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Abstract
Elastomeric mechanical metamaterials exhibit unconventional behaviour, emerging from their microstructures often deform-
ing in a highly nonlinear and unstable manner. Such microstructural pattern transformations lead to non-local behaviour and
induce abrupt changes in the effective properties, beneficial for engineering applications. To avoid expensive simulations fully
resolving the underlying microstructure, homogenization methods are employed. In this contribution, a systematic compar-
ative study is performed, assessing the predictive capability of several computational homogenization schemes in the realm
of two-dimensional elastomeric metamaterials with a square stacking of circular holes. In particular, classical first-order and
two enriched schemes of second-order and micromorphic computational homogenization type are compared with ensemble-
averaged full direct numerical simulations on three examples: uniform compression and bending of an infinite specimen, and
compression of a finite specimen. It is shown that although the second-order scheme provides good qualitative predictions,
it fails in accurately capturing bifurcation strains and slightly over-predicts the homogenized response. The micromorphic
method provides the most accurate prediction for tested examples, although soft boundary layers induce large errors at small
scale ratios. The first-order scheme yields good predictions for high separations of scales, but suffers from convergence issues,
especially when localization occurs.
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1 Introduction

Mechanical metamaterials are characterized by their exotic
material properties owing to their engineered structure.
Supported by extensive research in recent years, various
types of metamaterials hold potential for dedicated applica-
tions in distinct fields of engineering, including biomedical,
automotive, and aerospace industries, cf. [17, 28]. An inter-
esting subgroup of such materials, applicable especially
in soft robotics and receiving significant scientific atten-
tion, is called elastomericmetamaterials. Their extraordinary
behaviour relies on the transformation of recurrent patterns
within the microstructure during compression. The pattern
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reconfiguration yields a significant change in effective mate-
rial properties such as Young’s modulus or Poisson’s ratio,
see, e.g., [10, 14, 34], or [7, 9]. One of the earlier works by
Mullin et al. [25] already showed that the pattern transfor-
mation and corresponding change in effective properties is
initiated by buckling of the ligaments which separate indi-
vidual cells.

Pattern transformation of hexagonally shaped cellular
structures has been investigated by Gao et al. [12], where
two distinct re-configurations were identified. It was shown
that the wall thickness to cell size ratio dictates the post-
buckling pattern and associated effective characteristics. Wu
et al. [34] evaluated the effect of microstructural buckling on
the effective stress–strain path for a triangular structure built
from the kagome lattices. Here, the ligaments constructed
from mirrored triangles were pre-bent, allowing a smooth
structural re-configuration and avoiding abrupt changes in the
mechanical response. The in-plane and out-of-plane buckling
behaviour of square cellular plates was studied by Nikman
and Akbarzadeh [26], where it was concluded that the slen-
derness ratio, defined as the ratio between the length and the
thickness of the specimen, governs the buckling mode and
therefore determines pattern switching.

A rigorous numerical study on pattern-transforming
mechanical metamaterials is provided by Ameen et al. [2].
The hyper-elastic specimens considered in this study contain
a structure of periodically distributed circular holes, which
upon compression transform into an arrangement of alter-
nating ellipses. It was found that the post-transformation
material behaviour is strongly influenced by the specimen
size when the ratio between the specimen height and cell
size is relatively small. These size effects are induced by con-
straints on the pattern transformation close to the sample’s
fixed edges, which trigger stiff boundary layers. In meta-
material design, as well as predictive modelling involving
mechanical metamaterials, one is interested in the effec-
tive material properties. Moreover, engineering simulations
of components or large structures cannot be done with full
account of the microstructure. A homogenized approach
is the most efficient solution method for engineering pur-
poses. To retrieve the actual effective material and kinematic
behaviour corresponding to a single specimen, Ameen et
al. [2] employed ensemble averaging. To acquire the ensem-
ble averaged solution, the material behaviour for a family of
translated microstructures is required, meaning that a num-
ber of boundary value problems needs to be solved. Since
such a brute force approach is computationally expensive,
more efficient homogenization techniques are called for. A
rich variety of options has been presented in the literature.
For a well-characterized microstructure, however, computa-
tional homogenization schemes are typically assumed to be
among the most accurate approaches [13]. In spite of its high
accuracy, standard first-order computational homogenization

cannot capture size effects, since the scale separation assump-
tion does not allow for non-local behaviour [1]. Enriched
computational homogenization schemes are thus required
to achieve a higher accuracy, especially for specimens with
small differences between the length of the microstructural
features and considered macrostructural specimen size.

In order to reflect for non-locality and size effects,
second-order computational homogenization [15, 16] incor-
porates a generalized continuum formulation at the macro-
scale, which makes it a serious candidate for elastomeric
mechanical metamaterials. Anthoine [3] applied second-
order homogenization to functionally graded materials to
quantify the effect of microstructural grading. The intrin-
sic length scale which influences the higher-order stiffness
can be directly related to the graded microstructure of the
material. Forest and Trinh [11] used the same method to
investigate the size effect ofRepresentativeVolumeElements
(RVEs) for elastic and elastoplastic composites subjected to
quadratic Dirichlet boundary conditions. The research con-
ducted by Noels and Nguyen [27] studied the behaviour
of elastic and elastoplastic materials containing a cellular
hexagonal microstructure through second-order computa-
tional homogenization. Via comparison to full numerical
simulations, it was concluded that this approach accurately
predicts the behaviour of structures consisting of repeated
hexagonal patterns, but the method fails for high degrees of
macroscopic imperfections. Generalization of second-order
homogenizationmethod to include body forces avoiding spu-
rious effects were carried out in [5, 21, 37], and in the context
of non-linear cellular metamaterials in [35]. An overview
comparison of second-order models has been presented by
Lopes and Pires [19, 20].

Another suitable option for homogenization of elas-
tomeric metamaterials is micromorphic homogenization
scheme introduced by Rokoš et al. [29], which incorporates
kinematic coupling between individual cells through an addi-
tional field variable. The essence of the adopted approach
lies in the decomposition of the displacement field into slow
and fast varying components. In addition, a predefined fluc-
tuation field corresponding to the pattern transformation is
introduced, representing prior knowledge about the most
important microstructural deformation modes. The method
has been compared to ensemble averaged results for uni-
formly compressed structures by Ameen et al. [2], where
the accuracy of the method has been assessed for a macro-
scopically one-dimensional problem. The methodology has
been generalized tomultiplemicromorphic fields in [30], and
multiscale buckling addressed in [33].

The aim of this paper is to compare the performance of
the two above-mentioned enriched computational homoge-
nization schemes (i.e., the second-order and micromorphic)
in the context of elastomeric mechanical metamaterials
exhibiting pattern transformations against the reference
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ensemble-averaged solution on three examples considered
for simplicity in two-dimensional setting under plane strain
assumption. Both methods include an enhanced continuum
description at the macro-scale, allowing to account for rel-
evant size and boundary effects. For completeness, results
corresponding to the scale-independent first-order computa-
tional homogenization scheme are included as well.

