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Abstract
The Smoothed Particle Finite ElementMethod (SPFEM) has gained popularity as an effective numerical method formodelling
geotechnical problems involving large deformations. To promote the research and application of SPFEM in geotechnical engi-
neering, we present ESPFEM2D, an open-source two-dimensional SPFEM solver developed using MATLAB. ESPFEM2D
discretizes the problem domain into computable particle clouds and generates the finite element mesh using Delaunay triangu-
lation and the α-shape technique to resolve mesh distortion issues. Additionally, it incorporates a nodal integration technique
based on strain smoothing, effectively eliminating defects associated with the state variable mapping after remeshing. Fur-
thermore, the solver adopts a simple yet robust approach to prevent the rank-deficiency problem due to under-integration by
using only nodes as integration points. The Drucker-Prager model is adopted to describe the soil’s constitutive behavior as a
demonstration. Implemented in MATLAB, this open-source solver ensures easy accessibility and readability for researchers
interested in utilizing SPFEM. ESPFEM2D can be easily extended and effectively coupled with other existing codes, enabling
its application to simulate a wide range of large geomechanical deformation problems. Through rigorous validation using
four numerical examples, namely the oscillation of an elastic cantilever beam, non-cohesive soil collapse, cohesive soil col-
lapse, and slope stability analysis, the accuracy, effectiveness and stability of this open-source solver have been thoroughly
confirmed.

Keywords PFEM · Nodal integration · Large deformation · Remeshing · Open-source · Geotechnical engineering

1 Introduction

Numerous geotechnical engineering topics involve large
deformations, such as landslides, avalanches, debris flows,
cone penetration tests, pile installation, et al. With the
development of geotechnical numerical analysis, the large
deformation simulation has become increasingly popular in
addressing these issues, garnering significant research atten-
tion in recent years. Effective numerical methods for large
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deformation analysis must accurately capture the geometric
changes in surface profiles and soil layers. However, tradi-
tional mesh-based numerical methods (e.g., finite element
method (FEM), finite difference method (FDM)) are prone
to mesh distortion during large deformation. Even if only
a few meshes are severely distorted, the calculation will be
interrupted.

To address the issue of mesh distortion in traditional FEM
during large deformation, numerous alternative methods
have been proposed. Some representative methods include
Arbitrary Lagrangian–Eulerian (ALE), Coupled Eulerian-
Lagrangian (CEL) and Remeshing and Interpolation Tech-
nique with Small Strain (RITSS). In ALE [1, 2], an exces-
sively deformed mesh is substituted by another one with
regularly-shaped elements and the state variables aremapped
from the old mesh to the new one. This approach has been
called ALE because the transfer of state variables from one
mesh to another is perceived as a convection process similar
to that in classical Eulerian analysis. CEL, which is a method
very similar to ALE, has gained popularity in geotechnical
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analysis, especially due to its presence in the commercial
codes Abaqus/Explicit [3, 4] and LS-DYNA[5]. The basis of
CEL is that there are two domains, one Eulerian domain and
one Lagrangian domain, that interact with each other via a
suitable contact formulation.RITSSwasfirst proposed byHu
andRandolph [6], which is based on implicit time integration
for Lagrangian computation with mesh re-profiling tech-
niques and state variable interpolation techniques to solve
the mesh distortion problem.

Another class of numerical methods for solving large
deformation problems is the particle-based methods, which
discretize the geotechnical body into a series of particles
that can freely move within the computational domain,
thereby overcoming the mesh distortion problem encoun-
tered by traditional mesh-based methods during large defor-
mation. Currently, the commonly used particle-based meth-
ods include Smoothed ParticleHydrodynamics (SPH),Mate-
rial Point Method (MPM), and Particle Finite Element
Method (PFEM). Initially proposed for solving astrophys-
ical problems [7], SPH has found widespread applications in
solving geotechnical problems [8–10]. Two key difficulties
with SPH for solid modelling are the imposing of essen-
tial boundary conditions and the so-called tensile instability.
MPM combines the advantages of particle-based and mesh-
based methods by discretizing the continuum into material
points. It preserves the state variable information on these
material pointswhilemaintaining afixedbackgroundmesh to
solve the governingmomentumequations [11–14].However,
MPM is prone to computational inaccuracies, particularly
stress oscillations and inaccuracies [15]. PFEM was initially
proposed by Oñate et al. [16–18] with the primary goal of
solving fluid dynamics and fluid–structure interaction prob-
lems. In recent years, it has gained significant popularity for
solid large deformation analysis [19–22]. PFEM treats the
nodes in the FEM mesh as particles, and addresses mesh
distortion during large deformation through frequent mesh
re-discretization and state variable mapping. The updated
Lagrangian FEM is utilized for solving the governing equa-
tion.

Among the three particle-based methods, PFEM inher-
its the sound theoretical basis of FEM while maintaining
the flexibility of the particle-based method, and thus has
been widely used in geotechnical large deformation anal-
ysis. However, PFEM performs numerical integration on
Gaussian points while storing state variable information
on particles. This necessitates frequent information transfer
between Gaussian points and particles (i.e. nodes), adding
complexity and introducing errors. To overcome this defect,
a nodal integration technique based on strain smoothing has
been introduced by the authors to improve PFEM, leading
to a novel framework, known as Smooth Particle Finite Ele-
ment Method (SPFEM) [23–27]. With the nodal integration
technique, all state variables are calculated and stored on

particles. This approach simplifies the computational proce-
dure, eliminates errors causedbymapping, andhelpsmitigate
volume-locking issues.

