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Abstract
We outline an extension of Biot’s theory of dynamic wave propagation in fluid-saturated media, which can be used to model
dynamic soil-structure interaction in frictionless conditions across a wide range of soil saturation levels. In this regard, we
present a comprehensive analysis of experimental evidence, the thermodynamic, and the theoretical basis of using the degree
of saturation as Bishop’s parameter in unsaturated soils. The analysis highlights the limitations of using this parameter
to accurately model unsaturated soil behaviour, particularly as the soil approaches dryness. Based on the analysis, a new
definition of effective stress is proposed, and the associated work-conjugate pairs are identified. Recommendations are made
for constitutive modelling using the new definition of effective stress. Finally, we introduce a fully coupled finite element
contact model that utilises the new effective stress definition. Through numerical examples, we demonstrate the model’s
capability to control the vanishing capillary effect on soil-structure interaction as the soil dries.

Keywords Unsaturated soils · Soil dynamics · Finite element model · Effective stress · Contact mechanics

1 Introduction

Biot’s theory of dynamic wave propagation in fluid-saturated
media [1, 2] is a seminal contribution to soil mechanics and
has been widely used to predict the behaviour of saturated
soils under dynamic loading conditions (e.g., in [3–6] and
many more). The theory has been instrumental, particularly
in offshore geomechanics. Nonetheless, in many instances,
soils are in unsaturated states in nature and continuously
interact with climate. Because air is in the pores, Biot’s orig-
inal theory cannot be used accurately.

To address this issue, researchers (e.g., [7, 8]) extended the
theory to unsaturated states. The concept of Bishop’s effec-
tive stress in unsaturated soil [9] was central in this extension,
as it provides a smooth transition toBiot’s theory for saturated
media when the degree of saturation approaches unity. In the
pioneering work on extension of Biot’s theory to unsaturated
soils [7, 8], the degree of saturation is chosen as Bishop’s
parameter. In [10], the author presented a theoretical basis
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for such a choice based on an “averaging procedure”. Also,
thermodynamic bases for the use of the degree of saturation
as Bishop’s parameter were given in [11–13] among others.

However, the experimental evidence supporting this
choice is mixed. More specifically, the use of the degree of
saturation as Bishop’s parameter has been called into ques-
tion by several researchers, particularly when soils are close
to the dry state [14–17]. Towards dryness, the contribution of
capillary suction to the effective stress often disappears, an
issue that can result in a loss of strength of the soil. Nonethe-
less, in many instances, the use of the degree of saturation as
Bishop’s parameter results in predicting an ever-increasing
contribution of capillary near dryness and significant over-
estimation of the load capacity of soils. Additionally, some
researchers (such as in [18, 19]) have shown that the degree
of saturation may not even be a good approximation of the
effective stress parameter near saturation.

To address the limitations of previous approaches, we
conduct a comprehensive review of experimental evidence,
thermodynamic principles, and theoretical models to eval-
uate the effectiveness of using the degree of saturation as
the measure of effective stress. Based on our analysis, we
propose a new definition for effective stress that improves
accuracy over a wider range of saturation levels. Our equa-
tion accounts for the gradual decrease of capillary forces as
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saturation increases and can be adjusted to match the degree
of saturation when necessary. Moreover, we focus on the
implications of our proposed effective stress parameter for
the constitutive modelling of unsaturated soils. With our pro-
posed new definition of effective stress, we extend Biot’s
theory of dynamic wave propagation in fluid-saturatedmedia
to a wider range of saturation levels. Our approach involves
developing a new computational framework for modelling
frictionless dynamic soil-structure interaction across a broad
range of saturation. This framework fully incorporates the
effects of the new effective stress parameters, allowing us
to gain greater control over simulating vanishing capillary
effects on soil behaviour.

We begin by presenting the governing equations that
describe the dynamics of unsaturated soils. Then, we intro-
duce our new definition of effective stress and demonstrate
how it improves accuracy across a wide range of saturation
levels. Next, we identify work-conjugate pairs by analysing
the internal energy of the unsaturated soil. This enables us to
make recommendations for constitutive modelling based on
these pairs. Finally, we present our fully coupled finite ele-
ment contact model and demonstrate its capabilities through
several numerical examples.