The remainder of this paper is organized as follows. First,
Sect. 2 specifies the elastomeric metamaterial considered,
through its geometry, constitutive laws, and basic mechan-
ical behaviour. Section3 introduces the reference solution
represented by the ensemble average of Direct Numerical
Simulations (DNS) corresponding to a family of trans-
latedmicrostructures. The classical first-order computational
homogenizationmethod is then briefly reviewed, followed by
a description of the second-order and micromorphic homog-
enization schemes. In Sect. 4, the considered load cases are
presented and the results obtained with the different homog-
enization methods are discussed. Finally, overall summary
and conclusions are provided in Sect. 5.

Throughout this paper, the following notational conven-
tions are adopted: scalars a, vectors �a = ai �ei , second-order
tensors A = Ai j �ei �e j , third-order tensors 3A = Ai jk �ei �e j �ek ,
scalar product �a·�b = aibi , single contraction A·�b = Ai j b j �ei ,
double contraction A : B = Ai j B ji , transpose AT, AT

i j =
A ji , gradient operator �∇�a = ∂a j

∂Xi
�ei �e j , and divergence opera-

tor �∇ · �a = ∂ai
∂Xi

. Unless indicated otherwise, summation over
repeated indices is assumed for tensor operations.

2 Metamaterial specification

The geometry considered in this study is inspired by Spec-
imen 1, as described in [4], which was adopted also in the
study of Ameen et al. [2], consisting of a square stacking
of circular holes within a two-dimensional domain subject
to plane strain conditions. A schematic representation of the
cellular structure is provided in Fig. 1a, illustrating the under-
lying square unit cell, its size l, and hole diameter d. In this
study, the adopted geometrical values are set as l = 9.97
mm and d = 8.67 mm. The specimen’s width and height
are denoted by W and H and depend on the amount of cells
in the horizontal or vertical direction. Upon application of a
compressive load, typically a bi-linear stress–strain diagram
is obtained, as shown in Fig. 1b. The diagram splits into two
parts by the vertical dashed line, indicating the bifurcation
strain of the microstructure. At this strain, individual cir-
cular voids transform abruptly into ellipses with alternating
horizontal and vertical major axes, resulting in a significant
drop of the effective stiffness. The pattern transformation and
resulting mechanical response have been thoroughly inves-
tigated, e.g., by [4, 14, 25], or [7]. Figure 1c illustrates a

4 × 4 part of an infinite specimen, subjected to 7.5% over-
all vertical compressive strain. At that strain, the specimen
is in the post-bifurcation regime, i.e., the pattern is in the
transformed state and the material’s mechanical response is
now related to the new microstructural setting (cf. Fig. 1b).
When replacing the periodicity conditions imposed on the
4×4 subsection by prescribed displacements, the fluctuating
edges resulting from the pattern transformation will be con-
strained. This explains the mechanism behind the formation
of stiff boundary layers, dictating the mechanical response
for specimens containing a low ratio between the specimen
height and cell length (H/l). This ratio will be referred to as
the scale ratio in what follows.

The elastomeric base material, employed throughout
all examples discussed in Sect. 4, is a hyperelastic mate-
rial. The strain energy density is described by a two-term
I1-based compressible Mooney–Rivlin model, which in a
two-dimensional setting reads as

W (F( �X)) = c1(I1 − 2) + c2(I1 − 2)2 − 2c1logJ

+ K

2
(J − 1)2, (1)

where I1 indicates the first invariant of the right Cauchy–
Green tensor C = FT · F, and J = det (F) represents the
volume change ratio. Constants c1, c2, and K are constitutive
parameters, set to c1 = 0.55MPa, c2 = 0.3MPa, and K =
55MPa, according to the experimental data of Bertoldi et al.
[4].

3 Homogenizationmethodologies

3.1 Reference solution based on ensemble
averaging

In the case of heterogeneous materials, the DNS results typi-
cally reveal highly oscillatory kinematic fields, which tend to
shift periodically with the microstructural position relative to
the macroscopic sample. To obtain a representative reference
solution to assess the accuracy of computational homoge-
nization methods, an ensemble averaged DNS solution of a
family of translated microstructures is established. Averag-
ing the deformation fields over all translated microstructures
filters out the fast oscillations and results in amacroscopically
smooth solution. For constructing this reference solution,
each translatedmicrostructure is assumed to have equal prob-
ability of occurrence, as employed by, e.g., [8, 32], or [1],
relying on the assumption that the exact positioning of the
microstructure is not known a-priori.

In Fig. 2a, a schematic representation of the macroscopic
specimen in the reference configuration is given,with domain
�, outer boundary �, and position vector �X . The vector �ζ is
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Fig. 1 a Sketch of the two-dimensional elastomeric metamaterial,
including the geometrical parameters, and b corresponding stress–
strain response in compression. c Deformation pattern of a 4 × 4

periodic specimen subjected to 7.5% of overall compressive strain; the
colour indicates the norm of the Green–Lagrange strain E, defined as
ε = √

E : E. (Colour figure online)

related to the translated positions of the microstructure with
respect to its reference position. For the ensemble averaged
(reference) solution, one needs to average over the recurrent
periodic pattern, which consists of 2 × 2 cells in the consid-
ered case. Consequently, the domain including the required
microstructural translations spans �ζ ∈ Q = [−l, l]×[−l, l].
The reference solution is then obtained as

�u( �X) = 1

|Q|
∫
Q

�u( �X , �ζ ) d�ζ , (2)

where �u( �X , �ζ ) denotes the displacement field correspond-
ing to the microstructure translated by �ζ , governed by the
classical balance of linear momentum, i.e.,

�∇ · PT( �X , �ζ ) = �0, �X ∈ �dns(�ζ ) ⊆ �, (3)

valid over the entire domain with fully resolved microstruc-
ture containing all holes shifted by �ζ , �X ∈ �dns(�ζ ) ⊆ �,
cf. Fig. 2a. Because the static behaviour is of prime interest
herein, all inertia effects (aswell as body forces) are neglected
throughout. The reference homogenized solution �u( �X) is for
convenience computed numerically by discretizing the inte-
gral of Eq. (2) into a set of grid points spanning Q, and
calculating the DNS solution �u( �X , �ζ ) for each realization.

