quencies reported by Deb Nath (1969) for this specimen
are listed together with the current predictions based on
the three-dimensional Ritz method. Deb Nath (1969)
computed the frequencies of the fully clamped shell using
the rectangular finite element. Other numerical techniques
have also been applied to this specimen. These include the
triangular finite element approach proposed by Olson and
Lindberg (1971), the spline finite strip method of Cheung
et al. (1989) and the thin shell Rayleigh-Ritz method of
Lim and Liew (1994) and Webster (1968). Table 5 sum-
marizes the experimental natural frequencies and numer-
ical predictions for the CCCC aluminum cylindrical shell
from these different approaches. It is observed from
Table 5 that the present three-dimensional frequency
results correlate reasonably well with the reported finite
element and analytical solutions which are derived from
the thin shell theory. The experimental frequencies, how-
ever, tend to be lower than the analytical solutions. This is
generally the case, since it is difficult to impose perfect
clamping conditions experimentally especially for the fully
clamped shell. This explains the discrepancy between the
experimentally determined frequencies and the numerical
predictions from both the classical thin shell theory and
the present three-dimensional method.

Solutions from the refined shell theories and the present
three-dimensional solutions are presented in Tables 6 and
7 for thick cantilevered and fully clamped cylindrical
shells, respectively. The frequency solutions based on the

Table 4. Comparison of experimental frequencies (Hz) and analytical solutions for the cantilever cylindrical steel fan blade with

E =210 GPa, p = 7860 kg/m’, v = 0.3, R, = 24.0 in., h = 0.120 in.

and a = b =12.0 in

Source of results

Symmetry classes and mode sequence number

S-1 S-2 S-3 S-4 S-5 A-1 A-2 A-3 A-4 A-5
Experimental® 134.5 259 395 751 790 85.6 351 531 743 809
Finite element method® 139.17  251.30  393.42 746.37 790.10 86.601  348.59  533.37 752.09 813.84
Finite element method® 147.6 255.1 423.5 792.2 - 93.47 393.1 534.3 781.5 -
Walker (1978) 139.6 249.0 398.5 761.4 - 86.6 351.0 534.5 749.0 -
Leissa et al. (1981) 137.8 248.6 387.4 738.4 - 85.94 342.9 531.9 736.3 -
Lim and Liew (1994) 135.35  244.23  379.95 71694 759.81 84.406 336.45 521.60 715.19  790.71
Present 3-D solutions 140.12  248.94  389.79  740.07 785.01 87.148  348.00 525.59  735.92  804.92

? Experimental results by Olsen and Lindberg (1971)

® Finite element solutions based on a doubly-curved triangular element by Olsen and Lindberg (1971)
¢ Finite element solutions based on a cylindrical shell element by Olsen and Lindberg (1969)

Table 5. Comparison of experimental frequencies (Hz) and analytical solutions for the fully clamped aluminium cylindrical shell
with E = 107 Ibf/in%, p = 0.096 Ib/in% v = 0.33, R,, = 30.0 in., & = 0.013 in., a = 4.0 and b = 3.0 in

Source of reference

Symmetry classes and mode sequence number

SS-1 SS-2 SS-3 SA-1 SA-2 SA-3 AS-1 AS-2 AS-3 AA-1  AA-2  AA-3
Olsen and Lindberg 940 1260 2100 1306 1802 - 814 1770 2225 1452 2280 -
(1971) - Expt
Deb Nath (1969) 973 1311 2068 1371 1775 - 890 1816 2234 1454 2319 -
Webster (1968) 958 1288 2057 1364 1753 - 870 1795 2220 1440 2300 -
Olsen and Lindberg 958 1288 2056 1363 1756 - 870 1780 2222 1440 2295 -
(1971) - FEM
Cheung et al. (1989) 963 1298 - 1369 - - 874 - - - - -
Lim and Liew (1994) 958.22 1288.6 2056.4 1364.0 1753.7 - 870.10 1779.9 22189 1440.2 2289.2 -
Present 3-D solutions 960.26 1292.5 2058.9 1364.8 1761.1 3058.9 872.39 1786.8 2223.2 1443.0 2289.2 3285.3