To this end, it is important for geotechnical researchers
who are already utilizing the aforementioned methods, as
well as for new users looking to adopt them, to have access
to an efficient open-source solver. ABAQUS software [3, 4]
and LS-DYNA [5] provide options for implementing CEL,
ALE, and SPH methods. However, the underlying codes are
hidden from users, which hinders the promotion of applica-
tions and in-depth research on numerical methods. In terms
of SPH, many open-source codes are available, such as
GADGET [28, 29], GIZMO [30, 31], SPHysics [32, 33],
DualSPHyiscs [34, 35], and GPU SPH [36], et al. SPH open-
source solvers specific to geotechnical problems have been
developed as well, such as the 3D GPU-accelerated SPH
open-source solver LOQUAT proposed by Peng et al. [37].
For open-source solvers of MPM, many codes are available,
such as NairnMPM, Uintah and Cb-Geo [38]. Uintah is a
massively parallel, multi-physics process simulation plat-
form that implements MPM and can be used to simulate the
behavior of solid materials [39]. The open-source solvers of
PFEM are few in comparison with SPH and MPM. Kratos,
which is an object-oriented framework of FEM, has imple-
mented PFEM by linking with an external mesh generation
library [40]. Guo and Yang [38] proposed NSPFEM2D, a
2D SPFEM open-source solver based on C++ and Python.
However, the hybrid programming of C++ and Python is
less readable and less easy to use for mechanical researchers
in comparison to the MATLAB language. Herein, this paper
introduces aMATLAB-based open-source solver for SPFEM
named ESPFEM2D, aiming to enable interested researchers
tomore easily grasp themethod and promote the research and
application of SPFEM.ESPFEM2Demploys an explicit time
integration scheme and utilizes the Drucker-Prager model to
describe the soil constitutive behavior as a demonstration.
It can be easily extended and effectively coupled with other
existing codes to simulate various geotechnical large defor-
mation problems.

The following sections are organized as follows. Sec-
tion2 provides an introduction to the fundamental theory of
explicit SPFEM. Section3 elaborates on the implementation
details of the ESPFEM2D code. In Sect. 4, the open-source
solver is demonstrated through application examples, includ-
ing simulations of the oscillation of an elastic cantilever
beam, non-cohesive soil collapse, cohesive soil collapse, and
slope stability analysis. These examples serve to verify the
accuracy, validity, and robustness of the solver. Finally, a
summary is presented in Sect. 5.
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2 Theory of ESPFEM2D

2.1 Governing equations

The explicit SPFEM [25, 27] employs the same governing
equations with the FEM. The linear momentum conserva-
tion of the continuum in the computational domain can be
represented as

ρa = ∇ · σ + ρb (1)

where ρ represents the material density, a denotes the
acceleration, σ represents the Cauchy stress tensor, and b
represents the specific body density acting on the object.
By considering the principle of virtual displacement and the
divergence theorem, theweak formof the governing equation
can be expressed as

∫
�

δu · ρad� =
∫
S
δu · τdS

+
∫

�

δu · ρbd� −
∫

�

∇δu : σd� (2)

where u represents the displacement vector, � denotes the
configuration domain,S represents the boundary domain, and
τ is the prescribed traction force.

2.2 Spatial discretization

The SPFEM first discretizes the problem domain into a par-
ticle cloud and then generates a finite element mesh by
combining Delaunay triangulation and α-shape techniques
[41]. Furthermore, the nodal integration technique based on
strain smoothing [42, 43] is used to solve Eq. (2).

As shown in Fig. 1, the problem domain � is divided
into Nn strain-smoothed sub-cells associated with particle
such that � = ∑Nn

k=1�
k and �i ⋂ � j = φ, i �= j where

φ denotes the empty set. Each smoothing sub-cell associ-
ated with particle k is created by sequentially connecting
the midpoints of the edges of the triangular elements around
particle k to their centroids. Thus, each triangular element is
divided into three quadrilateral subdomains. Afterward, the
strain tensor ε̃k associated with particle k is obtained as

ε̃k =
Nk∑
I=1

B̃ I (xk) uI (3)

where I is the particle number, xk is the coordinate of particle
k, Nk is the number of particles connected to particle k, uI is
the displacement of particle I , and B̃ is the smoothed strain
matrix.

Domain
Ω

Boundary  
S

: Field particle : Central point of 3-nodes element

: Mid-edge-point

Particle
k

Fig. 1 Smoothing sub-cells associated with particles

For triangular elements, due to the constant element strain,
the smooth strain matrix can be simply calculated as follows

B̃ I (xk) = 1

Ak

Nk
e∑

j=1

1

3
A j
e B j (4)

where Nk
e is the number of elements around particle k, j is

the element number, A j
e and B j are respectively the area and

strain gradient matrix of the jth triangular element around
particle k, and Ak is the area of smoothing sub-cell associ-
ated with particle k which can be calculated by the following
equation:

Ak =
∫

�k
d� = 1

3

Nk
e∑

j=1

A j
e (5)

Using the standard Galerkin method and performing the
node-based discretization, the global discretized formulation
of the weak form Eq. (2) can be expressed as

Ma = Fext − Fint (6)

in which

Fext =
Nn∑
k=1

∫
S
NkτdS +

Nn∑
k=1

ρbk Ak (7)

Fint =
Nn∑
k=1

B̃kσ k Ak (8)

123



470 Computational Mechanics (2024) 74:467–484

M =
Nn∑
k=1

ρAk (9)

where Fext represents the external force, Fint denotes the
internal force, and M represents the diagonal mass matrix.