3.2 First-order computational homogenization

Computational homogenization is a multiscale technique,
which incorporates detailed microstructural information by
calculating the microscale and macro-scale boundary value
problem in a nested manner [13]. This method provides
a powerful numerical tool for macroscopically homoge-
neous and microscopically heterogeneous materials, for

which the macroscopic constitutive law is not available in
a closed form, but implicitly through the solution of an
underlying microstructural problem. The macroscopic first
Piola–Kirchhoff stress tensor can be expressed as

P = f
( �X , Pm

(
F( �X)

))
, �X ∈ �, (4)

where F denotes the macroscopic deformation gradient
and Pm the microscopic first Piola–Kirchhoff stress ten-
sor. From Eq. (4) it is clear that the macroscopic stress is
related to the microscopic stress resulting from the macro-
scopic deformation. In Fig. 2b a schematic representation
of the computational homogenization concept applied to
elastomeric mechanical metamaterials is given. Note that
two nested boundary value problems are involved: (i) a
macroscopic problem (Fig. 2b top) governed by the classical
balance equation, i.e.,

�∇ · PT( �X) = �0, �X ∈ �, (5)

and (ii) amicroscopic problem (Fig. 2b bottom)with a similar
balance equation

�∇m · PT
m( �Xm) = �0, �Xm ∈ �m, (6)

where inertia and body forces have been dropped again in
both cases, cf. Eq. (3). Note that unlike the DNS problem of
Eq. (3), the macroscopic problem of Eq. (5) is solved over
the (simply connected) domain �, neglecting the underly-
ing metamaterial microstructure. In Eq. (6), �Xm denotes the
microscopic spatial position vector and �m the microscopic
domain. Recall that, throughout this paper, the macroscopic
�∇ andmicroscopic �∇m differential operators are definedwith
respect to the undeformed configurations.
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Fig. 2 Sketch of a macroscopic problem domain � with boundary �;
Dirichlet and Neumann boundary conditions are applied on boundary
segments �D and �N. a Illustration of a microstructural translation �ζ
(in blue) with respect to the reference configuration (black). The DNS
domain �dns(�ζ ) ⊆ � contains all (shifted) holes, whereas �, which is

used in homogenization approaches, is in this case simply connected
and ignores the underlying microstructure. b A sketch of the computa-
tional homogenization scheme; the microscale problem in the reference
(bottom right) and deformed (bottom left) configuration considered at
a macroscopic point of interest �X . (Colour figure online)

To obtain the macroscopic first Piola–Kirchhoff stress
tensor P at a point of interest �X , the corresponding macro-
scopic deformation gradient tensor F( �X) is imposed on the
microscopic problem. The relation between the microscopic
deformation field and macroscopic deformation gradient is
given by

�xm = F · �Xm + �w( �Xm), (7)

which corresponds to a Taylor expansion of the macroscopic
deformation field truncated after its leading term. In Eq. (7),
�xm and �Xm are the position vectors in the deformed and ref-
erence configuration of the microscopic problem, whereas �w
represents the local zero-mean micro-fluctuation correction
field. The boundary conditions imposed on the microscopic
problem, also referred to as Representative Volume Element
(RVE), are a combination of periodicity conditions,

�w(�mT) = �w(�mB) and �w(�mL) = �w(�mR ), (8)

and prescribed displacements resulting from themacroscopic
deformation gradient,

�xm,i = F · �Xm,i for i = 1, 2, 4, (9)

see Fig. 3. In Eq. (8), �m• denotes individual RVE boundary
segments, and • represents right (R), left (L), top (T), and bot-
tom (B) RVE boundaries. Spatial positions �Xm,i , i = 1, 2, 4,
denote in Eq. (9) three RVE corner points, as indicated in

Fig. 3 where a schematic representation of a rectangular RVE
domain is shown. Note that equivalently to fixing the three
control points in Eq. (9), �wmay be considered periodic on top
of F · �Xm while being orthogonal with respect to a constant
inside the RVE domain �m to remove rigid body motions
(see, e.g., [22]).

After solving the microscopic RVE problem according
to Eq. (6), the macroscopic stress at a material point �X is
obtained by volume averaging the microscopic stress field
over �m, unlike ensemble averaging considered for the
underlying solution of Sect. 3.1, i.e.,

P( �X) = 1

|�m|
∫

�m

Pm d�m, �X ∈ �, (10)

which is consistentwith theHill–Mandel condition. This pro-
cess can be repeated for each macroscopic point of interest.
Generally, the micro- and macro-boundary value problems
are conveniently solved using the Finite Element Method,
where each macroscopic integration point in � is related to
a RVE. The macroscopic problem of Eq. (5) can be solved
using a standard Newton iterative algorithm, resulting in an
integrated scheme in which the micro- and macro-boundary
value problems are solved in a nested manner.
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Fig. 3 Schematic representation of the adopted square RVE with
domain �m, consisting of 2 × 2 unit cells. The RVE has four corner
points, 1, . . . , 4, four boundary segments�m• with associated outer nor-
mals �Nm• , where • represents right (R), left (L), top (T), and bottom (B)
edges, and is parametrized by two normalized coordinates ξ ∈ [−1, 1]
and η ∈ [−1, 1]

3.3 Second-order computational homogenization

The second-order homogenization method may be regarded
as an extension of its first-order counterpart, relying on a
Taylor series expansion of the deformation field truncated
after the second term. The local deformation field within a
RVE then takes the form [cf. Eq. (7)]

�xm = F · �Xm + 1

2
�Xm · 3G · �Xm + �w( �Xm), (11)

where the second term on the right-hand side accounts for
non-local strain gradient effects through the gradient of
the deformation gradient, 3G = �∇F. Such a formulation
requires an extended continuum framework, which is here
given by Mindlin’s strain gradient continuum at the macro
level, cf., e.g., Mindlin [23] or Mindlin and Eshel [24]. Fol-
lowing the lines of reasoning presented by Kouznetsova et
al. [16], a classical continuum of Eq. (6) can be adopted at
the microscale level.

Introducing the higher-order stress, 3Q, which is work
conjugate to 3G, the non-classical balance equation reads

�∇ · (
PT − ( �∇ · 3Q)T

) = �0, �X ∈ �. (12)

In Eq. (12), consistently with the previous considerations any
body and inertia forces have been neglected, as well as Neu-
mann boundary conditions for simplicity. The presence of
higher-order derivatives in Eq. (12) requires C1 continuity
of the displacement field over the entire domain � to obtain
the gradient of the deformation gradient at every point [18].
Fromafinite element perspective such a requirement poses an

additional complication, since the conventional shape func-
tions typically possess C0 continuity only. In what follows,
this is addressed by resorting to a mixed finite element for-
mulation, which introduces a so-called relaxed deformation
gradient field F̂. The deformation gradient, containing gra-
dient of the displacement field, i.e., F = I + ( �∇�u)T, and
the relaxed deformation gradient field denoted F̂ are cou-
pled via Lagrange multipliers, requiring that F̂ = F holds
in the weak sense; for more details see [16, 21, 36]. Within
such amixed formulation, choice of combinations of integra-
tion rules and shape functions for the displacement, Lagrange
multiplier, and relaxed deformation gradient fields are of high
importance. This is due to potential instabilities polluting
the solution, which may occur and significantly deteriorate
accuracy of obtained results. To this end, in the numerical
examples employed below in Sect. 4, stable combinations
have been employed (see, e.g., Kouznetsova et al. [16], Sec-
tion 4.3) with no spurious instabilities observed.