Table 6. Comparison of fre-
quency parameters 1 =
wa+/p/E for moderately thick
cantilever cylindrical shells of
square planform computed
based on three-dimensional

theory and approximate the-
ories (a/R,, = 0.5, h/a = 0.1)

Source of results

Symmetry classes and mode sequence number

S-1 S-2 S-3 S-4 A-1 A-2 A-3 A-4
First-order theory® 0.11852 0.63618 0.77727 1.4405 0.24477 0.65826 0.85814 1.7292
Third-order theoryb 0.11824 0.63703 0.77458 1.4438 0.24427 0.65843 0.85829 1.7265
Higher-order theory® 0.11853 0.63641 0.77755 1.4418 0.24487 0.65826 0.85872 1.7301
Present 3-D 0.11941 0.63834 0.76175 1.4316 0.24311 0.66377 0.85676 1.7014

?First-order theory - Reddy (1984)
" Third-order theory — Reddy and Liu (1985)
Higher-order theory - Lim and Liew (1995)

Table 7. Comparison of frequency parameters A = wa+/p/E for moderately thick fully clamped cylindrical shells of square
planform computed based on three-dimensional theory and approximate theories (a/R,, = 0.5, h/a = 0.1)

Source of results

Symmetry classes and mode sequence number

§S-1  SS-2  SS-3  SA-1  SA-2  SA-3  AS-1  AS-2  AS-3  AA-1  AA-2  AA-3

First-order theory® 1.0766 3.1136 3.1604 1.9256 3.7041 3.7806 1.8752 3.7242 3.7754 2.6434 4.4398 5.0965
First-order theory®  1.0811 3.1221 3.1631 19310 3.7073 3.7860 1.8842 3.7343 3.7803 2.6497 4.4440 5.1036
Third-order theory®  1.0803 3.1298 3.1738 1.9369 3.7111 3.7959 1.8854 3.7351 3.7961 2.6595 4.4437 5.1385
Higher-order theory® 1.0822 3.1337 3.1746 1.9376 3.7110 3.7985 1.8888 3.7355 3.7962 2.6608 4.4441 5.1407
Present 3-D 1.0763 3.1073 3.1781 1.9382 3.7063 3.7817 1.8703 3.7214 3.7924 2.6499 4.4226 5.1104

?First-order theory with shear correction factor x = 5/6 - Reddy (1984)
b First-order theory with shear correction factor x = 5/6 - Lim (1994)

“Third-order theory - Reddy and Liu (1985)
4 Higher-order theory — Lim and Liew (1995)

Table 8. Frequency parameters A = wa/p/E for a cantilever cylindrical shallow shell with b/a = 1.0

Curvature  Thickness  Symmetry classes and mode sequence number

ratio a/R,, ratio h/a

S-1 S-2 S-3 S-4 A-l A2 A-3 A4

0.1 0.01 0.015835 0.075039 0.085431  0.16678  0.026078  0.095562  0.19427  0.21795
0.1 0.10487 0.61213 0.77336 1.4468 0.24472 0.66037 0.85854  1.7309
0.2 0.20351 1.0724 1.3645 1.58613  0.44645 0.66151 145522 1.7726
0.3 0.29392 1.3695 1.5883 1.7774 0.59892 0.66264 1.7721 1.8259
0.4 0.37422 1.5492 1.5902 2.0656 0.66339 0.70897 1.7721 2.0579
0.5 0.44408 1.5917 1.6551 2.2723 0.66443 0.78571 1.7718 2.2089

0.2 0.01 0.025455 0.080919 0.10646 0.17743  0.026948  0.10065 0.19471  0.22681
0.1 0.10676 0.61562 0.77176 1.4449 0.24452 0.66079 0.85831  1.7274
0.2 0.20427 1.0735 1.3612 1.5861 0.44597 0.66201 1.4542 1.7728
0.3 0.29423 1.3697 1.5883 1.7735 0.59809 0.66342 1.7713 1.8257
0.4 0.37425 1.5490 1.5902 2.0617 0.66350 0.70882 1.7721 2.0568
0.5 0.44390 1.5917 1.6547 2.2684 0.66491 0.78527 1.7719 2.2077