2.3 Temporal discretization

The present SPFEM utilizes the explicit time integration
scheme. The leapfrog approach is implemented, which is
a second-order accuracy method [25]. Equation (10) is used
to update the acceleration of particles at the n-th step, fol-
lowed by Eqs. (11) and (12) applied to update the velocity
and position of particles, i.e.

an = M−1
(
Fext − Fint

)
(10)

vn+ 1
2 = vn− 1

2 + �tan (11)

un+1 = un + �tvn+ 1
2 (12)

In addition, to simulate static problems with the dynamic
relaxation method, a local damping force term is added to
the system, which is calculated as

Fξ = −ξ ·
∣∣∣(Fext − Fint )

∣∣∣ sign(vn− 1
2 ) (13)

where ξ is the damping constant.

2.4 Constitutive model

Toobtain a smooth yield surface that approximates the classic
Mohr-Coulomb surface for numerical convenience, Drucker-
Prager introduced the following yielding criterion,

f = α I1 + √
J2 − k (14)

where I1 represents the first invariant of the stress tensor, J2
denotes the second invariant of the deviatoric stress tensor, α
and k represent the material constants, respectively. To align
with the Mohr-Coulomb yield surface, three schemes can be
adopted. In the first two schemes, we use

α = 2sinϕ√
3 (3∓sinϕ)

, k = 6ccosϕ√
3 (3∓sinϕ)

(15)

where c represents the cohesion and ϕ denotes the friction
angle. The plus sign inEq. (15) represents theDrucker-Prager
yield surface passing through the inner apexes of the Mohr-
Coulomb yield surface in the π -plane, while the minus sign
represents the outer apexes. In the third scheme, we use

α = tanϕ√
9 + 12tan2ϕ

, k = 3c√
9 + 12tan2ϕ

(16)

which indicates that theDrucker–Prager yield surface inscribes
the Mohr-Coulomb yield surface in the π -plane.

The same plastic potential function as the yield function
is used, which is given by

g = √
J2 + α� I1 (17)

where α� represents the dilatancy coefficient, which is asso-
ciated with the ratio of plastic volume change to plastic shear
strain.

The classic return-mapping algorithm is used to imple-
ment stress point integration. Although more complicated
soil constitutive models can be used, we use the Drucker-
Prager elastic perfectly-plastic model for demonstration
purposes. The extension to other constitutive models for the
ESPFEM2D solver is straightforward.

2.5 Rigid boundary contact

A rigid boundary contact algorithm is employed to account
for the soil interaction with a rigid boundary. As shown
in Fig. 2, the interaction between soil particles and a rigid
boundary must satisfy the following contact constraints, also
known as Signorini conditions [44]:

gn ≥ 0, σn ≥ 0, σngn = 0
|σt | − μσn ≤ 0

(18)

where gn represents the gap between the particle and the
boundary, σn denotes the normal contact pressure, σt repre-
sents the tangential stress, and μ is the friction coefficient.

A prediction-correction algorithm is employed to ensure
the contact constraint. First, the positions and velocities of
all particles are predicted assuming that no contact occurs.
Then, contact is activatedwhen the gap between particles and
line segments is less than zero. It is assumed that the normal
contact force can completely suppress the normal penetration
velocity of the particles during the time step, resulting in:

f nI = −mI v
n
I

�t
en (19)

where mI represents the mass of particle I , vnI (= v I · en)
denotes the normal projection of the relative velocity between
the particle and the rigid boundary, which is negative upon
contact, �t is the time step, and en represents the normal
vector of the rigid boundary. Similarly, the tangential contact
force f tI is calculated by assuming viscous conditions as
follows:

f tI = −mI
(
v I − vnI · en

)
�t

(20)
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r

z

soil particles

wall particles

wall

n
σt

σn
gn

Fig. 2 The contact between a deformable body and a rigid
surface

The tangential force is also subject to Coulomb friction,
which sets a limit

∣∣ f tI
∣∣ ≤ μ

∣∣ f nI
∣∣ to the magnitude of the

tangential force, where μ is the friction coefficient. It should
be pointed out that the current prediction-correction method
does not involve additional penalty parameters and thus does
not affect the time step.

After determining the contact force, the corrected velocity
of the particle is calculated as follows:

v̄ I = v I + �t
f cn + f ct
m I

(21)

where v I represents the predicted velocity of particle I .

2.6 Remeshing

The mesh reconstruction technique is a crucial aspect of
SPFEM to prevent mesh distortion during large deforma-
tions. In SPFEM, the mesh reconstruction technique com-
bines the Delaunay triangulation technique with the α-shape
algorithm, forming a two-stepmesh reconstruction algorithm
[45]. First, the Delaunay triangulation is performed based on
the particle cloud to generate a convex domain and recon-
struct the triangular mesh. Then, the α-shape algorithm is
employed to calculate the radius of the sphere for each trian-
gular element and delete the triangular elements with a radius
greater than αh where α is a predefined parameter generally
ranging from 1.2∼1.6 and h is the characteristic spacing of
particles. As a result, the remaining triangular elements cor-
respond to the computational domain [16].

In SPFEM, due to the nodal integration technique based
on strain smoothing, more distorted meshes can be utilized
without significant loss of accuracy. Thus, the requirements

for mesh quality are not as stringent as in the original PFEM.
However, a mesh smoothing technique is still necessary to
enhance the mesh quality and to increase the critical time
step. Specifically, the Laplacian smoothing technique [46,
47] is utilized when a few particles are too close to their adja-
cent particles. Although other mesh smoothing techniques
(e.g. Meduri et al. [48], Vartziotis et al. [49]) can also be
employed, we use the Laplacian smoothing technique due to
its simplicity and high efficiency.

2.7 Rank-deficiency treatment

Despite the success of the nodal integration technique in
many applications, in some cases, the results may be not
reliable due to spurious low-energy instability. This instabil-
ity associated with the under-integrating using only nodes
is also known as rank-deficiency or rank-instability in the
literature [23, 50–57].