2 Dynamics of unsaturated soils

2.1 Conservation of mass

We consider a Representative Elementary Volume (REV) of
unsaturated soil and define uα(α � s, w, g) as displacement
of the solid, water and gas in this domain. We also define the
density of each phase by ρα(α � s, w, g) as follows

ρα � Mα

�α
(1)

where Mα(α � s, w, g) is the mass of each phase and
�α(α � s, w, g) is the volume occupied by each phase with
� � ∑

(α�s,w, g)
�α represents the total volume of REV. Also,

we define nα as the fraction of the total volume occupied by
each phase as follows:

nα � �α

�
(2)

where
∑

(α�s,w, g) n
α � 1. Also, the porosity of the soil n

is defined by n � nw + ng . It is also useful to define partial
density, ρα as follows:

ρα � nαρα � Mα

�
(3)

The density of the mixture, ρ is defined by:

ρ �
∑

(α�s,w, g)

ρα (4)

Also, the degrees of saturation associated with water and
gas are defined as follows:

Sβ � nβ

n
(β � w, g) (5)

The conservation of mass can be written in the form of a
differential equation, as follows:

∂(ραnα)

∂t
+ div(ραnαu̇α) � 0 (6)

where div() denotes the divergence operator. By assuming
u̇s � u̇, we can write the conservation of mass of the solid
as follows:

∂((1 − n)ρs)

∂t
+ div((1 − n)ρs u̇) � 0 (7)

Ignoring the spatial variation of the solid phase
(grad(ρs) � 0, with grad representing the gradient oper-
ator), neglecting the compressibility of solid particles, and
considering the concept of the material time derivative,
D(∗)
Dt � ∂(∗)

∂t + u̇. grad(∗) results in the following equation:

Dn

Dt
� (1 − n)div(u̇) (8)

The velocity of the other phases, u̇β(β � w, g) can be
written as:

u̇β � u̇ + u̇βs (9)

where u̇βs represents the velocity of water and gas relative
to solid and is defined as follows:

u̇βs � ẇβ

nSβ

(β � w, g) (10)

where ẇβ represents the Darcy velocity.
Also, the conservation of mass for the fluid phases can be

expanded as follows:

∂
(
nSβρβ

)

∂t
+ div

(
nSβρβ u̇β

) � 0 (11)

which can be expanded as follows:

(12)

Sβρβ

(
Dn

Dt

)

+ nρβ

(
DSβ

Dt

)

+ nSβ

(
Dρβ

Dt

)

+nSβρβdiv (u̇) +ρβdiv
(
ẇβ
)
+ ẇβ.grad

(
ρβ

)� 0
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In an isothermal environment, the rate of change in the
fluid density is:

1

ρβ

Dρβ

Dt
� 1

Kβ

Dpβ

Dt
, (β � w, g) (13)

where Kβ is the bulk modulus of the fluid phases.
Using Eqs. (13) and (8) and the definition of the mate-

rial derivative, we can write (12), after dividing it by ρβ , as
follows:

nSβ

Kβ

Dpβ

Dt
+ n

DSβ

Dt
+ Sβdiv(u̇) + div

(
ẇβ
)

+ ẇβ.
1

ρβ

grad
(
ρβ

) � 0 (14)

2.2 Linear momentum balance

By defining σα(α � w, g, s), as the apparent stress tensor,
the linear momentum balance for each phase in an arbitrary
volume may be defined as follows:

div
(
σα
)
+ ραb + Iα � ραüα (15)

where b is the gravitational acceleration and Iα (where
∑

α�w, g, s I
α � 0) represents the exchange of moments

between phases due to the difference in the velocity of each
phase [20]. Furthermore, the acceleration of water and air is
defined by:

üβ � üs + üβs + grad (u̇β ).u̇βs(β � w, g) (16)

where üs � ∂(u̇)
∂t + grad(u̇).u̇ and üβs �

∂(u̇βs)
∂t + grad

(
u̇βs
)
.u̇.