0.3 0.01 0.035434  0.083294  0.12642 020159  0.02830 0.10837 0.19480  0.24031
0.1 0.10986 0.62133 0.76917 1.4418 0.24418 0.66149 0.85793  1.7215
0.2 0.20556 1.0754 1.3558 1.5862 0.44515 0.66286 1.4525 1.7731
0.3 0.29475 1.3701 1.5883 1.7671 0.59673 0.66468 1.7699 1.8254
0.4 0.37430 1.5487 1.5902 2.0550 0.66365 0.70860 1.7721 2.0550
0.5 0.44360 1.5918 1.6539 2.2617 0.66571 0.78452 1.7721 2.2056

0.4 0.01 0.044583 0.086642 0.13735 023816  0.030056  0.11790 0.19451  0.25610
0.1 0.11410 0.62902 0.76574 1.4373 0.24371 0.66248 0.85741  1.7129
0.2 0.20739 1.0779 1.3483 1.5862 0.44401 0.66404 1.4502 1.7734
0.3 0.29551 1.3707 1.5883 1.7580 0.59487 0.66642 1.7679 1.8249
0.4 0.37439 1.5482 1.5902 2.0456 0.66381 0.70835 1.7721 2.0524
0.5 0.44320 1.5918 1.6529 2.2523 0.66683 0.78348 1.7723 2.2026

0.5 0.01 0.052071 0.091858 0.14383 027308  0.032157  0.12841 019394  0.27155
0.1 0.11941 0.63834 0.76175 1.4316 0.24311 0.66377 0.85676  1.7014
0.2 0.20976 1.0812 1.3386 1.5862 0.44253 0.66557 1.4471 1.7739
0.3 0.29652 1.3714 1.5882 1.7463 0.59254 0.66859 1.7652 1.8244
0.4 0.37454 1.5476 1.5902 2.0334 0.66391 0.70813 1.7720 2.0490
0.5 0.44271 1.5918 1.6516 2.2401 0.66825 0.78215 1.7726 2.1988
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Table 9. Frequency parameters 4 = wa/p/E for a cantilever cylindrical shallow shell with b/a = 3.0

Curvature Thickness Symmetry classes and mode sequence number
ratio a/R,, ratio h/a
S-1 S-2 S-3 S-4 A-1 A-2 A-3 A-4

0.1 0.01 0.0055510 0.033099 0.086430 0.15586 0.021451 0.067629 0.12301 0.1920
0.1 0.034752 0.21589 0.60030 1.1642 0.20529 0.31485 0.64290 1.1550
0.2 0.068739 0.42126 1.1456 1.5790 0.31482 0.38667 1.1973 1.4410
0.3 0.10238 0.61287 1.5797 1.6144 0.31515 0.53790 1.4407 1.6469
0.4 0.13549 0.78657 1.5805 2.0003 0.31545 0.65769 1.4415 1.9931
0.5 0.16796 0.94056 1.5812 2.3113 0.31575 0.74784 1.4421 2.2511

0.2 0.01 0.0093500 0.054156 0.13292 0.20455 0.021746 0.069309 0.12818 0.20279
0.1 0.035517 0.21999 0.60912 1.1761 0.20495 0.31533 0.64221 1.1542
0.2 0.069066 0.42291 1.1490 1.5790 0.31470 0.38679 1.1953 1.4428
0.3 0.10253 0.61356 1.5797 1.6157 0.31533 0.53763 1.4404 1.6467
0.4 0.13551 0.78663 1.5805 2.0003 0.31575 0.65727 1.4422 1.9919
0.5 0.16787 0.94014 1.5812 2.3104 0.31614 0.74733 1.4432 2.2496

0.3 0.01 0.013509 0.076686 0.17546 0.20466 0.022194 0.071898 0.13631 0.21939
0.1 0.036774 0.22670 0.62361 1.1958 0.20440 0.31614 0.64110 1.1528
0.2 0.069609 0.42570 1.1548 1.5790 0.31449 0.38700 1.1920 1.4456
0.3 0.10275 0.61470 1.5797 1.6179 0.31563 0.53715 1.4398 1.6465
0.4 0.13554 0.78672 1.5805 2.0003 0.31623 0.65655 1.4433 1.9899
0.5 0.16773 0.93945 1.5812 2.3089 0.31680 0.74649 1.4450 2.2470