To circumvent this instability associated with nodal
integration, we proposed a simple yet robust coping con-
trol approach [58], which has also been implemented in
ESPFEM2D. The key idea of the approach is to ensure that
all the particles in the smoothing element follow a single lin-
ear velocity field by adding correction forces. The correction
force on particle i due to all neighbors j in the smoothing cell
is computed as

f i j =
Nk∑
I=1

β

2
∥∥∥xti j

∥∥∥

⎛
⎝Ei�i

δii j∥∥∥xti j
∥∥∥

+ E j� j
δ
j
i j∥∥∥xti j

∥∥∥

⎞
⎠ nt+�t

i j

(22)

where β represents the artificial control parameter ranging

from 0.1 to 1.0,
∥∥∥xti j

∥∥∥ represents the actual distance vector

of the deformed coordinates at time t, Ei and E j are Young’s
modulus of smoothing cells i and j respectively, �i and � j

represent the area of smoothing cells i and j respectively,
δii j represents the projected length of the error vector, n

t+�t
i j

represents the unit normal of distance vector xt+�t
i j which

can be calculated as nt+�t
i j = xt+�t

i j /

∥∥∥xti j
∥∥∥. Readers can

refer to Yuan et al. [58] for a detailed description.

3 Description of the open-source solver
ESPFEM2D

3.1 Overview

The primary procedures of PFEM for a typical calculation
step is shown in Fig. 3. First, we discretize the region into
a set of nodes/particles. Then, we obtain the FEM mesh by
consequently using theDelaunay triangulation technique and
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Fig. 3 Primary procedures
of PFEM for a typical
calculation step

the α-shape algorithm. With the FEM mesh generated, we
solve the governing equation using the incremental FEM.
The nodal coordinates of the FEM mesh are then updated
according to the incremental displacement results. If theFEM
mesh is too distorted, we discard the old mesh and generate
a new one based on the set of nodes/particles.

The code workflow diagram of the open-source solver
ESPFEM2D is shown in Fig. 4. All the 10 steps in the
workflow diagram are implemented in the form ofMATLAB
functions except that the MATLAB script named SPFEM.m
is used as the main program. The MATLAB function names
corresponding to all the 10 computational steps are shown in
Fig. 5.

The installation of the ESPFEM2D can be done by sim-
ply adding a path of \ESPFEM2D directory to the MATLAB
search path. The practical usage of ESPFEM2D can be sim-
ply realized by running themainMATLAB scriptSPFEM.m.

To facilitate the users, we provide 4 demo examples, i.e.,
all the validation and verification examples in Sect. 4. A total
of 7 simulations are available for these 4 examples, as two
simulation stages are required for the last 3 examples. Each
simulation has a separate ID.By changing the variableiEX in
SPFEM.m, the simulation ID is selected and the correspond-
ing pre-processing for the simulation is implemented in the
function input_data.m. These demonstration examples
can be used as the reference for the ESPFEM2D users to
create new geotechnical large deformation simulation appli-
cations.

3.2 The ESPFEM2D repository

The MATLAB open-source solver ESPFEM2D is freely
available from the repository: https://github.com/WeiZhang
-2023/ESPFEM2D. The structure of the repository, illus-
trated in Fig. 6, is described in this section.

Step 10: Output the mesh results and the monitoring results 

Step 1: Set up the problem and discretize the region into a set of nodes/ 
particles

Step 2: Construct the finite element mesh using the Delaunay trian-
gulation technique and identify the computational domain boundary
using the α-shape technique.

Step 3: Prepare for the leapfrog time integration

Step 5: Obtain the basic information of elements and particles

Step 7: Calculate rank-deficiency correction forces using Eq. (22)

Step 9: Treatment of rigid boundary contact using Eqs. (19)~(21)

Step 8: Perform the leapfrog time integration to update the accelera-
tions, velocities and positions of particles using Eqs. (10)~(12)

Step 4: Reconstruct the finite element mesh with the Delaunay tria-
ngulation technique and the α-shape technique (if necessary)

Step 6: Update nodal stresses through constitutive model integrati-
on, and then calculate the nodal internal forces using Eq. (8)

Computational steps:

Fig. 4 Code workflow diagram of the open-source solver
ESPFEM2D

The directory ESPFEM2D comprises four subdirectories
of the comprehensive open-source solver ESPFEM2D, and
the main script SPFEM.m, which can be executed to initiate
the simulation.
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Fig. 5 MATLAB function
names corresponding to all
the computational steps

element_data_prepare.m

node_data_prepare.m

force_rank_deficiency.m

time_integration.m

contact_wall.m

force_int.m constitutive_model.m
mat_model_elas.m

mat_model_DP.m DP_implicit.m

Step 2:

Step 3:

Step 4:

Step 6:

Step 7:

update_half_velocity.m

initializing.m
Delaunay triangulation

mesh_get_related_element_node.m

mesh_alpha_shape.m

mesh_remesh.m
mesh_quality.m

mesh_lap_smoothing.m

mesh_alpha_shape.m

mesh_get_related_element_node.m

Delaunay triangulation

Step 5:

Step 9:

Step 8:

input_data.mStep 1:

save_monitor_data.m

output_vtk.m
Step 10:

The directory comp contains the MATLAB functions
associated with the core computational procedure of the
explicit SPFEM, including Step 1, Step 10, and Steps 4∼9
in Fig. 4.

The directory constitutive_model contains the
MATLAB functions associated with the numerical imple-
mentation of constitutive models. The linear elastic consti-
tutive model and the Druker-Prager elastic perfect-plastic
model are available. New constitutive models can be imple-
mented by simply adding a new MATLAB function similar
to the MATLAB function mat_model_DP.m (see Fig. 5).

