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Abstract
A general formalism is proposed, based on the definition of a space-time potential, for developing space-time formulations
adapted to nonlinear and time dependent behaviors. The focus is given to the case of standard generalized materials that are
expressed from the knowledge of two potentials, a strain energy and a dissipation potential in a convex framework with the
help of internal variables. Viscoplasticity with isotropic hardening and nonlinear finite viscoelasticity are investigated. Starting
from the definition of an appropriate space-time potential, time discontinuous Galerkin forms are developed for use in the case
of time singularities (in particular with regard to time integration of internal variables). Furthermore, NURBS approximation
are used, such as to propose Space-Time Isogeometric Analysis models. Numerical examples allow to compare the obtained
isogeometric space-time models with standard finite-element models (that are based on standard time integration procedures:
radial return for viscoplasticity and backward euler for viscosity) and allow to illustrate the new possibilities offered with the
proposed space-time formulations.

Keywords Space-time · Isogeometric analysis · Time discontinuous Galerkin · Viscosity · Viscoplasticity

1 Introduction

Since the original work of [1, 2], space-time finite-element
(FE) have been applied to different problematic and some
advantages of these methods, compared to the standard
paradigmof using finite difference for the time discretisation,
have been put in evidence. Theses advantages can obviously
be of different nature (theoretical, energetical, computational
or related to the algorithmic setup of FE models) and they
are related to the type of formulation and type of problem.
Different approaches exist but the pioneer work of [3, 4] on
a space-time discontinuous Galerkin formulation for elas-
todynamics is of particular importance because the authors
have shown that these methods can be reliable and efficient
to approach space and time discontinuous solutions for wave
propagation problems. Furthermore, the proposed paradigm
of time (or space and time) discontinuous formulation can
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be applied to other context than elastodynamics of solids.
The computation of fluid flow is one example among others,
e.g. [5–7] for 2D problems and [8, 9] for the first 3D prob-
lems with moving meshes. These works gave rise to many
theoretical and numerical developments, see for instance
[10–18] and references therein. For linear viscoelasticity a
time continuous Galerkin formulation was proposed by [19,
20] and it was shown that space-time finite elements can offer
new possibilities (space-time parallelization and space-time
refinement) and better performance (with higher order space-
time function at least for simple problems). To the best of
our knowledge the case of nonlinear time dependent behav-
iors has not been investigated in the context of space-time
methods excepted in [21] where a space-time approach is
proposed for elasto-plasticity and gradient damage models
but not explored from the numerical point of view. However,
this numerical aspect is crucial to study the stability and the
reliability of the proposed formulations. Furthermore, the
formalism proposed in [21] raises certain theoretical ques-
tions related to causality, since the authors have used the
Hamiltonian principle as a guidance to formulate space-time
potential which is not adapted to non-conservative systems.
Therefore, the main idea of this paper is to propose a generic
way of developing space-time formulations adapted to this
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context and to evaluate the interest of using such methods
both from a theoretical and a numerical point of view. As
already mentioned we are particularly interested in time dis-
continuous formulations as time dependent behaviors can
exhibit very sharp solutions in time (in the case of viscoplas-
ticity for instance).

The isogeometric analysis (IGA), e.g. [22, 23], is a very
interesting alternative to standard FEmodels (with Lagrange
or Hermite polynomials). It offers the possibility to play with
both the polynomial order of the functions and the continu-
ity order. It can also simplify the management of the mesh
in some situations (with the restriction that local refinement
requires specific developments) and it has been shown from
many numerical tests in the literature that less degree of free-
dom are required to get the same quality of the numerical
solution compared to standard FE (using similar interpola-
tion order). As a consequence of these interesting numerical
properties, some authors have developed space-time IGA
models (ST-IGA), e.g. [24–38]. In a previous work, we get
interested into elastodynamics problems with such methods,
see [39]. We have proposed a continuous space-time for-
mulation with specific stabilization terms that allowed us to
investigate linear and nonlinear (incompressible) elasticity.
Through comparisons between ST-FE and ST-IGA models
we have shown that ST-IGA can achieve better numerical
performances.

In most FE codes, in the case of time dependent behaviors
formulated in the differential form (i.e. with internal vari-
ables), the set of evolution equations is resolved locally (at
Gauss points). Therefore, there is at least two type of inte-
gration schemes for the time, one at the global level that
treats the conservation equations of the problem and one at
the local level for the evolution equations. The relevance of
such an approach can be questioned especially if the system
of equations exhibit a strong coupling with temporal sharp
responses. There are some alternative proposals in the litera-
ture as for instance the LATINmethod (e.g. [40]). Moreover,
increasing the order (for the time discretisation) of one of
the two schemes (local or global) does not ensure an opti-
mal rate of convergence regarding the time. In this work we
propose to consider the resolution of both type of equations
simultaneously with the same time integration scheme. This
paradigm leads to the fact that the internal variables should
be treated at the same level than the primary variables (i.e.
at nodes or control points) and therefore leads to multi-field
formulations and larger global systems to be solved (with
similar memory usage, since the internal variables must be
be stored regardless the method used). In this paper, we com-
pare the results obtained with ST-IGA models and standard
FEmodels and we discuss the new possibilities offer by such
methods but we do not explicitly address the question of the
numerical performance. This should be done in a separate

work with numerical examples for which we can explicitly
measure the quality of the time dependent solutions.

As mentioned previously we propose a new route for con-
structing time discontinuous formulations within the context
of ST-IGAmethods. Themain original feature of this work is
the ability to obtain in a generic way this type of formulation
especially for the time continuity terms. No supplemen-
tary numerical parameters are needed. We limit ourselves to
the case of standard generalized materials (or bi-potential
models) but this class of behavior is sufficiently large to
study many different applications. In this paper we con-
sider two examples: a small strain visco-plastic model with
isotropic hardening and a finite-strain viscoelastic model (in
a nearly incompressible context). Both cases are restricted
to the quasi-static case but the proposed formulation can be
extended to other situations (dynamics or with multi-physics
coupling for instance).

The paper is organized as follows. In a first section we
present the space-time formulation. In the second section, the
case of a viscoplastic behavior is discussed. The nonlinear
viscoelastic model is detailed in the third section. Finally,
the last section is devoted to numerical examples for both
material models.

2 Space-time formulations

2.1 Time and space weak forms for standard
materials in quasi-static situation

We consider the case of time-dependent behaviors for-
mulated as standard generalized materials (see [41]). The
material behavior is therefore defined from the knowledge of
two potentials: a strain energy, ψ , and a (pseudo-)potential
of dissipation, ϕ. These potentials are defined from a set of
thermodynamics variables which are all local in time and
space (there exist a non-local version of standard general-
ized materials, see [42], that could be used in a similar way
than the one proposed in this paper). The i th internal variable
is here denoted αi (x, t), x is the position of material point in
the space domain � ∈ R

d , and t ∈ [0, T ].
For the sake of simplicity, in this section, we restrict our-

selves to the small strain case and we assume isothermal
and adiabatic states. Therefore the primary fields of inter-
est are {u, αi }. To establish a weak form of an equilibrium
problem, we start from the definition of a potential and the
main equations are obtained by studying the stationarity of
the potential. This is similar to what were done in previous
studies especially the so called incremental variational for-
mulations, see for instance [43–45] among others. In these
works, the authors proposed variational formulations which
are based on an algorithmic assumption that the rate of the
primary variables are constant over a time increment. How-
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ever in the general case (for instance in dynamics or without
any assumption in time), the establishment of a variational
form for dissipative problems is only limited to very specific
cases due to the irreversibility in time, see for instance [46,
47] and references therein for interesting discussions about
possible variational formulations for these specific cases.