In addition to the macroscopic first Piola–Kirchhoff stress
tensor, specified in Eqs. (4) and (10), the higher-order macro-
scopic stress tensor is computed from each RVE solution as

3Q = 1

2|�m|
∫

�m

(
PT
m

�Xm + �Xm Pm
)
d�m, (13)

which does not involve higher-order microscopic stresses
since the RVE obeys a classical continuum description. This
choice effectively circumvents the need for a higher-order
characterization of the microstructural problem.

However, to enforce the gradient effects occurring at
the macroscopic scale on the micro problem, specific RVE
boundary conditions are required, as elaborated in [16]. The
starting point for deriving the microscopic RVE boundary
conditions is Eq. (11), which provides themicroscopic defor-
mation gradient in the form

Fm = ( �∇m �xm)T = F + �Xm · 3G + ( �∇m �w)T. (14)

To conform to the classical averaging theorem given by

F = 1

|�m|
∫

�m

Fm d�m, (15)

two requirements have to be satisfied. First,

1

|�m|
∫

�m

�Xm d�m = �0, (16)

which is guaranteed by simply shifting the coordinate system
to the RVE centre. The second requirement reads

1

|�m|
∫

�m

( �∇ �w)T d�m = 1

|�m|
∫

�m

�w �Nm d�m = 0, (17)
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where the divergence theorem has been used to trans-
form the volume integral into a contour integral along �m,
with �Nm denoting its outward unit normal, cf. Fig. 3.
Assuming 3G = 30 yields �NmT(�mT) = − �NmB(�mB)

and �NmR (�mR ) = − �NmL(�mL), which in turn reduces the
requirement of Eq. (17) to the standard periodicity condition
of Eq. (8). When 3G �= 30, however, a non-periodic defor-
mation results, requiring periodicity in a generalized sense,
defined as

�xmR = �xmL + 2lF · �NmR + 2l2η �NmR · 3G · �NmT , (18)

�xmT = �xmB + 2lF · �NmT + 2l2ξ �NmT · 3G · �NmR , (19)

where ξ and η are normalized RVE coordinates, cf. Fig. 3.
The four corner points are displaced according to Eq. (11) in
which �w( �Xm,i ) = �0, i = 1, . . . , 4, similarly to Eq. (9).
Since this requirement may lead to stress concentrations
close to RVE corner points [18, 19], prescribed corner point
displacements may be relaxed and replaced by a condition
requiring orthogonality of �w with respect to a constant [21].
In the examples that follow, the former option according to
Kouznetsova et al. [15] has been adopted. Finally, to relate
the microscopic variables to the macroscopic gradient of the
deformation gradient, the following conditions must hold

∫
�mL

�w d�m = �0 and
∫

�mB

�w d�m = �0, (20)

which are consistent with the generalized periodicity of �w
on the right and top boundaries, i.e., Eqs. (18) and (19).

3.4 Micromorphic computational homogenization

A micromorphic continuum theory is based on the intro-
duction of additional kinematic variables capturing the
microstructural displacement field, which include non-local
effects on the macro level. The Cosserat continuum [6] is
a micromorphic continuum where the additional kinematic
variables take the microstructural rotations into account.
In [29], the micromorphic theory is used to construct a
homogenization framework tailored to cellular elastomeric
metamaterials. Here, the characteristic deformation mode,
corresponding to the pattern transformation, is extracted from
the displacement field, and an additional variable controlling
its magnitude is introduced.

The following decomposition ansatz of the kinematic field
then holds

�u( �X , �ζ ) = �v0( �X) +
n∑

i=1

vi ( �X) �ϕi ( �X , �ζ ) + �w( �X , �ζ ), (21)

in which the vector function �v0( �X) corresponds to the mean
effective displacement field, vi ( �X) are scalar fields rep-

resenting the magnitudes of the predetermined long-range
correlated patterning modes �ϕi ( �X , �ζ ), and �w( �X , �ζ ) is the
remaining microfluctuation field. The notion of ensemble
averaging is adopted, recall Eq. (2) and the discussion therein,
which is reflected in Eq. (21) through the dependence of the
micro-fluctuating quantities on the microstructural transla-
tion �ζ ∈ Q. For the problem considered here, only a single
spatially correlated mode is considered (i.e., n = 1, shown in
Fig. 1c), which is considered as an input quantity (prior kine-
matic knowledge), and can be obtained through a Bloch-type
analysis [4], estimated analytically from full-scale numerical
simulations [29], or identified experimentally.

To establish a computational homogenization scheme, a
Taylor expansion of the coarsefields �v0 andv1 is performed in
analogy to the first- and second-order computationalmethods
[cf. Eqs. (7) and (11)], yielding

�xm = F · �Xm + [
v1 + �Xm · �∇v1

] �ϕ1( �Xm) + �w( �Xm), (22)

where the translation variable �ζ ∈ Q has been replaced
by the spatial variable �Xm ∈ �m, effectively replacing the
expensive ensemble averaging by substantially cheaper vol-
ume averaging. Note that since the patterning mode �ϕ1 is
defined with respect to the reference microscopic configu-
ration �Xm, macroscopic rotation needs to be factored out
especially in cases in which it is non-negligible. This can be
achieved through polar decomposition of the macroscopic
deformation gradient F = R · U , where R is the macro-
scopic rotation tensor and U the macroscopic stretch tensor.
This effectively means that the deformation gradient F is
replacedwithU in Eq. (22), see also [33, Section 2.1]. Unlike
the second-order method, the non-local information of the
micromorphic model is contained in the magnitude of the
patterning mode v1 and its spatial variation �∇v1. For more
details see also [29, Section 5.1]. The kinematic approxima-
tion of Eq. (22) is considered over a local neighbourhood of
a macroscopic point �X , spanned by the adopted RVE, over
which the micro-fluctuation field �w can be computed. Insert-
ing the decomposition of Eq. (22) into the internal virtual
work, two macroscopic balance equations result,

�∇ · �T = �0, �X ∈ �, (23)

�∇ · �
 − � = 0, �X ∈ �, (24)

neglecting, again, any body or inertia forces, along with the
following homogenized stress quantities

�( �X) = 1

|�m|
∫

�m

Pm d�m, (25)

�( �X) = 1

|�m|
∫

�m

Pm : �∇m �ϕ1 d�m, (26)
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�
( �X) = 1

|�m|
∫

�m

PT
m · �ϕ1 + �Xm[Pm : �∇m �ϕ1] d�m. (27)

At the microscale the classical balance law of Eq. (6)
applies, which requires in addition to periodicity of �w in
Eq. (8) also orthogonality of �w with respect to a constant
field, fluctuation mode �ϕ1, and linear component �ϕ1 �Xm, to
guarantee uniqueness of the solution. Unlike the second-
order homogenization scheme, the four RVE corner points
are free, and rigid body motions are restricted by a combi-
nation of periodicity conditions and the orthogonality with
respect to a constant field. For more details on implemen-
tation and theory see van Bree et al. [33] and Rokoš et al.
[30].