It should also be noted that we will consider ü � üs .
The linearmomentum balance equation of the unsaturated

soils can be obtained by the summation of all the individual
momentum equations as follows:

div(σ) + ρb � ρü +
[
ρgüws + ρwügs

]
(17)

2.3 Balance of energy

The rate of change in the internal energy of the unsaturated
soil EI is defined as follows:

DEI

Dt
� P − DEk

Dt
(18)

where Ek is the kinetic energy and P is the total power. We
can write the kinetic energy as follows:

DEk

Dt
�

∑

α�w, g, s

∫

�

ραüα.u̇αd� (19)

Also, by defining surface tractions tα as follows tα �
σα.n∗ we get:

P �
∑

α�w, g, s

∫

�

tα.u̇αd� +
∫

�

(
ραb + Iα

)
.u̇αd� (20)

Using the Gaussian theorem, we can rewrite Eq. (20) as
follows:

P �
∑

α�w, g, s

∫

�

(
div
(
σα.u̇α

)
+
(
ραb + Iα

)
.u̇α

)
d� (21)

where div(σα.u̇α) � σα : grad(u̇α) + div(σα).u̇α .

2.3.1 Effective stress

In unsaturated states, the concept of effective stress can be
represented by the equation proposed byBishop, which takes
the form:

σ′ � σ + χpwI + (1 − χ)pgI (22)

where χ is the effective stress or Bishop’s parameter and
is bounded between 0 and 1 in the limits of dryness and
saturation, respectively. Also, I represents the identity tensor.

It is important to note that stress components are assumed
to be positive in tension, while pore air and water pressure
are assumed to be positive in compression. Also, negative
strain denotes compression. Following this sign convention,
we can write:

σ′ � σnet − χpcI (23)

where pc � pg − pw represents matric suction and σnet �
σ + pgI represents the net stress. Moreover, the term χpc
regulates the contribution of capillarywater to effective stress
and is sometimes referred to as “suction stress”, a term that, to
the best of the authors’ knowledge, was proposed originally
in [21–23] and adopted later in other studies such as [24, 25].

Despite the general agreement that the effective stress
parameter (χ ) is influenced by soil properties, formulating a
universally accepted definition of effective stress for unsatu-
rated soils continues to be a challenge due to the difficulties
inherent in direct measurement of this quantity in laboratory
conditions. To address this challenge, various approaches
have been employed to determine this parameter, resulting
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Fig. 1 A schematic representation of a cut surface of unsaturated soils
on a sufficiently small scale where menisci can be observed

in several proposed definitions, each with specific predictive
capabilities (e.g., [10, 17, 26, 27] and others). One early pro-
posal is the use of the degree of saturation as the effective
stress parameter which has been widely used in the literature
(e.g., in [6, 28–31] and many more).

As noted in [13], in order to describe the behaviour of
unsaturated porous media, two general strategies are com-
monly used: macro-mechanics and micro-mechanics. The
former includes phenomenological approaches, while the
latter includes averaging theories. While the degree of sat-
uration has been proposed as an effective stress parameter
from a phenomenological standpoint, there is only mixed
experimental support for its use (e.g., [19, 32]). It is also illu-
minating to explore the underlying assumptions behind the
volume averaging method that was used to derive the degree
of saturation as the effective stress.

In an idealised sketch of a cut surface of unsaturated soils
on a sufficiently small scale where menisci can be observed,
the presence of water, gas, and solid particles is shown in
Fig. 1. If the total force exerted on the surface is sustained
only by water, air, and solid particles, we may write:

σmd�m � σm−sd�s
m + σm−wd�w

m + σm−gd�
g
m (24)

where σm , σm−s , σm−w, and σm−g are the stresses sustained
by the total mixture, of solid particles, water, and gas in
this scale whereas d�m , d�s

m , d�w
m , and d�

g
m are the total

contact surface and the contact surfaces occupied by each
phase. It should be noted that our analysis assumes that mate-
rial properties and thermodynamic quantities at the interface
with other constituents may exhibit step discontinuities. As
pointed out in [33] the “contractile skin” or the interface
between air and water may exhibit different behaviour from
the air and solid phase and thus have a separate contribution
to the stress components. This contribution is ignored in our
analysis similar to [11, 12, 20].