Here, we propose to consider the following space-time
potential1:

� =
∫
Q

(
ρψ̇(ε, αi ) − ϕ(α̇i )

)
dQ +

∫
Q
u̇fdQ

+
∫
P
u̇tdP

(1)

where Q = � × [0, T ] and P = � × [0, T ] are space-
time domain and boundary. We define the Sobolev spaces
Hl,k(Q) = {u ∈ L2(Q) : ∂

β
x u ∈ L2(Q) ∀ β with 0 ≤

|β| ≤ l, ∂ it ∈ L2(Q), i = 0, . . . , k} of functions defined
in the space-time cylinder Q, where L2(Q) denotes the
space of square-integrable functions, β = (β1, . . . , βd)

is a multi-index with non-negative integers, |β| = β1 +
. . . + βd , ∂

β
x u := ∂

β1
x1 ∂

β2
x2 . . . ∂

βd
xd u with ∂

βi
xi • = ∂βi •

/∂xiβi and ∂ it u := ∂ i u/∂t i .
Lets study the stationarity conditions of the previous

potential. One can easily obtain its first variation (assuming
that the external forces do not depend on primary variables):

δ� =
∫
Q

ρ
∂ψ̇

∂ε
: δεdQ +

∫
Q

δu̇fdQ +
∫
P

δu̇tdP

+
n∑

i=1

∫
Q

ρ
∂ψ̇

∂αi
δαi − ∂ϕ

∂α̇i
δα̇i dQ (2)

The primary variables {u, αi } live in {Hu,Hα} and their vari-
ations are such that δu ∈ Hu

0 and δαi ∈ Hα
0 where:

Hu = {u ∈ H1,1(Q), u = g(t) on �u ,

u(x, t = 0) = u0(x)}
Hα = {α ∈ H0,1(Q) , α(x, t = 0) = α0(x)}
Hu

0 = {u ∈ H1,1(Q), u = 0 on �u ,

u(x, t = 0) = 0,u(x, t = T ) = 0}
Hα

0 = {α ∈ H0,1(Q) ,

α(x, t = 0) = 0, α(x, t = T ) = 0} (3)

It has to be noted here that compared to incremental varia-
tional theories we have made a supplementary hypothesis of
regularity for the rate of the primary variables over time.

1 The dot stands for the time derivative.

By using integrations by parts, one can obtain from Eq.
(2):

δ� =
∫

�

ρ

[
∂ψ

∂ε
: δε

]T

0
d� −

∫
Q

ρ
∂ψ

∂ε
: ε(δu̇)+

∫
Q

δu̇fdQ +
∫
P

δu̇tdP−
n∑

i=1

∫
�

ρ

[
∂ψ

∂αi
δαi

]T

0
d� −

n∑
i=1

∫
Q

ρ
∂ψ

∂αi
δα̇i dQ

−
n∑

i=1

∫
Q

∂ϕ

∂α̇i
δα̇i dQ

(4)

The terms integrated over time are null due to homogeneous
conditions on the time boundaries and we are left with the
following conditions of stationarity:

δu� ≡
∫
Q

ρ
∂ψ

∂ε
: δε̇dQ −

∫
Q

δu̇fdQ

−
∫
P

δu̇tdP = 0 (5)

δαi � ≡
∫
Q

(
ρ

∂ψ

∂αi
+ ∂ϕ

∂α̇i

)
δα̇i dQ = 0 (6)

The local form of the previous equations corresponds to the
conservation of the linear momentum and to the normality
rules, such that for x ∈ � and t ∈ [0, T ]:

divσ = f (7)

Ai = ∂ϕ

∂α̇i
i ∈ [1, n] (8)

along with the Neumann boundary conditions:

σn = t ∀x ∈ �σ (9)

where σ = ρ∂ψ/∂ε is the stress and Ai = −ρ∂ψ/∂αi is the
i th thermodynamical force associated to the rate of the i th

internal variable, α̇i .
By using a partial Legendre transform,we can also slightly

modify the potential defined at Eq. (1), so as to use the dual
dissipation potential ϕ�(Ai ) instead of the primal one, ϕ(α̇i ).
One can for instance chose the following potential:

�� =
∫
Q

(
ρψ̇(ε, αi ) − Ai α̇i + ϕ�(Ai )

)
dQ

+
∫
Q
u̇fdQ +

∫
P
u̇tdP (10)

Without any particular difficulties, one can show that the
conditions of stationarity associated to the previous dual
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potential are:

δu�
� ≡

∫
Q

σ : δε̇dQ −
∫
Q

δu̇fdQ

−
∫
P

δu̇tdP = 0 (11)

δαi �
� ≡

∫
Q

(
Ai + ∂ψ

∂αi

)
δα̇i dQ = 0 (12)

δAi �
� ≡

∫
Q

(
α̇i − ∂ϕ�

∂Ai

)
δAidQ = 0 (13)

As previously, we recover the local form of the first momen-
tum conservation and the dual normality rules. Equations
(5)–(6) or (11)–(13) constitute a generic space-time pri-
mal or dual formulation adapted to quasi-static dissipative
problems. These forms can be used to formulate space-time
finite-elements.

2.2 Space-time finite-element (or IGA)
discretisation: time continuous Galerkin form

We first consider the case of a time and space continuous
discretisation that will allow us to introduce the various
notations and operators needed for the development of space-
time elements. Lets consider a finite discretisation, denoted
Qh , of the space-time cylinder Q with either finite elements
(Lagrange approximation) or isogeometric analysis (NURBS
approximation), Qh

e denotes the restriction of Qh to an ele-
ment. The primary fields of interest are also approximated
with the same functions (i.e. polynomials or NURBS), such
as we can define on an element:

uhe (x, t) = Nu(x, t)due , αh
i e(x, t) = Nα(x, t)dα

e (14)

where du,dα are the global vectors containing the degree of
freedom over the space-time domain and due ,d

α
e the restric-

tion of these vectors to an element. Therefore, the rate of the
primary fields are simply defined from (we denote respec-
tively, by Bt the time, or by Bx the space gradient operators,
that contains the derivatives of the previous shape functions):

u̇he (x, t) = Bt
u(x, t)d

u
e , α̇i

h
e (x, t) = Bt

α(x, t)dα
e (15)

We also define the approximation of the strain and the strain
rate as follows:

ε = Bx
ud

u
e , ε̇ = Bt,x

u due (16)

It can be remarked that as we used the second derivatives
of the space-time approximation functions, these functions
should be at last of order 2 for the kinematic field.