3.5 Concluding remarks

Each of the presented homogenization schemes relies on a
classical continuum at the microscale level. The first-order
method employs a classical continuum description also at the
macro-scale level, while the second-order method extends
the balance equation by including higher-order stresses aris-
ing from strain gradients. The micromorphic method, on the
contrary, introduces an additional scalar balance law gov-
erning the macroscopic magnitude of the fluctuation pattern.
Whereas the first-order and second-order methods require no
prior information on the considered kinematics, the micro-
morphic scheme assumes the typical long-range correlated
patterning field to be known in advance for the adopted kine-
matic ansatz.

4 Numerical examples and comparison

This section provides a performance analysis of the homog-
enization methodologies discussed in Sect. 3, applied to pat-
tern transforming elastomeric metamaterials. The accuracy
of the enriched homogenization solutions is assessed rela-
tive to the reference ensemble-averaged solution,whereas the
first-order homogenization solution is considered as the cur-
rent standard (mostwidely used). Three distinct loading cases
are evaluated, comparing mechanical responses obtained by
each of the methods. To this end, first an infinitely wide
specimen loaded in compression is considered. Second, a
specimen subjected to bending is evaluated. A finite rectan-
gular specimen, subjected to a compressive load with two
free boundaries experiencing an auxetic effect, is analysed
as the final example.

4.1 Uniform compression

The first example considers an infinite layer of elastomeric
material loaded in compression along the vertical direction.

The specimen’s height is H = nvl, where nv is the number
of unit cells in the vertical direction. The simulation domain
spans the region 2l×H , as shown in Fig. 4, whereby only two
unit cells are modelled in the horizontal direction, which is
sufficient to capture the complete pattern transformation. The
infinite structure is mimicked through periodicity along the
two vertical edges, AD andBC. The bottom edgeAB is fixed,
whereas the top edge CD is displaced downwards by u∗.
As a result of these kinematic constraints, the macroscopic
problem can be modelled as a one-dimensional continuum
along �e2, with the following essential boundary conditions.
For the first-order computational homogenization:

u2(0) = 0, u2(H) = u∗, (28)

for the second-order method:

u2(0) = 0, u2(H) = u∗,
F22(0) = F22(H) = 1, (29)

and for the micromorphic approach:

v0,2(0) = 0, v0,2(H) = u∗, v1(0) = v1(H) = 0. (30)

Note that the choice of F22 = 1 in Eq. (29) is motivated
by physical insights of no deformation at the top and bot-
tom part of the domain boundary. Although not presented
for conciseness, numerical investigations showed high influ-
ence of prescribed values of F22 on achieved accuracy in
comparison with DNS. For all methods, the macroscopic
displacement fields are discretized by piece-wise quadratic
one-dimensional elements with a two-point Gauss inte-
gration rule. For the second-order method, the Lagrange
multiplier field and relaxed deformation gradient field are
discretized using piece-wise linear shape functions. In one-
dimensional setting considered here, as an alternative to the
mixed formulation, Hermite polynomial elements could be
used for the second-order scheme, which are not considered
for consistency with the other two-dimensional examples
discussed below. For discretization, domains with scale
ratios H/l ≤ 10 were calculated using fine meshes of 10
one-dimensionalmacroscopic elements to ensure sufficiently
high kinematic freedom to accurately capture boundary lay-
ers spanning the entire domain (see ahead Fig. 5b), whereas
simulations at higher scale ratios H/l > 10 have asmany ele-
ments as unit cells due to the lower complexity of the resulting
kinematic fields (forming a distinct plateau in F22 component
close to the mid-height of the specimen; not shown herein,
see, e.g., [2]).

Themacroscopic kinematic quantities in the pre- and post-
bifurcation regimes for a fixed scale ratio H/l = 6 are
compared in Fig. 5. Here, the reference solution indicates that
during pre-bifurcation, no strain gradients are present, which
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Fig. 4 Uniform compression case. A sketch of the considered sim-
ulation domain and boundary conditions for a specimen with scale
ratio H/l = 4. Periodic boundary conditions are enforced along the
two vertical edges AD and BC, representing an infinitely wide structure

is accurately captured by the micromorphic and first-order
method. The second-order scheme exhibits, however, artifi-
cial gradient effects close to the two horizontal boundaries.
Post-bifurcation, the micromorphic method shows a better
deformation trend compared to the second-order scheme,
which again exhibits too strong gradient effects, which are
mainly causedby thekinematic constraints on F22 inEq. (29).
Note that F22(0) = F22(H) ≈ 0.95 in Fig. 5b for the ref-
erence solution, implying that the kinematic constraints in

the second-order scheme are too restrictive. However, relax-
ing these boundary conditions introduces large errors in the
post-bifurcation regime, resulting in an overall response that
is too compliant.

Figure 6 presents a deformed DNS configuration along
with three RVEs positioned close to the specimen’s bottom
edge for each homogenization method. The gradient effect
on the deformation of the individual RVEs is clearly visible
close to the two boundaries. The first-order method (Fig. 6b)
does not include strain gradients and provides the same com-
pressed RVE pattern at each integration point, even close to
the boundary (in fact, a single RVE could have been used
to perform this simulation). The RVE deformations obtained
by the second-order method (Fig. 6c), show gradual com-
pression in the vertical direction of individual RVEs with
growing distance from the fixed boundary, with little gradient
of the patterning field along the vertical direction. Themicro-
morphic RVEs, shown in Fig. 6d, show a slightly stronger
gradient of the patterning. In both cases, nevertheless, the
pattern is not fully representative for what can be observed
in the DNS result.