If an area or surface fraction in this scale is defined by:

Aα
m � d�α

m

d�m
(25)

we may write:

σm � σm−s A
s
m + σm−wAw

m + σm−g A
g
m (26)

The area fractions in Eq. (26) must be transformed into
commonly measured soil properties at a macro scale. This
transformation canbe achieved through the scaling procedure
outlined in [20, 34]. However, the resulting transformation
of Eq. (26) will involve area fractions at a macro scale with
limited practical application and no straightforward mea-
surement technique. To connect these quantities to volume
fractions at a macro scale (which are quantities that are com-
monly measured in geotechnical tests), researchers in [10]
made an assumption based on Delesse’s principle. Accord-
ing to Delesse’s law, the volume fractions on a smaller scale
nα
m � d�m

d�
are equal to the area fractions Aα

m in an isotropic
mixture on each cut surface. Therefore, [10] assumed

σm � σm−sn
s
m + σm−wn

w
m + σm−gn

g
m (27)

The average stress tensor, σ at a macroscale is then
obtained in [20] as follows:

σ � 1

�

∑

α�s,w, g

∫

�α

σm_αd�m �
∑

α�s,w, g

nασα (28)

where σα is the “intrinsic phase-averaged” stress tensor of
each phase. It is also possible to rewrite Eq. (28) as follows:

σ � (1 − n)
(
σs − Swσw − Sgσg

)
+ Swσw + Sgσg (29)

by assuming shear terms are negligible in non-solid stress
tensors, we can define:

σβ � −Ipβ(β � w, g) (30)

Using (30) in (29) and rearrangement of (29) yields:

(1 − n)
(
σs − Swσw − Sgσg

)
� σ + Sw pwI + Sg pgI (31)

By comparing (31) and (22), it may be deduced that

σ′ � (1 − n)
(
σs − Swσw − Sgσg

)
and Bishop’s parameter

is equal to the degree of saturation, thereby, the relationship
between effective stress and total stress is written as follows

σ � σ′ − Sw pwI − Sg pgI (32)

It is noteworthy that the averaging approach described
above does not differentiate between capillary water and
adsorbed water (which relatively has a negligible effect on
the soil strength) and assumes an equal contribution of these
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two forms of water to effective stress. However, this assump-
tion can be inconsistent with observations in soils close to
the dry state (e.g., [24]). Particularly in granular soils, a sig-
nificant loss of strength may occur as the soil becomes dry
due to the loss of capillary water and the resulting decrease
of effective stress. As the soil desaturates from the saturated
state, the product of Sw pc initially increases and the contribu-
tion of the term Sw pc in effective stress is expected to reach a
peak. After this stage, further dryingwill result in a decline in
the contribution of Sw pc as noted in [15, 24], among others.
Failure to capture the decrease in effective stress arising from
the loss of capillary pressure can result in a significant over-
estimation of the soil strength and predicting very stiff and
unrealistic behaviour toward dryness. It is important to note
that there can be exceptions. For instance, in slurry clays,
Sw pc may not exhibit an apparent reduction as they near
dryness. The behaviour of these soils near dryness is char-
acterised by a more decisive role of micropores, which limit
water mobility. As these soils approach dryness, micropores
can significantly shrink and it becomes exceedingly difficult
for capillary breakage to occur. Consequently, the decrease in
Sw pc may not be visible. However, for the usual compacted
soils where macropores are more influential, the contribu-
tion of suction to the effective stress is generally expected to
diminish.

In [16], the authors highlighted the limitations of some
commonly used Soil Water Retention Curves (SWRC)
in capturing such a peak in Sw pc. For instance, if
the equation developed in [35] which indicates Sw �⎧
⎨

⎩

(
pc
Pb

)−λb
f or pc > Pb

1 f or pc ≤ Pb
, (with Pb as the air-entry value

and λb as a fitting parameter), is selected, the resulting Sw pc
for pc > Pb will be Pb−λb (pc)

1−λb , an ever-increasing func-
tion of suction when λb < 1. Also, for the so-called van
Genuchten model [36] shown in Eq. (33) (with mv and nv as
two fitting parameters) by taking the first derivative of χpc it
can be shown that the function will only yield a peak when
mvnv > 1.

Sw �
(

1 +

(
pc
Pb

)nv
)−mv

(33)

The preceding discussion may suggest that the main fac-
tor behind this anomaly is the selection of the mathematical
model employed to fit the water retention data. However, as
pointed out in [16], there are instances in experimental data
where the SWRCmodel is accurately fitted, yet the resulting
effective stress values are implausible.