0.4 0.01 0.017813 0.098799 0.20277 0.20512 0.022752 0.075219 0.14690 0.24029
0.1 0.038493 0.23590 0.64353 1.2230 0.20362 0.31725 0.63951 1.1509
0.2 0.070380 0.42966 1.1630 1.5790 0.31416 0.38727 1.1874 1.4496
0.3 0.10310 0.61632 1.5800 1.6210 0.31605 0.53652 1.4389 1.6463
0.4 0.13560 0.78690 1.5805 2.0005 0.31692 0.65556 1.4448 1.9871
0.5 0.16754 0.93852 1.5812 2.3069 0.31773 0.74526 1.4475 2.2434

0.5 0.01 0.022220 0.11944 0.20183 0.22051 0.023386 0.079161 0.15948 0.26403
0.1 0.040638 0.24741 0.66855 1.2572 0.20262 0.31872 0.63750 1.1485
0.2 0.071385 0.43482 1.1737 1.5790 0.31374 0.38769 1.1816 1.4546
0.3 0.40355 0.61851 1.5797 1.6253 0.31659 0.53568 1.4376 1.6460
0.4 0.13568 0.78717 1.5805 2.0008 0.31779 0.65427 1.4467 1.9835
0.5 0.16731 0.93735 1.5812 2.3045 0.31893 0.74370 1.4507 2.2388

first-order shear deformable shell theory and the parabolic
shear deformable shell theory proposed by Reddy and Liu
(1985) and the higher-order theory of Lim and Liew (1995)
are listed for comparison. It is observed that the solutions
from both refined shell theories are comparable with the
present three-dimensional elasticity solutions at the
moderate thickness ratio of h/a = 0.1 with the three-di-
mensional elasticity solutions being generally slightly
more conservative.

3.3

Parametric investigations

Tables 8 to 11 present the vibration frequencies for cy-
lindrical shells with different boundary conditions. The
frequency parameters presented in these tables are defined
by Eq. (41) which are independent of the thickness h. For
shells of constant width a, this parameter is directly pro-
portional to the physical vibration frequency w. Therefore,
with this frequency parameter, the influence of various
geometric parameters such as the relative shell thickness
h/a and aspect ratio b/a upon the vibration frequency of
the cylindrical shell can be directly investigated. To allow
for the investigation on the effects of relative thickness
ratio on the frequencies, shells with thickness ratio h/a
ranging from 0.01 (a thin shell) to 0.5 (a thick shell) are
considered. The shell shallowness ratio a/R,, is defined
between 0.1 to 0.5 in the computations.

The frequency parameters for CFFF cylindrical shell
with aspect ratios b/a of 1.0 and 3.0 are presented in
Tables 8 and 9, respectively. It is observed that the lower
vibration spectrum for both the thin and thick cantilever
shells are dominated by the fundamental antisymmetric
torsional mode (A-1). However, as the shell thickness in-
creases, the symmetry bending mode (S-1) tends be the
fundamental mode of vibration. In addition, it is found
that the vibration frequencies for the cantilever shell tend
to increase with the relative thickness ratio. This is because
as the thickness increases, the bending and torsional
stiffness of the shell also increase proportionally. However,
it is noticed that for some modes (such as the A-3 mode
for shells with a/R,, = 0.3 at thickness ratios h/a of 0.4
and 0.5), the increase in shell thickness does not have
significant effects on the frequency value. Most of these
modes (which will be demonstrated in the three-dimen-
sional mode shape diagram), are found to be in-plane
dominant shearing and stretching modes of vibration.