Introducing approximated fields at Eq. (5) and (6), one
can obtain the following weak form of the equilibrium and

evolution laws:

�h
,du ≡ Ae

(∫
Qh

e

Bt,x
u

T
(

ρ
∂ψ

∂ε

)
dQ −

∫
Qh

e

Bt
u
T fhdQ −

∫
Ph
e

Bt
u
T thd P

)
= 0 (17)

�h
,dα ≡ Ae

(∫
Qh

e

Bt
α
T

(
ρ

∂ψ

∂αi
+ ∂ϕ

∂α̇i

)
dQ

)
= 0 (18)

The system at Eqs. (17) and (18) is a nonlinear system that
can be solved with a standard Newton scheme:

{
du

dα

}
⇐

{
du

dα

}
−

[
�h

,dudu �h
,dudα

�h
,dαdu �h

,dαdα

]−1 {
�h

,du

�h
,dα

}
(19)

where:

�h
,dudu = Ae

∫
Qh

e

Bt,x
u

T
(

ρ
∂2ψ

∂ε2

)
Bx
udQ (20)

�h
,dudα = Ae

∫
Qh

e

Bt,x
u

T
(

ρ
∂2ψ

∂ε∂αi

)
NαdQ (21)

�h
,dαdu = Ae

∫
Qh

e

Bt
α
T

(
ρ

∂2ψ

∂αi∂ε

)
Bx
udQ (22)

�h
,dαdα = Ae

∫
Qh

e

Bt
α
T

(
ρ

∂2ψ

∂α2
i

)
NαdQ+ (23)

Ae

∫
Qh

e

Bt
α
T

(
ρ

∂2ϕ

∂α̇i
2

)
Bt

αdQ (24)

The tangent operator of theNewton scheme is non-symmetric
as a consequence of the time irreversibility. Similar devel-
opments can be made with the dual potential formulation
presented previously.

2.3 Space-time finite-element (or IGA)
discretisation: time-discontinuous Galerkin form

The previous space-time continuous form is not adapted for
practical applications, especially when solutions are local-
ized in space and time. An alternative solution is to define a
time-discontinuous form.

Considering a partition of the time domain in N intervals,
such that t1 = 0 < t2 < .. < tn < tN+1 = T . Taking a
time interval ]tn, tn+1[ one can define a space-time slab Qn

such that: Qn = �×]tn, tn+1[ and Pn = �×]tn, tn+1[. We
assume that the fields are discontinuous over the time slabs,
such that the temporal jumps are defined by

[[u(x, tn)]] = u(x, t+n ) − u(x, t−n ),

[[αi ((x, tn)]] = αi (x, t+n ) − αi (x, t−n )
(25)
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where u(x, t+n ), αi (x, t+n ) denote values at time tn onQn and
u(x, t−n ), αi (x, t−n ) are values at the same time onQn−1. The
space-time discretisation Qh is defined from the union of the
discretisation of each time slab: Qh = ∪N

n=1Q
h
n . We propose

to consider here the followingmodified space-time potential:

�DG =
N∑

n=1

(∫
Qn

(
ρψ̇(ε, αi ) − ϕ(α̇i )

)
dQ

+
∫
Qn

u̇fdQ +
∫
Pn

u̇tdP
)

+
N∑

n=2

∫
Bn

[[ρψ(ε, αi )]]dB

+
∫
B1

βu
1

2
(u(x, t+1 ) − u0(x))2dB

+
∫
B1

βi
1

2
(αi (x, t

+
1 ) − α0(x))2dB

(26)

where Bn stands for the space domain � at time t+n . It can
be seen from the previous expression that we have chosen to
distinguish the continuity terms that apply on the first time
slab (to account of initial condition on the primary fields in
a weak sense) and those who apply on the other time slabs
(continuity of primaryfields between each slabs in aweak and
energetic sense). The parametersβu, βi have been introduced
for dimensioning purpose. For the sake of simplicity, we will
take them to be equal to one (with appropriate dimension) in
the following.

Taking the variation of �DG and regrouping terms it can
be seen that the solution can be determined iteratively time
slab by time slab (the solution on a time slab depends only
on the values of the previous time slab). More precisely, on
Q1, we have:

δu�DG ≡
∫
Q1

ρ
∂ψ

∂ε
: δε̇dQ −

∫
Q1

δu̇fdQ

−
∫
P1

δu̇tdP

−
∫
B1

(u(x, t+1 ) − u0(x))δu+dB = 0 (27)

δαi �DG ≡
∫
Q1

(
ρ

∂ψ

∂αi
+ ∂ϕ

∂α̇i

)
δα̇i dQ

−
∫
B1

(αi (x, t
+
1 ) − α0(x))δα

+
i d B = 0 (28)

and on Qn with 2 ≤ n ≤ N , we have:

δu�DG ≡
∫
Qn

ρ
∂ψ

∂ε
: δε̇dQ

−
∫
Qn

δu̇fdQ −
∫
Pn

δu̇tdP

−
∫
Bn

[[ρ ∂ψ

∂ε
]] : δε+dB = 0 (29)

δαi �DG ≡
∫
Qn

(
ρ

∂ψ

∂αi
+ ∂ϕ

∂α̇i

)
δα̇i dQ

−
∫
Bn

[[ρ ∂ψ

∂αi
]] : δα+

i d B = 0 (30)

As mentioned previously, it can be seen that this formulation
consists of imposing the continuity of the thermodynamical
forces {σ, Ai } at the time interfaces for n ≥ 2.

Each time slab Qn , is discretized with space-time ele-
ments and its discretisation is denoted by Qh

n and Qh
ne for

a restriction to the element e. For the sake of simplicity we
assume that the space discretisation is the same on each time
intervals. However, it is also possible to consider situations
where a space-time slab is discretized (meshed) in time and
space and eventually re-mesh (locally refine) during time slab
iterations. One can therefore obtain a mix between the time
continuous and discontinuous formulations (in each time slab
one can have space-time continuous finite elements). The
fields are approximated on a time slab as defined by Eqs.
(14), (15), (16). For the first time slab we obtain

�h
DG,du ≡Ae

(∫
Qh

1 e

Bt,x
u

T
(

ρ
∂ψ

∂ε

)
dQ

−
∫
Qh

1 e

Bt
u
T fhdQ −

∫
Ph
1 e

Bt
u
T thd P

)

− Ae

∫
B1e

N+
u
T
(u+ − u0)dB = 0 (31)

�h
DG,dα ≡Ae

(∫
Qh

1 e

Bt
α
T

(
ρ

∂ψ

∂αi
+ ∂ϕ

∂α̇i

)
dQ

−
∫
B1e

N+
α
T
(α+

i − α0)dB

)
= 0 (32)

For the nth time slab (with n ≥ 2), we have

�h
DG,du ≡Ae

(∫
Qh

ne

Bt,x
u

T
(

ρ
∂ψ

∂ε

)
dQ

−
∫
Qh

ne

Bt
u
T fhdQ −

∫
Ph
n e

Bt
u
T thd P

)

− Ae

∫
Bne

Bx
u
+T [[σ ]]dB = 0 (33)

�h
DG,dα ≡Ae

(∫
Qh

ne

Bt
α
T

(
ρ

∂ψ

∂αi
+ ∂ϕ

∂α̇i

)
dQ

−
∫
Bne

N+
α
T [[Ai ]]dB

)
= 0 (34)
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On each time slab, the non linear system of Eqs. (31)–(32)
or (33)–(34) is solved with a Newton scheme. The tangent
operator is similar to the one define in the previous section,
for the nth time slab (with n ≥ 2), we have

�h
DG,dudu =Ae

∫
Qh

ne

Bt,x
u

T
(

ρ
∂2ψ

∂ε2

)
Bx
udQ

− Ae

∫
Bne

Bx
u
+T

(
ρ

∂2ψ

∂ε2

)
Bx
u
+dB (35)