The directory mesh contains the MATLAB functions
associated with the mesh generation and remeshing, includ-
ing the Delaunay triangulation and α-shape techniques, the
calculation of element quality, the nodal integration tech-
nique based on strain smoothing, and the retrieval of related
particle and element data. It should be pointed out that in
PFEM, it is beneficial to add new nodes in those areas we are
interested in. However, we choose to use a simple yet robust
remeshing algorithm in the open-source code ESPFEM2D
for demonstration purposes. With the basic remeshing algo-
rithm mastered, the readers can realize complex remeshing
algorithms (including adding nodes, deleting nodes, mesh
optimization, Yuan et al. [59, 60]) by modifying the MAT-
LAB codes in the directory mesh.

The directoryexample includes theMATLAB functions
associated with the pre-processing for simulations. A MAT-
LAB function corresponds to a simulation, including the
particle distribution, the material model and parameters, the

definition of the boundary conditions, the initial condition
settings, and the monitoring and output settings.

The directory documentation contains a .pdf file
that provides a systematic tutorial on setting up a basic prob-
lem, along with explanations of code functions and variable
definitions.

The directory out_put is used to save computational
result files. .vtk files are created to save the field informa-
tion intermittently, while a .csv file is created to monitor
the evolution of the interested results for particular particles.

3.3 Variables

The primary variables in ESPFEM2D are introduced as fol-
lows:

• iEX: a separate ID of each simulation.
• nCoor: array of dimension par-> node_cnt×2 con-
taining the x - and y - coordinates of each node/ particle.

• eNode: array of dimension par-> element_cnt×3
containing three node/particle IDs corresponding to each
element.

• nMat: array of dimension par-> node_cnt×1 con-
taining the type of constitutive model for each node/par-
ticle.

• nAccel: array of dimension par-> node_cnt×2
containing the accelerations in the x - and y - directions
of each node/particle.

• nVel: array of dimension par-> node_cnt×2 con-
taining the velocities in the x - and y - directions of each
node/particle.
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Fig. 6 Structure of the
open-source solver
ESPEM2D repository

mesh_remesh.m, mesh_quality.m,
mesh_alpha_shape.m, mesh_get_related_element_node.m
mesh_lap_smoothing.m

initializing.m, update_half_velocity.m,
element_data_prepare.m, node_data_prepare.m,
force_int.m, force_rank_deficiency.m, 
time_integration.m, contact_wall.m, 
save_monitor_data.m, output_vtk.m

comp

mesh

example

ESPFEM2D

SPFEM.m

constitutive_model

documentation .pdf

out_put .csv .vtk+

input_data.m, ex_bar_gravity_vibration.m, 
ex_non_cohesive_soil_stage1.m, 
ex_non_cohesive_soil_stage2.m,
ex_cohesive_soil_stage1.m, ex_cohesive_soil_stage2.m, 
ex_slope_stage1.m, ex_slope_stage2.m 

constitutive_model.m, mat_model_elas.m,
mat_model_DP.m, DP_implicit.m

• nDisp: array of dimension par-> node_cnt×2 con-
taining the total displacements in the x - and y - directions
of each node/particle.

• nDdisp: array of dimension par-> node_cnt×2
containing the incremental displacements in the x - and
y - directions of each node/particle.

• nStress: array of dimension par-> node_cnt×4
containing the stresses of each node/particle.

• nPstrain_eq: array of dimension par
-> node_cnt×1 containing the equivalent plastic
strain of each node/particle.

• nBoundT: array of dimension par-> node_cnt×2
specifying the boundary condition type in the x - and y -
directions of each node/particle.

• nBoundV: array of dimension par-> node_cnt×2
containing the value of boundary conditions in the x -
and y - directions of each node/particle.

• nREN: array of dimension par-> node_cnt×1 con-
taining the number of elements around each node/parti-
cle.

• nREs: array of dimension par-> node_cnt×par->
MN containing the element IDs around each node/particle.

• nRNN: array of dimension par-> node_cnt×1 con-
taining the number of nodes/particles around each node/-
particle.

• nRNs: array of dimension par-> node_cnt × par-
> MN·3 containing the node/particle IDs around each
node/particle.

• nFrd: array of dimension par-> node_cnt×2 con-
taining the rank-deficiency correction forces in the x -
and y - direction for each node/particle.

• nFint: array of dimension par-> node_cnt×2 con-
taining the internal forces in the x - and y - directions of
each node/particle.

• eArea: array of dimension par-> element_cnt×1
containing the area of each element.

• eDNdx, eDNdy: array of dimension
par-> element_cnt×3containing thepartial deriva-
tives of the shape function concerning x andy for the three
nodes/particles corresponding to each element, respec-
tively.

• nArea: array of dimension par-> node_cnt×1 con-
taining the area of each strain smoothing cell associated
with node/particle.

• nDNdx, nDNdy: array of dimension par
-> element_cnt × par-> MN·3 containing the par-
tial derivatives of the shape function concerning x and y
for each node/particle, respectively.
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3.4 Functions

The primary functions in ESPFEM2D are summarized as
follows:

• input_data.m: set up a problem.
• initializing.m: prepare for the calculation process
of ESPFEM2D.

• mesh_alpha_shape.m: identify the computational
domain boundary using the α-shape technique (see
Sect. 2.6).

• mesh_get_related_element_node.m: get related
particle and element information (see Sect. 2.6).

• mesh_remesh.m: reconstruct the finite element mesh
(see Sect. 2.6).

• mesh_quality.m: get themeshquality (seeSect. 2.6).
• element_data_prepare.m: get element informa-
tion (see Sect. 2.2).

• node_data_prepare.m: get node/particle informa-
tion (see Sect. 2.2).