The generalisation of the discussed averaging method to
account for various forms of water in soil pores is a com-
plex task, as it can potentially introduce averaged quantities

observed at very small scales into the equation for effec-
tive stress which can be arduous to measure, particularly in
unsaturated soils. In this regard, we can resort to phenomeno-
logical methods such as an effective degree of saturation
proposed in [16]. In this study, the authors introduced the
“microstructural water ratio”, ξm to develop a new defini-
tion for effective stress which appears to be more suitable for
cohesive soils and is as follows:

χ � Sw − ξm

1 − ξm
(34)

A similar expression is also given in [14]where the authors
assumed that below a residual degree of saturation, all water
in soil pores exists in the form of adsorbed water and does
not contribute to effective stress. The equation uses a residual
degree of saturation, Sw_res as follows:

χ � Sw − Sw_res

1 − Sw_res
(35)

However, both definitions are unable to adequately model
χ in the transitional range toward dryness where capillary
water is gradually disappearing. In other words, both models
predict that the term χpc vanish abruptly near the dry state,
while experimental evidence suggests that there is a gradual
decline in effective stress toward dryness [16] although, as
stated earlier, there can be exceptions such as slurry clays
subjected to drying, which may not show such a decline. A
more comprehensive equation for χ that can simulate such
a gradual decline in capillary effect is proposed in [17] as
follows

χ � Sw − ξm

1 − ξm
+

1

na
ln

(

1 + exp

(

−nsmoth
Sw − ξm

1 − ξm

))

(36)

where the term 1
na
ln
(
1 + exp

(
−nsmooth

Sw−ξm
1−ξm

))
(with na

and nsmooth as two material parameters) ensures a smooth
decrease in the effective stress parameter toward dryness.
Nonetheless, the function appears to be strictly applicable to
cohesive soils in which water that is stored in “microstruc-
tures” can potentially influence effective stress. Even when it
is assumed that ξm → 0 (e.g., for modelling granular soils),
the proposed equation will yield χ > 0 when Sw → 0. How-
ever, this may seem inconsistent with the understanding that
at Sw � 0, the influence of water should completely dimin-
ish, removing any suction-imposed influence on Bishop’s
effective stress. Although in this situation other forces (of a
different nature) might be present in the soil pores, capturing
the effect of such forces on the soil stiffness generally falls
outside the realm of Bishop’s effective stress. It also appears
that χ > 1 for the case of saturation unless it is bounded by
an additional constraint. An additional difficulty may arise
from the experimental determination of ξm .
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Fig. 2 The relationship between the degree of saturation and effective stress, data from [18]

Despite their limitations, an important aspect of the equa-
tions proposed in [17] and [14] is that they assume that the
relationship between χ and Sw is independent of hydraulic
hysteresis. This assumed characteristic has an important
advantage when it comes to calibrating the effective stress
parameters. A recent study in [19] also argued that the
relationship between χ and Sw can be considered to be inde-
pendent of hydraulic hysteresis with reasonable accuracy.
This assumption is adopted in this study because of simplifi-
cation although there is only mixed and limited experimental
support for this assumption. For instance, Fig. 2 demonstrates
the results reported in [18] on the relationship between χ and
Sw in four types of soils subjected to shearing to the critical
state in drying and wetting paths. The results indicate that in
most cases the relationship between the degree of saturation
and effective stress can be assumed independent of hysteresis
with reasonable accuracy. Also, the degree of saturation can
serve as a reasonable approximation of the effective stress
parameter χ for "Sydney Sand" with 25% fines, particularly
in near saturation and up to a moderate degree of saturation.
Therefore, a refined version of χ should have the ability to
converge to the degree of saturation when necessary.