The obtained nominal stress–strain diagrams are provided
in Fig. 7 for scale ratios 6 and 12. The reference solution
shows that the bifurcation strain (indicated by the black
dashed vertical line) decreases with increasing scale ratio,
and that the bifurcation strain is captured accurately by the
micromorphic homogenization method (the error in bifurca-
tion stress is approximately 2.8 and 0.82% for scale ratios 6
and 12). The first-order method, which is insensitive to the

Fig. 5 Uniform compression case. Comparison of a vertical displacement component u2(X2), and b deformation gradient F22(X2) over the
specimen’s height. Overall applied compressive strain corresponds to 1 and 7.5%, for a specimen with scale ratio H/l = 6
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Fig. 6 Uniform compression case. Deformed configuration of an
infinitely wide specimen with scale ratio H/l = 6, subjected to 7.5%
nominal compressive strain. a DNS solution corresponding to zero
microstructural translation �ζ = �0. F22 component of the macroscopic

deformation gradient plotted against the vertical coordinate in the
reference configuration, including deformed RVEs of the first three
integration points, corresponding to the b first-order, c second-order,
and d micromorphic computational homogenization schemes
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Fig. 7 Uniform compression case. Stress–strain diagram for scale ratios a H/l = 6 and b H/l = 12, obtained via DNS and the first-order,
second-order, and micromorphic homogenization schemes

Fig. 8 Uniform compression case. Nominal compressive stress in the a pre-bifurcation and b post bifurcation regime as a function of the scale
ratio H/l ∈ [4, 36]

macroscopic size, provides a bifurcation strain u∗/H ≈
0.0225. Interestingly, the second-order method exhibits an
opposite effect, in which the bifurcation strain increases with
increasing scale ratio. The final buckling strain corresponds
to u∗/H ≈ 0.0225, which is expected since the first-order
solution should be recovered for H/l → ∞.

The effect of the macroscopic size on the stress response
is shown in Fig. 8, where the homogenized stresses at fixed
nominal strains u∗/H = 0.01 and u∗/H = 0.075 are plot-
ted against the scale ratio H/l ∈ [4, 36]. Before the pattern
transformation occurs, no non-local effects (and thus almost
no size effects) can be observed in the reference, first-order,
and micromorphic homogenized solutions (Fig. 8a). This is
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Fig. 9 Uniform compression example. Tangent stiffness in the a pre-bifurcation and b post-bifurcation regime as a function of the scale ratio H/l ∈
[4, 36]

Fig. 10 Uniform bending case. A sketch of the simulation domain
and boundary conditions for a specimen with scale ratio H/l = 4.
Superposed periodic boundary conditions are enforced along the verti-
cal edges AD and BC to mimic an infinitely wide structure

not the case, however, for the second-order homogenization
scheme, which shows an excessively stiff response in the pre-
bifurcation regime due to the kinematic constraint F22 = 1.
In the post-bifurcation regime, the second-order and micro-
morphic homogenization schemes capture the overall trend,
but both underestimate the effective stress. For the smallest
scale ratio considered, i.e., H/l = 4, the first-order homog-
enization entails approximately 30%, second-order 11.5%,
and micromorphic 7.5% relative error.

The effective stiffnesses, considered again at u∗/H =
0.01 and u∗/H = 0.075 of the overall nominal strain and

expressed as a function of the scale ratio H/l, are shown
in Fig. 9. Pre-bifurcation, similar trends as for the nominal
stresses are observed (cf. Fig. 8a), whereas post-bifurcation
(Fig. 9b), observed differences are approximately equal for
both non-local schemes. For scale ratios H/l > 10, never-
theless, the second-order method follows the reference trend
more accurately compared to the micromorphic method.

4.2 Uniform bending

Similarly to the previous example, a semi-infinite domain is
considered, which is subjected to uniform bending. The sim-
ulation domain again spans a region 2l×H , where an integer
number of unit cells along the vertical direction is consid-
ered, cf. Fig. 10. The two vertical edges, AD and BC, deform
periodically on top of the uniform bending contribution. The
coordinate system is shifted to the midpoint of the simula-
tion domain such that the neutral axis corresponds to X2 = 0.
The neutral axis is furthermore fixed in the vertical direction
by constraining horizontal and vertical displacements at the
centre left and right nodes, whereas the top and bottom edges
are considered as free surfaces. Mathematically, the applied
boundary conditions are expressed as follows. For the first-
order method:

�u(�AD) = �u(�BC) + θX2�e1, (31)
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Fig. 11 Uniform bending case. An infinitely wide specimen with scale
ratio 6 bent up to θH/(4l) = 0.1125. a DNS solution with zero
microstructural shift �ζ = �0. The macroscopic deformed structures
including deformed RVEs corresponding to three macroscopic inte-

gration points for the b first-order, c second-order, and dmicromorphic
homogenization method. The dotted blue line indicates the deformed
contour of the ensemble-averaged solution. (Colour figure online)
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Fig. 12 Uniform bending case corresponding to scale ratio 12. a Stress–strain diagram; a close-up of the bifurcation point in the inset. b P11 stress
component along the vertical reference coordinate X2 at θH/(4l) = 0.1125

Fig. 13 Uniform bending case. Nominal stress in the a pre-bifurcation and b post-bifurcation regime as a function of the scale ratio H/l ∈ [4, 36]

for the second-order method:

�u(�AD) = �u(�BC) + θX2�e1, F11(�AD) = F11(�BC),

F22(�AD) = F22(�BC), (32)

and for the micromorphic method:

�v0(�AD) = �v0(�BC) + θX2�e1, v1(�AD) = v1(�BC). (33)

The bending angle θ is prescribed such that the nominal strain
at the top and bottom edges (expressed as θH/(4l)) does
not exceed 15%. The macroscopic discretization consists
of 8-node two-dimensional square quadratic quadrilateral
elements with edge size l, integrated by a 2×2Gauss integra-
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tion rule. The relaxed deformation gradient field F̂, present
in the second-order homogenization method, is discretized
by 4-node bi-linear quadrilaterals. More details and perfor-
mance analysis of various two-dimensional element types
for micromorphic scheme can be found in Rokoš et al. [31],
and for second-order computational homogenization, e.g., in
Kouznetsova et al. [16].

The deformed configurations, obtained for all methods,
are shown in Fig. 11 for an applied nominal strain θH/(4l) =
0.1125 (i.e., in the post-bifurcation regime). Since only the
bottom half of the specimen is subjected to compression, the
pattern transformation is limited to the region situated below
the neutral axis, cf. Fig. 11a. The macroscopic deformation
along with deformed RVEs corresponding to three macro-
scopic integration points are shown in Fig. 11b–d. Here a
clear distinction in the RVE deformations for the different
methods emerges. In particular, for the first-order homoge-
nization scheme, individual RVEs have parallelepiped shape
and show uniform buckling pattern of individual holes
(Fig. 11b). For the second-order homogenization method,
the bending effect of the higher-order gradient ∂F11/∂X2 =
G211 �= 0 applied to individual RVEs can clearly be
observed, resulting in trapezoidal-shaped RVEs (Fig. 11c).
Finally, the effect of the pattern gradient ∂v1/∂X2 is present
in the micromorphic scheme, resulting in parallelepiped-
shaped RVEs with non-uniform buckling pattern of holes
along the vertical direction (Fig. 11d).