�h
DG,dudα =Ae

∫
Qh

ne

Bt,x
u

T
(

ρ
∂2ψ

∂ε∂αi

)
NαdQ

− Ae

∫
Bne

Bx
u
+T

(
ρ

∂2ψ

∂ε∂αi

)
Nα

+dB (36)

�h
DG,dαdu =Ae

∫
Qh

ne

Bt
α
T

(
ρ

∂2ψ

∂αi∂ε

)
Bx
udQ

− Ae

∫
Bne

Nα
+T

(
ρ

∂2ψ

∂αi∂ε

)
Bx
u
+dB (37)

�h
DG,dαdα =Ae

∫
Qh

ne

Bt
α
T

(
ρ

∂2ψ

∂α2
i

)
NαdQ

+ Ae

∫
Qh

ne

Bt
α
T

(
ρ

∂2ϕ

∂α̇i
2

)
Bt

αdQ

− Ae

∫
Bne

N+
α
T

(
ρ

∂2ψ

∂α2
i

)
N+

α dB (38)

Asmentionedpreviously, hybrid forms (continuous space-
time element within a discontinuous formulation) may have
an interest to develop parallel space-time resolutions within
a discontinuous space time formulation. In this work we will
not investigate such hybrid forms and we only consider cases
where the time slab aremeshedwith only one element in time.
The space time mesh can therefore be viewed as an extrusion
in time of the spatial mesh.

3 Viscoplasticity with isotropic hardening

As a first example of application we consider the case of
an isotropic viscoplastic behavior with isotropic hardening.
The set of internal variables are the plastic strain and the
hardening parameter αi := {ε p, p}. The Helmoltz energy
and the pseudo-potential of dissipation are chosen as follows

ρψ(ε, ε p, p) = μ(ε − ε p)
D : (ε − ε p)

D

+ k

2
tr(ε)2 + km R(p) (39)

ϕ�(S, Ap) = 1

2η

〈√
3

2
||S|| + Ap − σ0

〉2
(40)

where μ, k, km, η, σ0 are material parameters, S and Ap are
the thermodynamical forces associated toε p and p and< . >

are theMacaulay brackets. The isotropic hardening function,
R(p), can be chosen from available potentials in the litera-
ture but for the sake of simplicity and without any particular
limitations we consider in the following linear hardening, i.e
R(p) = 1/2p2. Introducing these potentials into the mixed
form defined at Eq. (10), one can obtain the following weak
space-time form

δu�
� ≡

∫
Q

σ : δε̇dQ −
∫
Q

δu̇fdQ

−
∫
P

δu̇tdP = 0 (41)

δε p�
� ≡

∫
Q

(
S − 2μ(ε − ε p)

D
)

: δε̇ pdQ = 0 (42)

δp�
� ≡

∫
Q

(
Ap + km R′(p)

)
δ ṗdQ = 0 (43)

δS�
� ≡

∫
Q

(
ε̇ p − �

√
3

2
n

)
: δSdQ = 0 (44)

δAp�
� ≡

∫
Q

( ṗ − �) δApdQ = 0 (45)

where � = 1
η

〈√
3
2 ||S|| + Ap − σ0

〉
is the plastic multiplier,

n = S/||S|| is the plastic flow direction, and σ = 2μ(ε −
×ε p)

D + ktr(ε)1 is the Cauchy stress.
The previous weak form can be discretized with space-

time elements but rather to consider a five field form, we
proposed here to consider the following reduced weak form:

∫
Q

σ : δε̇dQ −
∫
Q

δu̇fdQ −
∫
P

δu̇tdP = 0 (46)

∫
Q

(
ε̇ p − �̃

√
3

2
ñ

)
: (2μδε p)dQ = 0 (47)

∫
Q

(
ṗ − �̃

)
km R′(p)δ pdQ = 0 (48)

We have implicitly assumed that the equalities S = σ D and
Ap = −km R′(p) hold and we use the following definition:

�̃ = 1
η

〈√
3
2 ||σ D|| − km R′(p) − σ0

〉
and ñ = σ D/||σ D||.

The set of Eqs. (46)–(48) do not derive from conditions of
stationarity but the Euler equations are the same than the one
obtain from the system defined at Eqs. (41)–(45).

The deviatoric structure of the plastic strain field allows
to determine one diagonal component of the tensor by the
knowledge of the two other. For instance, in 2D, on a space-
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time element we have the following approximation

ε p
h
e = Nε(x, t)dε

e , ε p
h
e =

⎡
⎢⎢⎣

ε p11
ε p22
ε p12
ε p33

⎤
⎥⎥⎦ ,

Nε =

⎡
⎢⎢⎣

N (x, t) 0 0
0 N (x, t) 0
0 0 N (x, t)

−N (x, t) −N (x, t) 0

⎤
⎥⎥⎦

(49)

The derivation of the time continuous formulation defined
at Eqs. (46)–(48) allows to define the following elemental
tangent operator:

Ke =
⎡
⎢⎣

keuu keuε p
0

keε pu keε pε p
keε p p

kepu kepε p
kepp

⎤
⎥⎦ (50)

with

keuu =
∫
Qh

e

Bt,x
u

T
(2μP + k1 ⊗ 1)Bx

udQ (51)

keuε p
=

∫
Qh

e

Bt,x
u

T
(−2μP)NεdQ (52)

keε pu =
∫
Qh

e

Nε
T

(
2μ

(
−3

2
H( f )

μ

η
n ⊗ n

−�

√
3

2

2μ

‖σ D‖ (I − n ⊗ n)

)
: P

)
Bx
udQ (53)

keε pε p
=

∫
Qh

e

Nε
T

(
2μ

(
3

2
H( f )

μ

η
n ⊗ n

+�

√
3

2

2μ

‖σ D‖ (I − n ⊗ n)

)
: P

)
Bx
udQ

+
∫
Qh

e

2μNε
TBt

εdQ (54)

keε p p =
∫
Qh

e

Nε
T

(
6μ

2
H( f )

km
η

R′′(p)n
)
NpdQ (55)

kepu =
∫
Qh

e

Np
T

(
−H( f )km R′(p)2μ

η

√
3

2
n : P

)
Bx
udQ

(56)

kepε p
=

∫
Qh

e

Np
T

(
H( f )km R′(p)2μ

η

√
3

2
n

)
Nε pdQ (57)

kepp =
∫
Qh

e

Np
T

(
H( f )km R′(p)

√
3

2

km
η

R′′(p)

−�̃km R′′(p)
)
NpdQ +

∫
Qh

e

Np
TBt

pdQ (58)

where H() is the Heaviside function and f =
√

3
2 ||σ D|| −

km R′(p) − σ0 is the yield function, I is the fourth order
identity tensor and P = (I − (1/3)1 ⊗ 1) is the deviatoric
projector.