Comparing Tables 8 and 9 for cantilever shells of the
same shallowness ratio (a/R,,) but with square (b/a = 1)
and rectangular (b/a = 3) planforms, it is found that the
fundamental frequencies for both the symmetry classes (S-
1 and A-1) decrease with an increase in shell aspect ratios.
The effects of aspect ratios upon the higher modes of vi-
bration are more complex in nature. It is further deduced
from Tables 8 and 9 that for relatively thin shallow shells



Table 10. Frequency parameters A = wa+/p/E for simply-supported cylindrical square shells

Curvature Thickness Symmetry classes and mode sequence number
ratio a/R,, ratio h/a
SS-1 SS-2 SS-3 SA-1  SA-2  SA-3  AS-1  AS-2 AS-3 AA-1  AA-2  AA3
0.1 0.01 0.007820 0.29812 0.31138 0.16924 0.38840 0.51489 0.15039 0.39338 0.52681 0.24363 0.60048 0.61452
0.1 0.57906 2.5856 2.5880 1.3822 1.9475 3.2479 1.3793 1.9483 3.2488 2.1207 3.8951 3.8967
0.2 1.0605  2.7555 3.9932 1.9475 2.3294 4.3566 1.9483 2.3272 4.3555 3.3749 3.8951 3.8967
0.3 1.4232 27556 4.5823 1.9476 2.9035 4.3566 1.9483 2.9014 4.3555 3.8950 3.8967 4.0412
0.4 1.6867  2.7557 4.5054 1.9476 3.2555 4.3567 1.9483 3.2537 4.3552 3.8946 3.8967 4.4150
0.5 1.8783  2.7557 4.3758 1.9475 3.4805 4.3567 1.9483 3.4789 4.3546 3.8938 3.8967 4.6392
0.2 0.01 0.11632 0.29782 0.34808 0.21862 0.39123 0.53990 0.15390 0.41086 0.52684 0.25818 0.61517 0.61586
0.1 0.58316 2.5793 2.5912 1.3873 1.9451 3.2421 1.3757 1.9483 3.2476 2.1186 3.8902 3.8967
0.2 1.0598  2.7561 3.9849 1.9452 2.3305 4.3565 1.9483 2.3212 4.3522 3.3703 3.8902 3.8967
0.3 1.4202  2.7563 4.5793 1.9453 2.9030 4.3567 1.9483 2.8945 4.3520 3.8899 3.8967 4.0355
0.4 1.6823 27565 4.5004 1.9453 3.2541 4.3568 1.9483 3.2461 4.3510 3.8886 3.8967 4.4084
0.5 1.8728  2.7566 4.3658 1.9451 3.4785 4.3569 1.9483 3.4706 4.3483 3.8854 3.8967 4.6313
0.3 0.01 0.16125 0.29733 0.40192 0.28242 0.39597 0.57925 0.15964 0.43855 0.52686 0.28088 0.61624 0.64075
0.1 0.58997 2.5687 2.5966 1.3957 1.9410 3.2324 1.36963 1.9483 3.2455 2.1150 3.8821 3.8967
0.2 1.0587  2.7570 3.9710 1.9412 2.3324 4.3563 1.9483 23113 4.3466 3.3626 3.8822 3.8967
0.3 1.4153  2.7575 4.5743 1.9414 2.9023 4.3567 1.9483 2.8829 4.3462 3.8814 3.8967 4.0259
0.4 1.6751  2.7579 4.4920 1.9414 3.2519 4.3571 1.9483 3.2336 4.3440 3.8785 3.8967 4.3974
0.5 1.8639 27582 4.3503 1.9410 3.4752 4.3572 1.9483 3.4569 4.3381 3.8715 3.8967 4.6183
0.4 0.01 0.20853 0.29667 0.46706 0.35300 0.40260 0.63028 0.16745 0.47479 0.52686 0.31010 0.61774 0.67416
0.1 0.59946 2.5539 2.6041 1.4075 1.9353 3.2187 1.3611 1.9483 3.2427 2.1101 3.8706 3.8967
0.2 1.0572  2.7581 3.9514 1.9356 2.3350 4.3560 1.9483 2.2973 4.3386 3.3518 3.8708 3.8967
0.3 1.4086  2.7590 4.5673 1.9359 2.9014 4.3568 1.9483 2.8666 4.3381 3.8695 3.8967 4.0125
0.4 1.6651  2.7598 4.4805 1.9360 3.2489 4.3574 1.9483 3.2160 4.3341 3.8643 3.8967 4.3821
0.5 1.8516  2.7602 4.3303 1.9353 3.4707 4.3575 1.9483 3.4375 4.3239 3.8522 3.8967 4.6003
0.5 0.01 0.25694 0.29586 0.53952 0.41116 0.42712 0.69045 0.17718 0.51796 0.52680 0.34440 0.61967 0.71502
0.1 0.61156 2.5346 2.6137 1.4226 1.9279 3.2011 1.3502 1.9483 3.2392 2.1038 3.8557 3.8967
0.2 1.0555 27596 3.9242 19283 2.3385 4.3556 1.9483 2.2791 4.3283 3.3378 3.8559 3.8967
0.3 1.4002  2.7609 4.5584 1.9288 2.9002 4.3567 1.9483 2.8454 4.3274 3.8539 3.8967 3.9953
0.4 1.6525 27621 4.4661 1.9289 3.2451 4.3577 1.9483 3.1931 4.3214 3.8460 3.8967 4.3624
0.5 1.8361  2.7626 4.3067 1.9278 3.4650 4.3579 1.9483 3.4126 4.3060 3.8276 3.8967 4.5774