• mesh_lap_smoothing.m: performLaplacian smooth-
ing for the mesh (see Sect. 2.2).

• constitutive_model.m: select constitutive model
(see Sect. 2.4).

• mat_model_elas.m: implement the elasticity consti-
tutive model (see Sect. 2.4).

• mat_model_DP.m: implement theDrucker-Prager con-
stitutive model (see Sect. 2.4).

• force_int.m: calculate the nodal internal forces (see
Sect. 2.2).

• update_half_velocity.m: prepare for the leapfrog
time integration (see Sect. 2.3).

• force_rank_deficiency.m: calculate the rank-
deficiency correction forces (see Sect. 2.7).

• time_integration.m: perform time integration (see
Sect. 2.3).

• contact_wall.m: treatment of rigid boundary con-
tact (see Sect. 2.5).

• output_vtk.m: output the field results.
• save_monitor_data.m: output themonitoring results.

3.5 Main program

This section concentrates on the essential component of the
code, SPFEM.m, which orchestrates and executes all func-
tions required for simulation. Listing 1 presents the MAT-
LAB code snippet contained within SPFEM.m. The code
workflow diagram for the open-source solver ESPFEM2D
shown in Fig. 4 can be better understood by reading the codes
in SPFEM.m.

Listing 1:MATLAB code in SPFEM.m

1 %example input
2 iEX=1;
3 [par, monitor, nCoor,nMat,nAccel,nVel,nStress,

nBoundT,nBoundV]...
4 =input_data(iEX);
5 [par,eNode,nREN,nREs,nRNN,nRNs,nDisp,

nPstrain_eq,nF,nFrd]=initializing(par,nCoor);
6 par.ctime=0.;
7 par.istep=0;
8 %prepare for the leapfrog time integration
9 [nVel, nDisp, nCoor]=update_half_velocity(par,

nBoundT,nBoundV,nVel,nAccel,nDisp,nCoor
);

10 while (par.ctime < par.totaltime + 1.e−9)
11 %remeshing
12 if par.if_remesh==1
13 [par,nCoor,nMat,nBoundT,nBoundV,nREN,

nREs,nRNN,nRNs,nDisp,nVel,nStress,
nPstrain_eq,eNode]...

14 =mesh_remesh(par,nCoor,nMat,
nBoundT,nBoundV,nREN,nREs,
nRNN,nRNs,nDisp,nVel,nStress,
nPstrain_eq,eNode);

15 end
16 %obtain the basic information of elements and

nodes
17 [eArea,eDNdx,eDNdy]=element_data_prepare(

nCoor,par,eNode);
18 [nArea,nDNdx,nDNdy]=node_data_prepare(par

,nREN,nREs,nRNN,nRNs,eNode,eArea,
eDNdx,eDNdy);

19 %calculate the nodal internal forces
20 [nFint,nStress,nPstrain_eq,nF]=...
21 force_int(par,nRNN,nRNs,nArea,nMat,

nDNdx,nDNdy,nVel,nStress,
nPstrain_eq);

22 %rank deficiency treatment
23 if (par.rank_deficiency>1.e−6)
24 nFrd=force_rank_deficiency(par,nRNN,

nRNs,nMat,nArea,nCoor,nVel,nF);
25 end
26 %time integration
27 [nVel,nDisp,nCoor]=time_integration(par,nMat,

nArea,nBoundT,nBoundV,nVel,nDisp,
nCoor,nFint,nFrd);

28 %rigid boundary contact
29 if par.rigid_wall>0.5
30 [par,nVel,nDisp,nCoor] = contact_wall(par,

nCoor,nMat,nArea,nVel,nDisp);
31 end
32 par.ctime=par.ctime+par.dtime;
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33 par.istep=par.istep+1;
34 end

4 Verification and demonstration examples

To verify the accuracy, effectiveness, and stability of the
open-source solver ESPFEM2D, four numerical examples
are given in this section, i.e., the oscillation of an elastic
cantilever beam, non-cohesive soil collapse under gravity
loading, cohesive soil collapse, and the failure of Mohr-
Coulomb soil slope. All these examples verify the accuracy
and effectiveness of the ESPFEM2D. Moreover, with the
first example, we primarily aim to demonstrate the effective-
ness of the rank-deficiency treatment technique to maintain
numerical stability. Meanwhile, we compare the computa-
tional efficiency between the ESPFEM2D and an existing
SPFEM open-source code.

4.1 Oscillation of an elastic cantilever beam

An undamped elastic cantilever beam experiencing vibra-
tions induced by a sudden application of gravitational accel-
eration is considered. The problem’s geometry and model
setup are depicted in Fig. 7. The cantilever beam measures
2.0 m in length and 0.2 m in height, with its left end fixed
and other edges of the beam free. The material parameters
are as follows: Young’s modulus E = 80.0 MPa, Poisson’s
ratio ν = 0.25, and density ρ = 1850 kg/m3. We inves-
tigate the problem using a total time of t = 4.0 s and a
constant time step of �t = 1 × 10−5 s. The domain is dis-
cretized into 1111 particles. The rank-deficiency correction
parameter β in Eq. (22) is taken to be 0.0 and 0.1 sequen-
tially to solve this problem, corresponding to SPFEMwithout
rank-deficiency correction and SPFEMwith rank-deficiency
correction, respectively. The results obtained by the FEM
[61] are used as a reference.