For the time discontinuous formulationwe proceed as pre-
sented in the previous section. On the first time slab, Q1, we
have

∫
Q1

σ : δε̇dQ −
∫
Q1

δPufdQ −
∫
P1

δu̇tdP

−
∫
B1

(u(x, t+1 ) − u0(x))(2μδu+)dB = 0 (59)

∫
Q1

(
ε̇ p − �̃

√
3

2
ñ

)
: (2μδε p)dQ

−
∫
B1

(ε p(x, t
+
1 ) − ε p0(x)) : (2μδε+

p )dB = 0 (60)

∫
Q1

(
ṗ − �̃

)
km R′(p)δ pdQ

−
∫
B1

(p(x, t+1 ) − p0(x))(km R′(p)δ p+)dB = 0 (61)

where ε p0 and p0 are values of the fields at t = 0. For the
nth time slab, we obtain

∫
Qn

σ : δε̇dQ −
∫
Qn

δPufdQ −
∫
Pn

δPutdP

−
∫
Bn

[[σ ]] : δε+dB = 0 (62)

∫
Qn

(
ε̇ p − �̃

√
3

2
ñ

)
: (2μδε p)dQ

−
∫
Bn

[[S]] : δε+
p dB = 0 (63)

∫
Qn

(
ṗ − �̃

)
km R′(p)δ pdQ −

∫
Bn

[[Ap]]δ p+dB = 0

(64)

The tangent operator on each time slab is the same as the
one presented previously complemented by the time conti-
nuity terms. It can be remarked that this formulation does not
allows to consider the limit case η = 0 which seems natural
as a purely plastic (quasi-static) problem is only implicitly
time dependent (due to the fact that the loads can depends on
time).

4 Nearly incompressible nonlinear
viscoelasticity (Zener model)

For this example, we extend the previous concepts to the
finite strain case. The strain energy is defined from: the iso-
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choric left Cauchy Green tensor, C̄, the i th elastic isochoric
left Cauchy-Green tensor, C̄e, and the hydrostatic pressure,
q. To define isochoric tensors we used the so-called volu-
mic/isochoric splitting of the deformation gradient, F:

F = F̄(J 1/31) (65)

where J = det F is the volume variation.
The elastic intermediate configuration is obtained from

the multiplicative split of the isochoric deformation gradient
(e.g. [48, 49]):

F̄ = F̄eF̄v (66)

The left Cauchy-Green tensors and the Green-Lagrange
strain are defined such as:

C̄ = F̄TF̄ (67)

C̄e = F̄T
e F̄e (68)

E = 1

2
(C − I) (69)

The strain energy is assumed to depend on C̄, C̄e and q this
last variable can be viewed as the hydrostatic pressure (for
more details see [50]). The pseudo potential of dissipation is

assumed to depend only on ˙̄Cv .
For this application, the potential at Eq. (1) is slightly

modified as follows:

� =
∫
Q0

(
ρ0ψ̇(C̄, C̄e, q) − ρ0β̇(q, J ) − ϕ( ˙̄Cv)

)
dQ

+
∫
Q0

u̇fdQ +
∫
P0

u̇tdP (70)

where β is a potential that relates q and J (in the present case
it can be obtained from a partial Legendre transform of the
Helmoltz free energy), Q0 = �0 × [0, T ] where �0 is the
initial space domain and P0 = �0 × [0, T ] where �0 is the
initial space boundary, f and t are assumed to be defined in
terms of non deformed units in space, ρ0 is the initial density.
We assume that β is defined from:

β(q, J ) = q
1 − J

ρ0
(71)

After some calculus and using similar time integration by part
as in the previous sectionswe obtain the followingweak form
of the Euler equations from the stationarity of the potential:

δu� =
∫
Q0

S : δĖdQ −
∫
Q0

fδu̇dQ −
∫
P0

tδu̇dP (72)

δq� =
∫
Q0

ρ0

(
−∂ψ

∂q
+ ∂β

∂q

)
δq̇dQ (73)

δC̄v
� =

∫
Q0

(
ρ0F̄−1

v C̄e
∂ψ

∂C̄e
F̄-T

v − ∂ϕ

∂ ˙̄Cv

)
: δ ˙̄CvdQ (74)

where, the second Piola-Kirchoff stress S is defined as fol-
lows

S = 2ρ0

(
∂ψ

∂C̄
+ F̄−T

v

∂ψ

∂C̄e
F̄−1

v

)
: PC̄ + ρ0

∂β

∂ J
JC−1 (75)

with PC̄ a deviatoric projector for the Lagrangian configura-
tion, defined as follows:

PC̄ = J−2/3
(
I − 1

3
C ⊗ C−1

)
(76)

Limiting ourselves to the case of isotropy, we adopt the fol-
lowing forms for the strain energy and the pseudo potential
of dissipation:

ρ0ψ(C̄, C̄e, q) = c10(I1(C̄) − 3) + c01(I2(C̄) − 3)

+ μ(I1(C̄e) − 3) − k
(
exp(

q

k
) − 1

)
+ q

(77)

ϕ( ˙̄Cv) = η

2
˙̄Cv : ˙̄Cv (78)

where c10, μ, k, η are material parameters and I1, I2 are the
two first strain invariants. As a consequence, the Euler equa-
tions (72)–(74) can be rewritten as:

δu� =
∫
Q0

� : δḞdQ −
∫
Q0

fδu̇dQ −
∫
P0

tδu̇dP (79)

δq� =
∫
Q0

(
exp(

q

k
) − J

)
δq̇dQ (80)

δC̄v
� =

∫
Q0

(
μC̄−1

v C̄C̄−1
v − η ˙̄Cv

)
: δ ˙̄CvdQ (81)

The first Euler equation has been slightly modified compare
to Eq. (72), we have here considered the first Piola-Kirchoff
stress � instead of the second Piola-Kirchoff stress (� =
FS). This allows a more concise expression of the elemental
approximation of the virtual strain rate δḞ rather than δĖ.
The first Piola-Kirchoff stress is in this case:

� = 2
(
c10F̄ + c01F̄(I11 − C̄) + μF̄C̄−1

v

)
: PF̄ − q JF−T

where PF̄ is

PF̄ = J−1/3
(
I − 1

3
F ⊗ F−T

)
(82)

As in the previous case of viscoplasticity, the space-
time approximation of the i th viscous strain tensor, can be
obtained from the knowledge of space-time shape functions.
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For the 2D case, we have adopted the following approxi-
mation (to simplify the definition of initial conditions we
approximate C̄v − 1 rather that C̄v which is perfectly equiv-
alent)

C̄h
ve

− 1 = NC̄v
(X, t)dC̄v

e , C̄h
ve

− 1 =

⎡
⎢⎢⎣
C̄v11 − 1
C̄v22 − 1
C̄v12

C̄v33 − 1

⎤
⎥⎥⎦ ,

NC̄v
=

⎡
⎢⎢⎣
N (x, t) 0 0 0

0 N (x, t) 0 0
0 0 N (x, t) 0
0 0 0 N (x, t)

⎤
⎥⎥⎦

(83)

From the previous approximation it can be deduced that:

δC̄h
ve

= NC̄v
(X, t)δdC̄v

e , ˙̄Cv = Bt
C̄v
dC̄v
e ,

Bt
C̄v

=

⎡
⎢⎢⎢⎣

∂N (x,t)
∂t 0 0 0
0 ∂N (x,t)

∂t 0 0
0 0 ∂N (x,t)

∂t 0
0 0 0 ∂N (x,t)

∂t

⎤
⎥⎥⎥⎦

(84)