The identified limitations of the effective stress parameter,
extracted from the volume averaging technique, necessitate
a pragmatic solution for refining the contributions from pore
water and air pressure. To facilitate this, we introduced a
correction factor, αe f f to the degree of saturation, with the
intention of improving the predicted form of effective stress
from the volume averaging technique and providing more
precise control over the contribution of capillary water to the
effective stress. Importantly, the assumption is that incor-
porating the correction term, αe f f , will scale nw and ng in

Eq. (29) to their enhanced equivalents, nw
e f f and n

g
e f f , respec-

tively, yielding the following equation:

σ � (1 − n)σs + nw
e f f σw + nge f f σg (37)

where nw
e f f � nα f f Sw. This equation in combination with

the one above, leads to the derivation of nge f f , which should
satisfy the ensuing conditions:

nw
e f f + nge f f � n (38)

This requirement implies that

nge f f � n(1 − α f f Sw) (39)

By defining χ � α f f Sw, we aim to take into account the
following conditions that are outlined per the earlier discus-
sions:

(1) The product of αe f f . Sw should smoothly approach one
at saturation and zero at dryness.

(2) αe f f should be capable of explaining the gradual decline
of effective stress toward dryness, and its decline should
be controlled by adjustable parameters.

(3) The parameters of αe f f should be readily obtainable
from the macroscopic behaviour of soils.

(4) αe f f should not be affected by hydraulic hysteresis.
(5) αe f f should have the ability to converge to unity when

needed, this allows recovery of the degree of saturation
as Bishop’s parameter.

A function that can satisfy these conditions is as follows:

αe f f (Sw) � Sw

(
β1

Sw
β2

)

−1
(40)
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which yields the following form for the effective stress
parameter:

χ � Sw

(
β1

Sw
β2

)

(41)

where β1 and β2 are two material parameters controlling the
effective stress parameters.

Figure 3.a demonstrates that as β2 approaches zero and
β1 remains at one, the effective stress parameter converges
towards the degree of saturation. When β2 is decreased,
the effective stress parameter decreases at a slower rate. In
Fig. 3.b, it can be observed that when β1 is less than one, the
values of the effective stress parameter can initially exceed
the degree of saturation.Asβ1 increaseswithin this range, the
deviation of χ from Sw decreases. When β1 > 1, an increase
in β1 causes the effective stress parameter to decrease more
rapidly.

Figure 4 also illustrates the model’s ability to reproduce
the data collected in [18], as it effectively captures the effec-
tive stress over a wide range of saturation degrees and soil
types using only two parameters. The pairs of [β1, β2] are
respectively set to [0.003,6.0], [0.75,0.02], [1.35,0.01], and
[9.0,1.0] for “70% Sydney sand- 30% Buffalo Dam clay”,
“75% Sydney sand- 30% Buffalo Dam clay”, “Bourke silt”,
and “Buffalo Dam clay” in these simulations.

2.3.2 Work-conjugate pairs

Based on (18) and after some manipulations we obtain:

DEI

Dt
�
∫

�

σ : grad(u̇)d� +
∑

β�w, g

∫

�

σβ : grad
(
u̇βs
)
d�

(42)

and the rate of internal energy per unit volume, eI will be as
follows:

DeI
Dt

� σ : grad(u̇) +
∑

β�w, g

σβ : grad
(
u̇βs
)

(43)

Based on the proposed definition of effective stress param-
eter, we can write:

σw � −nαe f f Sw pwI (44)

and

σg � −n(1 − αe f f Sw)pgI (45)

where per Eq. (10), (44) and (45), we can obtain:

σw : grad(u̇ws) � −nαe f f Sw pwdiv

(
ẇw

nSw

)

(46)

and

σg : grad
(
u̇gs
) � −n(1 − αe f f Sw)pgdiv

(
ẇg

nSg

)

(47)

Also, we can write:

div

(
ẇβ

nSβ

)

� ẇβ.grad

(
1

nSβ

)

+
1

nSβ

div(ẇβ ) (48)

where the definition of div(ẇβ ) from Eq. (14)yields:

div

(
ẇβ

nSβ

)

� − 1

nSβ

(
nSβ

Kβ

Dpβ

Dt
+ nṠβ + Sβdiv (u̇) +

ẇβ

ρβ

.grad
(
ρβ

)
)

+ ẇβ.grad

(
1

nSβ

)

(49)

Since grad
(
ρβ

) � grad
(

ρβ

nSβ

)
, we get:

grad
(
ρβ

) � ρβgrad

(
1

nSβ

)

+
1

nSβ

grad
(
ρβ
)

(50)

Using (50) in (49)gives:

div

(
ẇβ

nSβ

)

� − 1

nSβ

(
nSβ

Kβ

Dpβ

Dt
+ nṠβ + Sβdiv (u̇) +

ẇβ

ρβ
.grad

(
ρβ
)
)