The final stress distribution is depicted in Fig. 8. It is
evident that the SPFEM with rank-deficiency correction
exhibits a smoother stress field compared to the SPFEM
without rank-deficiency correction, effectively mitigating
stress distribution oscillations (e.g., inhomogeneity of stress
distribution) caused by rank-instability associated with the
nodal integration technique [50–57]. Figures 9 and 10 dis-
play the vertical displacements and velocities to time at the
end of the cantilever beam. Figure 11 displays the evolu-
tion of the axial stress at the fixed end. Remarkably, the
results obtained through the SPFEM with rank-deficiency
treatment show excellent agreement with the corresponding
FEM results [61]. In contrast, the SPFEM without rank-
deficiency treatment demonstrates a gradual deviation,which
clearly demonstrates the rank-instability. It is clear that

Table 1 Efficiency comparison between ESPFEM2D and
NSPFEM2D

Number of nodes/particles Average time cost per step (s)
ESPFEM2D NSPFEM2D

205 0.0046 0.0024

306 0.0077 0.0036

729 0.0140 0.0132

1111 0.0227 0.0302

2737 0.0421 0.1312

6526 0.1030 0.6584

10593 0.1672 1.6704

the rank-instability issue is mitigated and smoother stress
and displacement fields can be obtained by employing the
SPFEM with rank-deficiency treatment.

We note that in terms of explicit SPFEM, an open-source
code NSPFEM2D [38], which is built using hybrid C++
and Python programming, is also available to the public. It
would be interesting to compare the computational efficiency
between the NSPFEM2D and the ESPFEM2D presented in
this paper. For the same problem, a total of 7 simulationswith
different numbers of nodes/particles are performed using
NSPFEM2D and ESPFEM2D respectively, using a personal
computer with an Intel(R) Core(TM) i5-8500 CPU, the main
frequency of which is 3.00 GHz. The computational time
costs are compared in Table 1. The results clearly show that
when the number of nodes exceeds 729, the computational
efficiency of ESPFEM2D outperforms that of NSPFEM2D.
When the number of nodes is relatively large, the efficiency
advantage is more apparent. The chief reason may be that
in NSPFEM2D the computational procedure is driven by
Python which runs much slower than MATLAB.

4.2 Non-cohesive soil collapse

The following examples involve geotechnical applications.
The collapse of non-cohesive soil is considered first. The
problem setup and geometric model involve a rectangular
soil column with dimensions of 0.2 m in width and 0.1 m in
height, as illustrated in Fig. 12. The boundary conditions con-
sist of a fixed constraint at the bottom and a normal constraint
on the left side. The corresponding physical experiment has
been conducted by Nguyen et al. [62], and their results can
serve as a reference for comparison in this analysis. The soil
material properties are as follows: Young’s modulus E =
5.84MPa, Poisson’s ratio ν = 0.3, density ρ = 26.5 kN/m3,
friction angle ϕ = 19.8◦, dilation angle � = 0◦, and cohe-
sion c = 0 kPa. We investigate the problem using a total time
of t = 0.6 s and a constant time step of �t = 1 × 10−6 s.
The domain is discretized into 5894 particles.
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Fig. 7 Oscillation of an
elastic cantilever beam:
setup and geometry
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Fig. 8 Stress distributions at t = 4 s. a SPFEM without rank-deficiency treatment. b SPFEM with rank-deficiency treatment

Fig. 9 Vertical
displacement of point B
(see Fig. 7) on the end of
the cantilever as a function
of time
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The simulation results of the non-cohesive soil collapse
process using ESPFEM2D are illustrated in Fig. 13, which
shows the distribution of equivalent plastic strain during
non-cohesive soil collapse at different time steps, and com-
pares the simulation results with experimental observations
from the literature [62]. The simulation results obtained from
ESPFEM2D are in good agreement with the results reported
by Nguyen et al. [62] at different time steps. Under the influ-
ence of gravity, the right end of the non-cohesive soil column
initiates the collapse process, with deformation starting in the
top region while a portion remains undisturbed. As the col-
lapse progresses, the undisturbed area gradually decreases,

and the granular material flows and undergoes deformation,
forming a slope-like deposit that propagates from the lower
right corner toward the top. Throughout the collapse pro-
cess, a stationary region is observed in the lower left corner
of the soil column, with the surface of this region defined
as the slip line. The damage state of the non-cohesive soil
column in Fig. 13 shows that the slip line obtained from the
ESPFEM2D simulation aligns with the experimental obser-
vations.
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Fig. 10 Vertical velocity of
point B (see Fig. 7) on the
end of the cantilever as a
function of time
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Fig. 11 Stress σxx history
of point A (see Fig. 7)
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Fig. 12 Non-cohesive soil
collapse: setup and
geometry of the analysis
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4.3 Cohesive soil collapse

The cohesive soil collapse problem was originally presented
by Bui et al. [9] and has been previously investigated as a
benchmark example by some researchers [63, 64]. The prob-
lem setup and geometric model are illustrated in Fig. 14. The
rectangular domain has dimensions of height (H) = 2m and
width (L) = 4m. The material parameters, as reported by
Chalk et al. [63], are as follows: Young’s modulus E = 1.8
MPa, Poisson’s ratio ν = 0.2, density ρ = 1850 kg/m3, fric-

tion angle ϕ = 25◦, dilation angle� = 0◦, and cohesion c =
5 kPa. The boundary conditions include complete fixation at
the left and lower surfaces, while the front and upper surfaces
remain free. We investigate the problem using a total time of
t = 2.5 s and a constant time step of �t = 5 × 10−5 s. The
domain is discretized as 23,256 particles.

The simulation results are compared with the SPH sim-
ulation results from the literature [63]. Figure 15 illustrates
the distribution of equivalent plastic strains during the pro-
gressive destruction process of cohesive soil at different
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Fig. 13 Comparison of
equivalent plastic strain
between the experiment
results (left) and the
simulation results obtained
from ESPFEM2D (right)
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Fig. 14 Cohesive soil collapse: setup and geometry of the
analysis

time steps. Throughout the progressive damage process,
the first appearance of equivalent plastic strain is observed
at the lower right corner of the granular column, and the
destruction of the granular column gradually unfolds as the
irreversible deformation region propagates through the spec-

imen, forming a shear zone. The damage initiates from the
upper right corner and progressively develops, resulting in
the formation of a triangular damage region. From Fig. 15,
it can be observed that the simulation results obtained from
ESPFEM2D generally agree with those reported by Chalk et
al. [63].