It can be seen that the chosen approximation does not
take into account of the isobaric constraint. The condition
det(C̄v) = 1 is therefore not guaranty from a numerical point
of view.We choose to slightly modify the strain energy at Eq.
(77) by adding a perturbation term such that:

ρ0ψ̃(C̄, C̄e, q) = ρ0ψ(C̄, C̄e, q) + α

2
(det(C̄v) − 1)2 (85)

where α is a perturbation parameter. As a consequence, Euler
Eq. (81) is modified such that:

δC̄v
� =

∫
Q0

(
μC̄−1

v C̄C̄−1
v − η ˙̄Cv

)
: δ ˙̄CvdQ+

α

∫
Q0

(det(C̄v) − 1) det(C̄v)C̄−1
v : δ ˙̄CvdQ

(86)

The elemental tangent operator takes the following form
with this formulation (for the sake of simplicity we consider
here the case where α = 0):

Ke =
⎡
⎢⎣

keuu keuq ke
uC̄v

kequ keqq 0
ke
C̄vu

0 ke
C̄vC̄v

⎤
⎥⎦ (87)

with

keuu =
∫
Qh
e

Bt,xT
u ChuBx

udQ (88)

keuq =
∫
Qh
e

Bt,xT
u

(−JF−T)
NqdQ (89)

ke
uC̄v

=
∫
Qh
e

Bt,xT
u

(
−μPT

F̄
((F̄C̄−1

v ) � C̄−1
v )

)
NC̄v

dQ (90)

kequ =
∫
Qh
e

BtT
q

(−JF−T)
Bx
udQ (91)

keqq =
∫
Qh
e

BtT
q

(
1

k
exp(

q

k
)

)
NqdQ (92)

ke
C̄vu

=
∫
Qh
e

BtT

C̄v

(
μJ−1/3(C̄−1

v � (C̄−1
v F̄T)

+(C̄−1
v F̄T) � C̄−1

v ) − μ

3
(C̄−1

v C̄C̄−1
v ) ⊗ F−T

)
Bx
udQ (93)

ke
C̄vC̄v

=
∫
Qh
e

BtT

C̄v

(−μC̄−1
v ⊗ (C̄−1

v C̄C̄−1
v )

−μ

2
(C̄−1

v C̄C̄−1
v ) ⊗ C̄−1

v

)
NC̄v

dQ +
∫
Qh
e

−ηBtT

C̄v
Bt
C̄v
dQ

(94)

In the previous expressions we have used the following ten-
sorial operators: (A⊗B)i jkl = Ai j Bkl , (A�B)i jkl = Aik B jl

and (A � B)i jkl = Ail B jk .
It has to be noted that the operatorBx

u is not identical to the
one of the previous section on viscoplasticity. It corresponds
here to the Lagrangian gradient operator of the displacement
field, such that:

∇Xuh = Bx
ud

u
e , and ∇Xu̇h = Bt,x

u due (95)

For the time discontinuous formulation we apply the same
principle as established at Sect. 2.3. On the first time slab,
Q1, we have (to obtain shorter expressions we consider here
the case α = 0)

∫
Q1

� : δḞdQ −
∫
Q1

δu̇fdQ −
∫
P1

δu̇tdP

−
∫
B1

(u(x, t+1 ) − u0(x))kδu+dB = 0 (96)

∫
Q1

(
exp(

q

k
) − J

)
δq̇

−
∫
B1

1

k
(q(x, t+1 ) − q0(x))δq+dB = 0 (97)

∫
Q1

(
μC̄−1

v C̄C̄−1
v − η ˙̄Cv

)
: δ ˙̄CvdQ

−
∫
B1

μ(C̄v(x, t
+
1 ) − C̄v0(x)) : δC̄+

v dB = 0 (98)

where C̄v0 and q0 are values of the fields at t = 0. For the
nth time slab, we obtain

∫
Qn

� : δḞdQ −
∫
Qn

δu̇fdQ −
∫
Pn

δu̇tdP

−
∫
Bn

[[�]] : δF+dB = 0 (99)
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Table 1 Viscoplastic material parameters

μ (MPa) k (MPa) σ0 (MPa) km (MPa) η (MPa.s)

121153 175000 280 2500 280

∫
Qn

(
exp(

q

k
) − J

)
δq̇dQ

−
∫
Bn

[[exp(q
k
)]]δq+dB = 0 (100)

∫
Qn

(
μC̄−1

v C̄C̄−1
v − η ˙̄Cv

)
: δ ˙̄CvdQ

−
∫
Bn

μ

2
[[C̄−1

v C̄C̄−1
v ]] : δC̄+

v dB = 0 (101)

The tangent operator on each time slab is the same as the
one presented previously complemented by the time conti-
nuity terms.

5 Numerical applications

5.1 Homogeneous extension in the case of
viscoplasticity

We consider the case of a homogeneous monotonic tension
test in plane strain. The initial conditions are u0(x) = 0,
ε p0(x) = 0, p0(x) = 0. We impose a displacement con-
trolled tension on one side of a unit square with u(t) = v × t
and v = 0.16mm/s. The final time is T = 0.25 s. Symme-
try boundary conditions applied on two other sides allow to
obtain an homogeneous strain. The material parameter are
given in Table 1

We have proceeded to a time convergence study by com-
puting the stress/strain response for two type of model.
The first model is a standard 2D finite element model with
quadratic fully integrated elements for the space domain
and a radial return method for the local time integration
of the constitutive equations (see for instance [51] for a
detailed versionof the radial returnmethod). The radial return
method is based on a first order implicit time approxima-
tion, for linear hardening laws the implicit resolution on a
time increment leads to a linear problem whereas for nonlin-
ear hardening laws local newton resolutions are needed. The
time increment is controlled in the global resolution, each
increment is solved by a standard newton scheme and we
obtain a global/local scheme (global=equilibrium equation,
local=evolutions equations).

The second model is an IGA time-discontinuous space-
time model. The NURBS elements are also fully integrated
in space and time and we consider approximations of order 2
and 3 in space and time. The time increment is here the size

of the ST-IGA element in time. We can also play with the
order of approximation and the continuity order (i.e. between
NURBS elements) in space and time. Our implementation
of the IGA does not allow us to consider different continuity
orders or approximation orders for space and time separately
for one field. Therefore we propose to compare the results of
3 cases. For the first one, every field (i.e. u, ε p, α) is approxi-
matedwith the same functions. For the second one, the plastic
strain and the hardening parameters are approximated with
lower degree functions (in space and time) than the kinematic
field, we denote this by ST-IGA LD in the following figures.
For the third one, the plastic strain and the hardening param-
eters are approximated with lower continuity functions (in
space and time), we denote this by ST-IGA LC in the follow-
ing figures.

For all models, we compute a stress error integrated over
time. This error is defined by the following formula

e =
∫ T=0.25

t=0

(
σ (t) − σ re f (t)

)2
dt (102)

where σ re f (t) is a reference solution computed on a material
point with the help of Mathematica (function NDSolve with
a maximum time increment of 1e − 5 s).

The results are given on Fig. 1. It can seen that the con-
vergence of the FE model with the return radial scheme is
of order 1 as expected. For the time discontinuous ST-IGA
models we obtain optimal convergence rate of order 2 and
3 in the case where the fields have the same approximations
functions and in the case for which a lower continuity for ε p

and α is used in the approximation (compare to u). However,
it can be seen that in the case of a lower degree for ε p and α

(compare to u) we are limited by the lowest degree in time
and the results are similar to the FE model.