(h/a < 0.1), higher frequencies are observed at large
shallowness ratio a/R,,. As the shell thickness increases,
the variations of the frequency parameters with respect to
the shallowness ratio are less predictable. It is due mainly
to the presence of several in-plane vibration modes which
are not affected by the shallowness ratio of the shells. The
vibration characteristics of CFFF shells can be further
clarified by considering the vibration mode shapes.

Figures 2 and 3 show the three-dimensional displace-
ment contour plot and deformed mode shapes of cantile-
vered shallow shells with square (b/a = 1) and rectangular
(b/a = 3) planforms, respectively. The shallowness ratio,
for this case, is chosen at a/R,, = 0.5 and the thickness
ratio is assumed to be h/a = 0.2. The modes are arranged
in ascending sequence number. The first four modes,
based on appearance, can be classified as spanwise bend-
ing, chordwise bending, spanwise torsional and chordwise
torsional modes, respectively for the square and rectan-
gular shells. The higher modes of vibration are more
complex and involve strong couplings between the flexural
and torsional motions.

The thickness independent frequency parameter 4, for
$8SS and CCCC shells of square planform are presented in
Tables 10 and 11, respectively. The numerical results are
arranged into four symmetry classes with reference to the
x1%,- and x,x3-planes. These are the doubly symmetric

modes (SS), the symmetric-antisymmetric modes (SA), the
antisymmetric-symmetric modes (AS) and the doubly
antisymmetric modes (AA). The analyses are carried out
for shells with shallowness ratio a/R,, ranges from 0.1 to
0.5 and thickness ratio i/a from 0.01 (a thin shell) to 0.5 (a
thick shell). The variations of the vibration frequencies
with respect to the thickness ratio h/a, for the SSSS and
CCCC shells follow the same pattern as the CFEF shell. As
the relative thickness increases, the frequency value for the
fundamental mode of the SSSS and CCCC shells also in-
creases. The fundamental mode for these shell configura-
tions exhibits predominantly out-of-plane vibration
motion. This mode is most susceptible to the increase in
shell stiffness following the increase in the relative thick-
ness. From Tables 10 and 11, it is found that the vibration
frequencies for most of the modes increase with respect to
the thickness ratios. However, the vibration frequencies of
certain modes which are dominated by in-plane motion
tend to remain constant as the shell thickness varies. This
is observed for the SA-2, AS-2, AA-2 and AA-3 modes of
the SSSS shell. Such in-plane dominant vibration modes
are less significant in CCCC shells as shown in Table 11. It
is observed that for the CCCC shells, most modes increase
in value as the shell thickness increases.
Three-dimensional mode shapes for the SSSS and CCCC
cylindrical shells of square planform are presented in

217



218

Mode Sequence Number

Deflection Amplitude

Frequency
Pam}Teter

0.20976 (S-1)  0.44253 (A-1)  0.66557 (A-2)  1.0812(S-2)  1.3386(S-3)  1.4471 (A-3)