The nominal bending stress, defined as 6M/H2, where M
denotes the moment acting on the vertical specimen edge,
is plotted as a function of the nominal strain θH/(4l) for a
scale ratio 12 in Fig. 12a. Even though both enriched homog-
enization schemes provide similar stress–strain results, they
systematically overestimate the stress in the post-bifurcation
regime. The micromorphic method exhibits a clear kink
when moving from pre- to post-bifurcation regime, whereas
the first- and second-order methods show a more grad-
ual bifurcation transition. The corresponding homogenized
stress component of the first Piola–Kirchhoff stress ten-
sor, P11(X2), is shown in Fig. 12b as a function of the
vertical coordinate X2 for scale ratio 12 and a nominal
strain θH/(4l) = 0.1125. Due to the pattern transforma-
tion, the bottom half of the specimen displays a distinct
plateau, whereas the top part shows a linear profile. All
homogenizationmethods considered provide relatively accu-
rate predictions.

The scale separation plots corresponding to strains θH/

(4l) = 0.015 and θH/(4l) = 0.1125, given in Fig. 13, reflect
the scale ratio effect in the pre- and post-bifurcation regime.
In both cases, the micromorphic prediction is closer to the
reference solution compared to the second-ordermethod.The
size effect is, however, not as strong as for the previously
discussed compression case, through which the first-order
method (neglecting size effects) provides the most accurate

Fig. 14 Finite specimen compression case. Illustration of the simula-
tion 4l × 4l domain subjected to a vertical compressive load. The two
lateral edges, AD and BC, are free surfaces

solution in the pre- and post-bifurcation regimes. Note that
although the ensemble averaged solution is not varyingmuch
with the scale ratio, individualmicrostructural translations do
result in a large variance (cf. Fig. 13).

4.3 Compression of a finite specimen

The final case considers a finite rectangular domain span-
ning n×n unit cells subjected to compression, cf. Fig. 14. The
applied compression acts along the vertical direction, and is
induced by fixing the bottom horizontal edge AB while dis-
placing the top horizontal edge CD downwards by u∗. Unlike
the uniform compression case of Sect. 4.1, the two vertical
edgesAD andBC are now free surfaces, allowing for compli-
ant boundary layers and auxetic effects. Mathematically, the
applied boundary conditions are expressed for the first-order
homogenization method as:

�u(�AB) = �0, �u(�CD) = −u∗ �e2, (34)

for the second-order method:

�u(�AB) = �0, �u(�CD) = −u∗ �e2,
F22(�AB) = F22(�CD) = 1, (35)

and for the micromorphic method:

�v0(�AB) = �0, �v0(�CD) = −u∗ �e2,
v1(�AB) = v1(�CD) = 0. (36)

In order to avoid global buckling, which has been addressed
elsewhere (cf. [33, 35]), and to focus on boundary layers
and non-local behaviour, only one half of the specimen is
modelled, introducing a vertical symmetry axis at the middle
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Fig. 15 Finite specimen compression case. Right half of a
deformed 10l×10l specimen obtained by aDNS subjected to u∗/H =
0.075 compressive strain, corresponding to a zeromicrostructural trans-
lation �ζ = �0. The right half of the macroscopic deformed structure,
including deformed RVEs positioned at three macroscopic integration

points, corresponding to the b first-order, c second-order, and d micro-
morphic homogenization method. The dotted blue line indicates the
deformed contour of the ensemble-averaged solution. (Colour figure
online)

of the specimen alongwhich the horizontal displacements are
restricted while the vertical displacements are left free. The
same discretization and integration rules as those in Sect. 4.2
are used.

Deformed configurations of a half specimen (due to sym-
metry), corresponding to scale ratio H/l = 10 and subjected
to 7.5% of overall compressive strain (i.e., post-bifurcation),
are shown in Fig. 15. The auxetic effect resulting from
the pattern transformation is clearly visible and captured
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Fig. 16 Finite specimen compression case. Stress–strain diagrams corresponding to scale ratios a 4, and b 10, obtained by the first-order, second-
order, and micromorphic homogenization schemes, as compared to the reference ensemble averaged solution

by all methods. The two enriched homogenization schemes
(Fig. 15c, d) reproduce the auxetic behaviourmore accurately
than the first-order method (Fig. 15b), judging from the outer
contours of the ensemble-averaged solution denoted by the
blue dotted line. A significant drawback of the first-order
method is the presence of a kink in the displacements at the
centres of the two lateral edges. The overall shape of the com-
pliant boundary and the deformedRVEs corresponding to the
top and bottom Gauss integration points are most accurately
captured by themicromorphicmethod. The investigated inte-
gration points close to the middle height of the specimen are
similar for both enriched methods, whereas the RVEs corre-
sponding to the first-order method deform severely close to
the kinks.

The stress–strain diagrams, corresponding to 4l × 4l
and 10l × 10l specimens, are provided in Fig. 16. Similarly
to the uniform compression case of Sect. 4.1, the bifurca-
tion strain is not captured accurately by the second-order
homogenization method, whereas it is captured adequately
by the micromorphic scheme. This holds true especially for
small scale ratios for which boundary effects play a signifi-
cant role (clearly visible for H/l = 4 inFig. 16a),whereas for
larger scale ratios the importance of non-local effects grad-
ually diminishes and the achieved accuracy is of the same
order of magnitude (as visible for H/l = 10 in Fig. 16b).
Ultimately, the common asymptote of the first-order scheme
is reached for H/l → ∞, where non-local effects van-
ish completely. In the case of the 4l × 4l specimen, the
post-bifurcation stiffness (i.e., the slope of the stress–strain
diagram), although comparable for both enriched homoge-

nization schemes, significantly overestimates the expected
value, which even reveals softening (a negative slope). The
observed softening results from the presence of the two ver-
tical compliant boundaries, which for such a small scale
ratio have a larger influence on the overall response than the
stiff boundary layers induced by the two horizontal edges.
Although this effect rapidly vanishes with increasing scale
ratio, neither of the two enriched homogenization schemes
is able to capture this phenomenon properly. In the case of
the 10l×10l specimen, the post-bifurcation stiffness is repro-
duced accurately by both the second-order as well as the
micromorphic method. The first-order method gives, how-
ever, the most accurate prediction of the plateau behaviour
despite its large error in the predicted bifurcation strain, cf.
also Fig. 18b.

Graphs of the applied nominal stress are shown in
Fig. 17 as a function of scale ratio for two different nom-
inal strains u∗/H = 0.01 (pre-bifurcation) and u∗/H =
0.05 (post-bifurcation). From the reported results it may be
concluded that the micromorphic homogenization method
provides the most accurate or balanced results, although an
overestimation of the stress is still observed in Fig. 17b. In
the same figure, the second-order method provides overall
more accurate result, which is partially due to the choice
of the nominal strain at which the nominal stress is evalu-
ated. Pre-bifurcation, a significant overestimation similar to
the uniform compression case is observed for second-order
scheme.