It can be remarked that for p = 3 in the case of the ST-IGA
model the convergence is non uniform (so as for the finite
element model for the larger time increments). The interest
of the ST-IGA approach can be clearly seen on this figure:
for an error of e = 1.e − 2 there is one order of magnitude
for the time increment size between the ST-IGA model and
the standard FEmodel (the order of convergence is better but
the initial error is also lower).

Figure 2 illustrate the stress/strain responses obtainedwith
the twomodels. It can be seen that the ST-IGAmodel exhibits
an oscillating behavior in time after the yield stress which is
particularly pronounced for the model with a lower degree
in the approximation functions. These oscillations disap-
pears far from the yield stress except for the lower order
model. Obviously, for smaller time increments this oscil-
lations become negligible and all models converge to the
reference solution.
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Fig. 1 L2 error on the stress response computed from a reference
obtained with Mathematica

Fig. 2 Stress/strain responses for the FE model and the ST-IGA

Fig. 3 Plate extension: boundary conditions and dimensions

Table 2 Material parameters for softening viscoplasticity

μ (MPa) k (MPa) σ0 (MPa) km (MPa) η (MPa.s)

121153 175000 210 -221 4

5.2 Shear localization in tension in the case of
softening viscoplasticity

We now investigate a non homogeneous test case. The test
corresponds to the extension of a rectangular 2D plate. The
plate is 4mm long and 2mm large and we assume a plane
strain hypothesis. The extension is imposed with a displace-
ment of 0.28mm at a constant rate of 0.6mm/s on one side
of the plate, the opposite side is clamped. For the hardening,
we assume a linear hardening but with a softening behavior
(i.e. km < 0). The expected solution for this test is a localized
cross shear plastic band started from the center. To correctly
track this solution the yield stress of the element located in
the center of the plate is reduced by 5%. Due to the symme-
try conditions only a quarter of the plate is considered. The
Fig. 3 shows the boundary conditions considered for this test.
The material parameters used in this test are given in Table
2, the parameter km is negative so as to obtain a softening
hardening behavior.

As in the previous example, we propose here to compare
the results of two type of models: time discontinuous ST-
IGAmodels and standard IGAmodels with local integration
of the viscoplastic flow rule with the radial return method.
For the ST-IGA models we use as previously lower order
of continuity (or lower degree) approximations for ε p and
α. Figure4 shows the global force/displacement response of
the 2D plate in extension. As expected, it can be seen that
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Table 3 Value of the force for a
displacement of 0.044mm and
for different time increments

dt(s) Standard IGA p=2 (800 elements) ST-IGA p=2 LC (800 ST elements)

1.e-2 211.24N 211.98N

1.e-3 212.44N 211.94N

6.e-4 212.49N 211.91N

no mesh convergence (in space) is observed due to the fact
that the localization of the shear band is directly related to
the mesh size. It can be also remarked that ST-IGA and stan-
dard IGA models give very similar global results. The Table
3 gives a more detailed picture for the time convergence. The
table report the value of the force for the maximum displace-
ment and for three time increment. It can be seen that, as in
the previous example, ST-IGA has a faster rate of conver-
gence in time. ST-IGA and standard IGA do not converge
exactly to the same value this is certainly due to the fact that
the model are not strictly equivalent because we have a con-
tinuous field approximation for ε p and α in ST-IGA which
is not the case in the standard IGA model (where ε p and
α are only computed locally at each Gauss points and not
approximated continuously over elements).

In the previous examplewe have seen that the convergence
of the ST-IGA models is not optimal when the fields ε p, α

are approximated with functions of lower order than u (ST-
IGA LD) but it looks similar when we compare models with
the same approximation functions or with lower continuity
functions with similar degree for ε p, α (ST-IGA LC). In this
test, Fig. 5 clearly shows that only ST-IGA LC models can
obtain the expected response. For the other two possibilities
we see that we obtain unstable response with a drastic reduc-

Fig. 4 Force/displacement response for the plate extension for differ-
ent mesh sizes (for space), the initial time increment is identical for all
models: dt0 = 1.e−3 s (the time increment can be reduced or enlarged
automatically during the iterations depending on convergence indica-
tors)

Fig. 5 Force/displacement responses for the plate extension with ST-
IGA for different field approximations. LC=lower continuity for ε p, α,
LD=lower degree for ε p, α comparatively to u

tion for the step time. This result emphasis that controlling
the continuity of the approximation with NURBS is of major
importance in this type of multi-fields problems.

Figures 6 and 7 show that the expected localized shear
band is obtained with the ST-IGA LCmodel. Using the same
mesh size for the space discretization, the shear band is very
similar with ST-IGA compared to the standard IGA model
with radial return integration for the viscoplastic evolution.

5.3 Homogeneous extension in the case of
nonlinear viscosity

In a similar way that was done in Sect. 5.1, we investigate the
case of an homogeneous extension. As previously we impose
a time dependent displacement on one side of a unit square
and symmetry boundary conditions on two other sides such
as to obtain an homogeneous strain. The applied displace-
ment is piecewise linear with u(t) = {0.8t/0.0625, if t ≤
0.0625; 0.8 − 0.8(t − 0.0625)/0.0625, if 0.0625 < t ≤
0.125} such as to obtain a loading and unloading. The mate-
rial parameter are given in Table 4.

We investigate the time convergence with the comparison
of two models. The first one is a standard 2D finite element
model with quadratic Lagrange elements (with full gauss
integration) for displacement and linear discontinuous inter-
polation (between element) for the pressure. Pressure nodes
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(a) IGA p2 radial return (Gauss point values, undeformed
configuration)

(b) ST-IGA p2 LC (Control points values, undeformed con-
figuration)

Fig. 6 Field α for u = 0.045mm with a similar mesh of 800 elements for both models

(a) IGA p2 radial return (deformed configuration) (b) ST-IGA p2 LC (deformed configuration)

Fig. 7 Norm of the displacement field u for u = 0.045mm with a similar mesh of 800 elements for both models
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Table 4 Material parameters for nonlinear viscosity

c10 (MPa) c01 (MPa) k (MPa) μ (MPa) η (MPa.s)

0.02 0.16 1000 0.26 0.01

are therefore condensed in the element formulation. The vis-
cosity is solved locally, at Gauss points, with the help of a
backward Euler scheme for the time integration and a local
Newton scheme to resolve the nonlinear system that results
from the time integration. The second model is a ST-IGA
model with the time discontinuous formulation. The kine-
matic field and the viscous strain are approximated with the
same NURBS functions of maximum continuity degree. For
the pressure field we are limited with the stability condi-
tion, we adopt the same strategy as proposed in [52]. The
pressure field is approximated on a coarser grid (for space
only) than the other fields but with NURBS functions of the
same degree and same continuity than the kinematic field.
In practice we do not observe any stability problems due to
the incompressibility. Compare to the case of viscoplastic-
ity we do not investigate here the cases of lower degree or
lower continuity for the viscosity (compare to the kinematic
field). From numerical tests we do not observe any interest
of using such approximations. To track the time convergence
we adopt here a slightly different error. We define a stress
error such that:

e = |σ (t = 0.125) − σ re f (t = 0.125)| (103)

where σ re f (t) is a reference solution obtained with the help
of NDSolve on Mathematica assuming a perfectly homoge-
neous strain/stress field (with a maximum time increment of
1e − 5 s).