(51)

By substituting (51) in (46) and (47), and using the result
in (43), we obtain:

DeI
Dt

� σ′ : grad(u̇) +
∑

β�w, g

nα
β
e f f pβ Ṡβ + R (52)

where we also define:

(53)

αw
e f f � αe f f , α

g
e f f �

(
1 − αe f f Sw

Sg

)

,

and α
gw
e f f � α

g
e f f − αw

e f f

and

R �
∑

β�w, g

� pβ

(
nα

β
e f f Sβ

Kβ

Dpβ

Dt
+ α

β
e f f

ẇβ

ρβ
.grad

(
ρβ
)
)

(54)
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(a) (b)

Fig. 3 The influence of β1 and β2 on the relationship between the degree of saturation and effective stress

Fig. 4 Model predictions of the
data reported in [18]

where
nα

β
e f f Sβ

Kβ

Dpβ

Dt represents the effect of the compressibility
ofwater andgas in the internal energy termand the convective
term α

β
e f f

ẇβ

ρβ .grad(ρβ ) is associated with the internal energy
arising from the relative flow and generally serves as the
thermodynamic basis for the constitutive models for fluid
flow [37, 38].

Equations (52) to (54) indicate that obtaining a complete
picture of the internal energy in unsaturated soil mixtures
requires taking into account not only the energy contribu-
tion effective stress but also other terms involving the rate
of changes in the degree of saturation, water pressure, air

pressure and spatial variations of partial density of water and
gas.

Considering all these aspects in constitutive modelling
of unsaturated soils is not practically possible. Therefore, a
compromise between theoretical rigour and practicality must
be made. This involves identifying the terms that have the
most significant impact on the model while sacrificing some
degree of theoretical complexity. As stated earlier, this anal-
ysis assumes incompressible solid particles, and we further
assume that the internal energy term associatedwith the com-
pressibility of water is also negligible. Recalling Eq. (13),
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1
ρg

Dρg
Dt � 1

Kg

Dpg
Dt , we can revise Eq. (54) as follows:

(55)

R � pgnα
g
e f f Sg

1

ρg

Dρg

Dt
+ pwαw

e f f
ẇw

ρw
.grad

(
ρw
)

+ pgα
g
e f f

ẇg

ρg
.grad(ρg)

where the first term may be viewed as the unit power of
scaled partial air pressure, nα

g
e f f Sg pg , in compressing the air

volume (under a condition where the air mass is conserved).
The terms associated with the spatial variations of ρw and ρg

mayalsobe assumed tobenegligible, leading to the following
simplified version of the internal energy rate per unit volume:

(56)

DeI
Dt

� σ
′
: grad (u̇) − nαw

e f f pc Ṡw

− nα
gw
e f f pg Ṡw + pgnα

g
e f f Sg

1

ρg

Dρg

Dt

Equation (56) can be compared to those derived in [11]
and [12]. These authors used the degree of saturation as
the effective stress parameter, and if we apply the discussed
simplifying assumptions to their derivations of the internal
energy rate per unit volume, they obtained:

DeI
Dt

� σ
′ ′
: grad(u̇) − npc Ṡw + pgnSg

1

ρg

Dρg

Dt
(57)

where σ
′ ′
is the effective stress tensor when assuming χ

approaches Sw. If αe f f → 1, we will obtain α
gw
e f f → 0

and αw
e f f → 1 and α

g
e f f → 1, χ → Sw, and σ

′ → σ
′ ′
.

In such a condition, the equation derived in this work and
those derived in [11] and [12] will be identical. Thus, their
equations may be regarded as a special case of the presented
formulations when αe f f → 1.