Figure 18 shows the tangent stiffness at nominal strains
u∗/H = 0.01 and u∗/H = 0.05 for all adopted scale ratios.
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Fig. 17 Finite specimen compression case. Nominal compressive stress in the a pre-bifurcation and b post-bifurcation regime as a function of the
scale ratio H/l ∈ [4, 36]

Fig. 18 Finite specimen compression case. Tangent stiffness in the a pre-bifurcation and b post-bifurcation regime as a function of the scale
ratio H/l ∈ [4, 36]

In particular, Fig. 18b confirms that both enriched homog-
enization methods fail to capture the softening behaviour
observed for the lowest scale ratios considered (cf. Fig. 16a),
and that tangent stiffnesses are significantly overestimated.
The micromorphic method is, nevertheless, closest to the

reference solution within the evaluated range. Figure 18a is
similar to Fig. 17a, hence the same discussion and conclu-
sions apply.

Corresponding field plots of the effective horizontal dis-
placements are shown in Fig. 19a–d, whereas field plots
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Fig. 19 Finite specimen compression case. Resulting field plots
for u∗/H = 0.075 and H/l = 10, for the right half of the domain.
The top row corresponds to the horizontal displacement component �u ·
�e1 [mm] for a DNS, b first-order, c second-order, and d micromorphic
simulation. The bottom row corresponds to the F22 − 1 [–] component

of themacroscopic deformation for eDNS, f first-order, g second-order,
and hmicromorphic simulation. All fields are plotted over the reference
configuration. DNS ensemble averages are computed for 21 shifts �ζ in
each direction, showing high fluctuations due to low sampling

of F22 − 1 component in Fig. 19e–h. In all cases, the state
corresponds to applied nominal strain u∗/H = 0.075 in
the post-bifurcation regime. The field plots clearly show that
the DNS results are under-sampled and exhibit strong fluc-
tuations, in spite of using 21 shifts in both horizontal and
vertical directions. Nevertheless, a clear auxetic effect can be
observed in Fig. 19a,whereas the average vertical strain com-
ponent is almost uninformative, although boundary layers of
size 3l and lower values on average close to the mid-height
of the specimen can be observed. For first-order computa-
tional homogenization, a clear localization due to separation

of scales (i.e., locality) assumption can be observed, in con-
trast to the two enriched homogenization schemes. Here, the
second-order approach shows a slightly more extensive and
less localized region of negative displacements as compared
to the micromorphic scheme. For the F22 − 1 component,
second-order homogenization shows a significantly more
localized boundary layer, similarly to the conclusions of
Sect. 4.1 in Fig. 5b, which is caused by the prescribed value
of the deformation gradient F22 = 1 at the two horizontal
edges.
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Table 1 General performance
overview of tested
computational homogenization
methods applied to elastomeric
mechanical metamaterials

Property/method First-order Second-order Micromorphic

Pre-bifurcation (no size effect) ✓ ✗ ✓

Post-bifurcation (size effect) ✗ ✓ ✓

Shift of bifurcation point ✗ ✗ ✓

No prior knowledge ✓ ✓ ✗

4.4 Concluding remarks

The overall performance of all considered homogenization
methods applied to elastomeric mechanical metamaterials,
as obtained from the numerical examples, is summarized
in Table 1. In general, it may be concluded that the micro-
morphic computational homogenization scheme is able to
capturemost of the present size effects, relying on prior infor-
mation on the patterning mode �ϕ1. The second-order homog-
enization scheme is less accurate (in particular, it exhibits too
strong size effects, especially in the pre-bifurcation regime),
but on the other hand is fully general, requiring no prior
knowledge.

5 Summary and conclusions

In this paper, a thorough comparison of two enhanced
computational homogenization schemes applied to pattern-
transforming elastomericmechanicalmetamaterials has been
performed. The first method considered is second-order
computational homogenization scheme, which accounts for
strain gradients at the macro-scale, and thus includes non-
local effects induced by pattern transformations. The second
method, a micromorphic computational homogenization
scheme, introduces the magnitude of the emerging pattern as
an additional macroscopic field, which captures kinematic
coupling between individual cells. Whereas the second-
order computational homogenization requires solution of
a higher-order continuum problem at the macro-scale, the
micromorphic scheme adds one coupled scalar partial dif-
ferential equation next to the classical macroscopic balance
equation. Both methodologies have been compared against
a reference, ensemble-averaged solution, which is obtained
through Direct Numerical Simulations (DNS) by including a
series of translated microstructures. The first-order homoge-
nization method is included as well to reveal the limitations
of this current standard in homogenization solutions. Three
distinct loading cases were evaluated to demonstrate the
accuracy of the enriched methods: uniform compression,
bending, and compression of finite specimens. The most
important conclusions can be summarized as follows:

1. Both enhanced homogenization schemes provide a rea-
sonable estimate of the effective behaviour exhibited by

the elastomericmechanical metamaterials adopted in this
study.

2. The micromorphic homogenization scheme provides
more accurate results in terms of the kinematics as well
as the stress quantities as compared to second-order com-
putational homogenization scheme.

3. The deformed Representative Volume Elements (RVEs)
obtained by both methods correspond well with the DNS
results due to the presence of the macroscopic strain gra-
dient or a micromorphic field.

4. Due to very small size effects in the case of bending,
both enhancedhomogenizationmethods overestimate the
effective stress in the post-bifurcation regime. In the
worst case, i.e., for scale ratio 4, the second-order and
micromorphic method are approximately 38 and 15%
above the corresponding referencewhereas thefirst-order
homogenization method leads to about 5% of error.

5. The auxetic effect, present in the compression of the
finite specimen example, is captured accurately by both
enhanced homogenization schemes. The shape of the soft
boundary, however, is more accurate for the micromor-
phic method.

6. The compression of finite specimens proves to be a
challenging task for all computational homogenization
schemes, especially in terms of the nominal stress–strain
response. Whereas the micromorphic method is still able
to capture the bifurcation point with reasonable accu-
racy, the second-order computational homogenization
introduces an error of the order of 50% for 4l × 4l
specimen. The post-bifurcation stiffness for the same
specimen is significantly overestimated, but converges
rapidly towards the correct value with increasing scale
ratio.

From the presented results, it may be concluded that
the micromorphic computational homogenization method
proves to be themost suitable numerical tool for homogeniza-
tion of elastomeric mechanical metamaterials experiencing
pattern-transformations, although second-order computa-
tional homogenization holds promise as well. Its main
drawback is the overly strong non-local effect in the absence
of patterning, often leading to overestimation of effective
properties.
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