The results are given in Fig. 8. As in the case of viscoplas-
ticity we observe that the rate of (time) convergence are,
at least locally, obtained as expected theoretically. ST-IGA
models converge faster but are also more precise. It has to
be noted that FE models with a time increment larger than
0.2 diverge systematically which is not the case of ST-IGA
models. As in Fig. 1, one can also observe that the conver-
gence is not uniform for ST-IGA model of order 3. We do
not precisely know why, one possibility (if feasible) could
be to investigate separately in the error the contribution of
the continuity terms and the temporal integration inside the
space-time element.

In Fig. 9, we have plotted the strain/stress responses
obtained with the different models. It can be observed that
the nonlinear stress/strain curves are perfectly captured bySt-
IGA models. Compare to viscoplasticity we do not observe
oscillations in the responses.

Fig. 8 Stress error upon time increment for nonlinear viscosity

Fig. 9 Stress/strain response for the homogeneous tension test with
nonlinear viscosity

5.4 Relaxation test on a plate with a hole in the case
of nonlinear viscosity

We consider the case of a square plate of 2mmx2mm
with a circular hole of 0.38mm radius in the center of the
plate. The plate is clamped on one side and subjected to an
extension on the opposite side imposed with a rigid displace-
ment. The displacement is defined such that (relaxation):
u(t) = {0.6t/0.1, if t ≤ 0.1; 0.6 if t > 0.1}. Due to sym-
metry conditions we consider only one quarter of the plate.
The geometry and the boundary condition are schematized
on Fig. 10. The same material parameters as in the previ-
ous example (see Table 4) are used. The test is in plane
strain. The mesh for ST-IGA is obtained from a single patch
representation with NURBS functions. The space mesh is
shown at Fig. 11. The refinement is homogeneous and the
space-time mesh is obtained as a simple extrusion operation
of the space mesh. For this case the mesh building lead to
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Fig. 10 Plate with hole relaxation test: boundary conditions and dimen-
sions

Fig. 11 Space mesh for the plate with hole relaxation test

degenerated elements at the top right corner and result in
numerical artifacts when computing gradients. However for
the test considered, this could be considered as unimportant
and the solutions obtained with FE elements are very similar
elsewhere excepted in the top right corner (non degenerated
meshes are used for FE).

In this test we propose to investigate the impact of the
numerical parameter α (perturbation parameter to impose
det(C̄v) = 1). We consider two models. The first one is
a standard 2D FE model (as in the previous section) with
a mixed formulation (quadratic interpolation for displace-
ment and linear and discontinuous between elements for
the pressure). In this model the viscosity is integrated with
a backward euler scheme and no particular constraints are
defined on det(C̄v) for the time integration. The second
model is a ST-IGAmodel of order 2 (with the time discontin-
uous formulation and a coarser mesh for the pressure field to
ensure stability). For the ST-IGAmodel we consider the case

Fig. 12 Force/time responses for the relaxation test for different values
of the perturbation parameter α

α = 0MPa (similar to FE model: no restriction on det(C̄v))
and α > 0MPa.

On Fig. 12 we show the global relaxation of the plate
for the different models (we plot the resulting force upon
time). The mesh size for the space domain is similar for
every models (the average mesh size is 0.022mm), for the
FE model the initial time increment is �t = 1e − 3 s and
for the ST-IGA the initial mesh size in time is �t = 3.3e −
3 s (both the mesh size in time for ST-IGA and the time
increment for FE can evolve depending on convergence). It
can be first remarked that FE model and ST-IGA with α = 0
are perfectly in accordance. These models show pronounced
nonlinear behavior at the end of the first step of loading and
a very short stress relaxation. This nonlinear behavior is not
observed when only the hyperelastic part of the model is
used, indicating that a non expected behavior is obtained.
A contrario, when α is not null we obtain a more expected
behavior with a more progressive relaxation. It can also be
remarked that α = 1MPa and α = 10MPa lead to the same
response.

As suspected on the global response, the difference in
terms of relaxation is due to the determinant of the viscous
Cauchy-Green strain C̄v . Figure13 illustrate the difference
between the results obtainedwith amodelwithout any partic-
ular restriction on the determinant (see Fig. 13a), after some
iterations of integration the determinant can go far from its
expected value of 1. However, incorporating in the formula-
tion a penalization term can control the value of determinant
(see Fig. 13b) with only small variations from the incom-
pressible case. This result illustrates another advantage of
space time methods: space-time formulation can incorporate
specific penalization or stabilization terms in a straightfor-
ward way (in space and time).
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(a) FE backward-euler (undeformed configuration),
isoscale goes from 0.1 (blue) to 1.0 (red). Very similar
results are obtained for the ST-IGA model with α = 0.

(b) ST-IGA α = 1 (undeformed configuration), isoscale
goes from 0.9 (blue) to 1.03 (red). The localized value at
the top right corner is a numerical artifact due to the mesh

Fig. 13 Determinant of the viscous Cauchy-Green strain, det(C̄v), at
the endof the relaxation test on a platewith a hole (nonlinear viscoelastic
behavior)

6 Conclusions

We proposed to investigate the interest of using space-time
methods for nonlinear and time-dependent behaviors, formu-
lated as standard generalized materials. This framework has
enabled us to obtain space-time formulations that derive from
the stationarity conditions of a space-time potential. This
space-time potential exploits the convex structure behind
the definition of a pseudo potential of dissipation. More-
over, by also exploiting the duality between thermodynamics
forces and fluxes we have obtained formulations with natu-
ral primary variables (as for viscoplasticity for instance). The

declination of time continuous or time discontinuous forms
poses no major difficulties and can be done by introducing
a modified potential that accounts of strain energy jumps
at the time interfaces. Imposing the time continuity of the
strain energy in the weak sense in the space-time potential
leads in a straightforward manner to appropriate time conti-
nuity terms (with appropriate dimension and without adding
any specific numerical parameter) at the interface even for
multi-fields formulation. Numerical validated this approach
by comparing space time results to standard finite-elements
formulations. We can conclude from this study the following
points. Firstly, space-time IGA allowed to obtain optimal rate
of convergence. Therefore increasing the degree of interpola-
tion of the space-time basis leads to higher order integration
scheme without any supplementary effort of development.
Secondly, the space-time formalisms have made it possible
to introduce specific and supplementary constraints into the
time integration. For instance in the case of nonlinear incom-
pressible viscositywewere able to guaranty that the isochoric
viscoelastic strain remain isochoric during the time integra-
tion. Thirdly, the isogeometric framework allows us to play
on the order of continuity which help us to develop optimum
approximations for the internal variables especially in the
case of viscoplasticity. We were able to maintain the optimal
order of convergence without obtaining instabilities due to
the strain localization. These advantages open theway to new
opportunities. Obviously, we can deal with more complex
material models (with more internal variables). We can also
extend the approach in a dynamics context and/or in a multi-
physics framework without too many difficulties (at least
from the point of viewof the formulation, not from the numer-
ical one). In this paper, we do not investigate the numerical
performances as we think that many specific improvements
must be taken into account with space-timemethods before a
comparison with standard finite-element makes sense (such
as optimization of the integration in time, space-time paral-
lelization, etc).
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