4.4 Failure of a Mohr–Coulomb soil slope

The problem setup and geometric model for the failure of a
Mohr-Coulomb soil slope are presented in Fig. 16. The soil
material properties are as follows: Young’s modulus E =
100 MPa, Poisson’s ratio ν = 0.3, density ρ = 2000 kg/m3,
friction angle ϕ = 20◦, dilation angle � = 0◦, and cohesion
c = 10 kPa. The discretization of the domain consists of
7,912 particles.

ESPFEM2D is utilized to simulate the whole failure pro-
cess of the slope, including both pre-failure and post-failure
stages. The strength reduction method is used to obtain
the safety factor of the slope, in which the shear strength
parameters are decreases gradually with increasing strength

Fig. 15 Comparison of
equivalent plastic strain
between the SPH
simulation results (left) and
the simulation results
obtained from ESPFEM2D
(right)
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Fig. 16 Failure of a
Mohr–Coulomb soil slope:
setup and geometry of the
analysis
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Fig. 17 Maximum
displacement with different
values of SRF

1.0 1.5 2.0 2.5 3.0
102

101

100

10-1

10-2

10-3

SRF

M
ax

im
um

 d
is

pl
ac

em
en

t /
m Bishop & Morgenstern

(1960)

M
ax

im
um

 d
is

pl
ac

em
en

t /
m

1.36 1.365 1.37 1.375 1.385 1.39 1.395 1.4
0.09

0.08

0.07

0.06

0.05

0.04

0.03

1.38

SRF

(10.74)
(13.29)

(9.02)
(5.97)

(14.35)

(9.91)
(4.06)

Fig. 18 Mohr–Coulomb
slope with SRF=1.385: a
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reduction factor (SRF) as follows:

ϕ f = arctan (tanϕ/SRF)

c f = c/SRF (23)

where ϕ f and c f are the friction angle and cohesion used
in the simulation while ϕ and c are the soil friction angle
and cohesion. The factor of safety (FOS) is defined as the
minimum SRF value inducing slope failure. The whole sim-
ulation process is divided into two phases: In the first phase,
the initial stress field is generated by applying gravity load.
At the end of this phase, the displacements of all the par-
ticles are discarded with the stress state preserved. Since
the ESPFEM2D uses an explicit time integration scheme,
the dynamic relaxation method is employed in this phase to
obtain the quasi-static solution with a local damping factor
of 0.7. In the second phase, the slope failure process is simu-
lated using the strength reduction technique, with a total time
of t = 5.0 s and a constant time step �t = 1 × 10−4 s. The

total time of 5.0 s is found to be large enough to engender
large deformation if the slope is unstable.

The maximum nodal displacements with different SRFs
are depicted in Fig. 17. By examining the criterion of slope
factor of safety based on the abrupt increase in nodal dis-
placements (the maximum curvature radius are used here
to identify the abrupt increase and all the curvature radius
with different SRFs are indicated in Fig. 17b by numbers in
brackets), it is evident that the FOS of the slope is 1.385. Fig-
ure 18a illustrates that the plastic zone has fully penetrated
the slope when SRF = 1.385, and the displacement distri-
bution in Fig. 18b reveals the sliding zone associated with
slope failure. The obtained factor of safety of 1.385 agrees
with Bishop and Morgenstern’s definition of 1.38 with the
limit equilibrium method in 1960 [65].

It should be pointed out that, thanks to the large defor-
mation simulation capability of the ESPFEM2D, problems
with a large range of SRF values can be successfully solved,
including both stable and unstable cases. Figure 19 illus-
trates the final plastic zone and displacement distributions
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Fig. 19 Mohr–Coulomb
slope: a, c and e Equivalent
plastic strain distribution
with SRF=1.0, 2.0 and 3.0;
b, d and f Total
displacement distribution
with SRF=1.0, 2.0 and 3.0
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for the simulation with SRF = 1.0, 2.0 and 3.0. Note that for
the traditional strength reduction method for slope stability
analysis [66], no convergent result can be obtained when the
SRF value exceeds the safety factor of the slope. As shown
in Fig. 19e, a plastic zone that fully penetrates the slope with
SRF = 3.0 is successfully captured with the ESPFEM2D.
Meanwhile, an intuitive sliding can be observed in Fig. 19f.
It is clear that by combining the present ESPFEM2Dwith the
strength reduction method, an in-depth slope stability analy-
sis can be performed.

5 Conclusions

We propose ESPFEM2D, an open-source solver that imple-
ments a two-dimensional explicit Smooth Particle Finite
Element Method (SPFEM), aiming to facilitate the under-
standing and application of SPFEMingeotechnical engineer-
ing. The solver incorporates all the state-of-art techniques
for explicit SPFEM, addressing challenges related to mesh
distortion, state variable mapping, volume locking and rank-
instability.

ESPFEM2D utilizes explicit time integration and the
Drucker-Prager constitutive model to describe soil behav-
ior for demonstration purposes. The solver’s performance is
validated through a series of numerical examples, ensuring
its accuracy, validity, and stability. ESPFEM2D, being an

open-source solver based onMATLAB programming, offers
advantages such as generality, simplicity, and accessibility,
making it convenient for researchers to grasp the methodol-
ogy and promote the application of SPFEM in geotechnical
engineering.
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