Fig. 2. Mode shapes and frequency parameters A = wa/p/E

panel (b/a =1, a/R,, 0.5 and h/a = 0.2)

for the cantilevered (CFFF) circular cylindrical square shell

Mode Sequence Number

2 3 ] 5 6

Deflection Amplitude

Frequency

Parameter
Y

0.053512(S-1)  0.19865 (A1)  0.22348 (A-2)  0.31587(S-2)  0.63414(A-3)  0.79070 (S-3)

Fig. 3. Mode shapes and frequency parameters A = wa/p/E

shell panel (b/a =2, a/R,, 0.5 and h/a = 0.2)

for the cantilevered (CFFF) circular cylindrical rectangular



Mode Sequence Number

3 4 5

7

8

g

-]

e U

g 2

g

7}

(]

U3
3-D

Frequency

Paramete 1.0555(SS-1) 19283 (SA-1) 1.9483 (AS-1)  2.2791 (AS-2)  2.3385(SA2)  2.7596 (S5-2)
Fig. 4. Mode shapes and frequency parameters 1 = wa+/p/E shell panel (b/a =1, a/R,, 0.5 and h/a = 0.2)
for the simply-supported (SSSS) circular cylindrical square

Mode Sequence Number
1 2 3 4 5 6

Deflection Amplitude

Frequency
Parameter 1.6705 (SS-1)  2.7905 (AS-1)  2.8715(SA-1)  3.7370 (SA-2)  3.7466 (AS-2)

A

3.7952 (AA-1)

Fig. 5. Mode shapes and frequency parameters 1 = wa+/p/E shell panel (b/a =1, a/R,, 0.5 and h/a = 0.2)
for the fully clamped (CCCC) circular cylindrical square
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Table 11. Frequency parameters A = wa+/p/E for fully clamped cylindrical square shells

Curvature Thickness Symmetry classes and mode sequence number
ratio a/R,, ratio h/a
SS-1 SS-2 SS-3 SA-1 SA-2 SA-3 AS-1 AS-2 AS-3 AA-1 AA-2  AA-3
0.1 0.01 0.14047 0.40385 0.41004 0.24023 0.50376 0.64248 0.22720 0.50522 0.64160 0.33474 0.73589 0.73911
0.1 0.99818 3.1396 3.1716 1.8976 3.7383 3.8041 1.9012 3.7417 3.7974 2.6635 4.4407 5.1655
0.2 1.6330 4.3799 4.4416 2.8524 3.7470 5.2058 2.8564 3.7505 5.1982 3.8378 4.4423 5.4572
0.3 1.9899 4.8994 4.9726 3.2909 3.7523 5.7771 3.2938 3.7567 5.7657 4.3449 4.4473 5.4546
0.4 2.1946 5.1761 5.2509 3.5157 3.7550 6.0210 3.5162 3.7608 6.0137 4.4403 4.6162 5.4428
0.5 2.3188 5.3488 5.4206 3.6449 3.7559 5.4581 3.6412 3.7637 5.4639 4.4418 4.7726 5.4201
0.2 0.01 0.20489 0.41033 0.44068 0.28631 0.51034 0.66330 0.23760 0.52211 0.64139 0.35267 0.73910 0.75122
0.1 1.0083 3.1388 3.1693 1.9027 3.7347 3.8008 1.8973 3.7392 3.7969 2.6618 4.4385 5.1613
0.2 1.6380 4.3771 4.4382 2.8549 3.7458 5.1986 2.8490 3.7506 5.1956 3.8330 4.4416 5.4538
0.3 1.9938 4.8964 4.9686 3.2927 3.7512 5.7679 3.2831 3.7590 5.7614 4.3298 4.4563 5.4507
0.4 2.1981 5.1728 5.2461 3.5173 3.7540 6.0103 3.5010 3.7655 6.0097 4.4286 4.6210 5.4377
0.5 2.3224 5.3439 5.4134 3.6463 3.7549 5.4597 3.6194 3.7716 5.4741 4.43231 4.7735 5.4128
0.3 0.01 0.27338 0.42549 0.48731 0.34786 0.52234 0.69656 0.25383 0.54900 0.64110 0.38039 0.74195 0.77348
0.1 1.0250 3.1344 3.1683 19112 3.7285 3.7958 1.8909 3.7350 3.7959 2.6589 4.4348 5.1521
0.2 1.6465 4.3710 4.4339 2.8590 3.7437 5.1865 2.8368 3.7506 5.1912 3.8251 4.4403 5.4479
0.3 2.0001 4.8901 4.9632 3.2957 3.7493 5.7526 3.2657 3.7623 5.7544 4.3086 4.4673 5.4443
0.4 2.2040 5.1657 5.2396 3.5198 3.7523 5.9914 2.4773 3.7719 6.0026 4.4106 4.6275 5.4293
0.5 2.3284 5.3329 5.4043 3.6486 3.7532 5.4622 3.5880 3.7800 5.4906 4.4170 4.7747 5.4008
0.4 0.01 0.32729 0.46003 0.54503 0.41358 0.54265 0.74048 0.27464 0.58428 0.64083 0.41548 0.74617 0.80367
0.1 1.0478 3.1240 3.1713 1.9231 3.7192 3.7892 1.8819 3.7292 3.7944 2.6550 4.4295 5.1356
0.2 1.6582 4.3596 4.4307 2.8648 3.7408 5.1696 2.8199 3.7504 5.1851 3.8142 4.4383 5.4367
0.3 2.0090 4.8787 4.9581 3.2998 3.7467 5.7312 3.2420 3.7661 5.7448 4.2836 4.4780 5.4353
0.4 2.2122  5.1528 5.2334 3.5233 3.7499 5.9635 3.4464 3.7785 5.9918 4.3877 4.6343 5.4176
0.5 2.3367 5.3125 5.3968 3.6518 3.7510 5.4658 3.5497 3.7867 505128 4.3966 4.7753 5.3846
0.5 0.01 0.35710 0.52051 0.60912 0.47138 0.57866 0.79308 0.29880 0.62610 0.64079 0.45550 0.75228 0.84079
0.1 1.0763 3.1074 3.1781 1.9382 3.7063 3.7817 1.8703 3.7214 3.7924 2.6499 4.4227 5.1104
0.2 1.6705 4.3299 4.4285 2.8715 3.7370 5.1361 2.7905 3.7466 501745 3.7952 4.4353 5.4268
0.3 2.0203 4.8605 4.9548 3.3051 3.7434 5.7037 3.2125 3.7699 5.7327 4.2556 4.4874 5.4236
0.4 2.2227 5.1322 5.2292 3.5277 3.7469 5.9267 3.4095 3.7843 5.9773 4.3609 4.6403 5.4026
0.5 2.3438 5.2640 5.3900 3.6541 3.7476 5.4699 3.4994 3.7862 5.5369 4.3711 4.7706 5.3601

Figs. 4 and 5. The shell configurations chosen are those
with shallowness ratio of a/R,, = 0.5 and relative thick-
ness ratio h/a of 0.2. For the freely supported conditions,
the edges are allowed to deform normally but not tan-
gentially to the plane containing the edge. It is noticed that
for both the SSSS and CCCC shells, the first six vibration
modes are mostly transverse bending modes. Only certain
modes, particularly for the SSSS shells, are dominated by
in-plane vibratory motions.

4
Conclusion

A three-dimensional elasticity solution for the free vibra-
tion problem of thick cylindrical shell panels of rectan-
gular planform has been presented. The governing
eigenvalue equation for the continuum was derived from
the three-dimensional elasticity theory and employing the
Ritz minimization procedure. Converged results obtained
compared very well with corresponding finite element
simulation results using MSC/NASTRAN. Further favor-
able comparisons were made with existing experimental
and numerical results in the literature. For shells of high
thickness-to-width ratios, it is believed that the present
method provides more accurate results than classical and
refined shell theories. Results for a wide range of thick
cylindrical shell panels of various boundary conditions

and linear parameters have been presented and a detailed
discussion into parametric investigations has been pro-
vided. Displacement mode shapes in three-dimension were
plotted for visualization enhancement and thus better
understanding of the vibratory motions.
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