The energy Eq. (56) can be simplified by neglecting terms
associated with air pressure, which are usually much smaller
than those related to suction and effective stress. As α

gw
e f f

approaches zero near saturation, the energy term related to
the change in the degree of saturation paired with nα

gw
e f f pg

will be negligible. Although this term is not generally zero
near dryness, the small slope of SWRC makes any change
in the degree of saturation negligible. Additionally, due to
the small contribution of pore air pressure (which can be in
the form of free air close to dryness), the associated work
can also be assumed negligible. Notably, as αw

e f f approaches

zero close to dryness, the term nαw
e f f pc Ṡw will also approach

zero. These simplifying assumptions lead to the conclusion
that, similar toBiot’s theory for fluid-saturated porousmedia,
the internal energy of the soil is primarily influenced by
Terzaghi’s effective stress in saturation. However, the inter-
nal energy experiences a transitional range where the energy

terms associated with suction and effective stress in unsat-
urated states are dominant. Finally, as the soil dries and the
contribution of capillary pressure diminishes, the energy term
associated with suction gradually vanishes, leaving only the
energy contribution from net stress. Therefore, we write the
simplified energy term as follows:

DeI
Dt

� σ′ : grad(u̇) − nαw
e f f pc Ṡw (58)

which indicates the presence of an additional stress-like
quantity nαw

e f f pc that is paired with the degree of saturation
in the energy term.

The free energy density per an arbitrary unit volume of
the mixture, denoted by e f , can be defined as e f � eI −
T S where S is the total entropy density per unit volume of
the mixture, and T > 0 is the absolute temperature. In the
absence of heat exchange and source, the Clausius–Duhem
inequality implies that DS

Dt ≥ 0. Since T is positive, we can
also write:

T
DS

Dt
� DeI

Dt
− De f

Dt
≥ 0 (59)

Using DeI
Dt per Eq. (58) gives:

σ′ : ε̇ − nαw
e f f pc Ṡw − De f

Dt
≥ 0 (60)

where ε is the strain tensor that is assumed to be defined
ε � εe+εp (with εe and εp as elastic and plastic strain tensors
respectively). We assume that the changes in the degree of
saturation is a result of the changes in suction and volumetric
strain (e.g., [39, 40]). This assumption allows the expansion
of Eq. (60) as follows:

σ
′
: ε̇ − n p̄c ˙̃pc − De f

Dt
≥ 0 (61)

where σ
′ �

(
σnet − αe f f (Sw)

(
Sw + e ∂Sw

∂e

)
pcI
)

with e

being the void ratio and pc � αw
e f f pc is an effective suc-

tion. The dimensionless and strain-like quantity attributed to
suction is denoted as ˙̃pc where ˙̃pc � ∂Sw

∂pc
ṗc. Similarly, we

assume that ˙̃pc can be decomposed into plastic and elastic
parts as follows, p̃c � p̃ce + p̃cp with subscripts e and p
denoting elastic and plastic components, respectively.

We can define the free energy of the mixture as a function
of the elastic strain, the dimensionless and strain-like quan-
tity associated with suction, and a vector of internal plastic
variables, and a vector of internal plastic variables, qI as
follows:

e f � e f
(
εe, p̃ce , qI

)
(62)
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which yields:

De f

Dt
� ∂e f

∂εe
: ε̇e +

∂e f

∂ p̃ce
˙̃pce +

∂e f

∂qI
: q̇I (63)

Using (63), we can write (61) as follows:

(64)

(

σ
′ − ∂e f

∂εe

)

: ε̇e − n

(

p̄c − ∂e f

∂ p̃ce

)
˙̃pce + σ

′

: ε̇p − n p̄c p̃cp − ∂e f

∂qI
: q̇I ≥ 0

where it may be concluded that the term
∂e f
∂εe

indicates a con-

stitutive equation above relates σ
′
and the solid matrix elastic

strain tensor εe. Also, by defining Aq � − ∂e f
∂qI

, we get the
reduced dissipation inequality as follows:

σ
′
: ε̇p − n p̄c ˙̃pcp + Aq : q̇I ≥ 0 (65)

If we assume a convex and smooth yield surface,

F
(
σ

′
, pc, q̇I

)
≤ 0 for satisfying the above inequality, the

principle of maximum dissipation indicates that:

ε̇p � λ̇
∂F

∂σ
′ , ˙̃pcp � λ̇

∂F

∂ pc
, and q̇I � λ̇

∂F

∂q̇I
(66)

where λ̇ is a non-negative quantity that also satisfies the con-
dition of λ̇F � 0.

It is important to note that our assumptions and their con-
sequent results in Eqs. (63) to (66) suggest that a describing
a complete picture of the behaviour of unsaturated soil mix-
ture may require the consideration of the terms associated
with pc and σ

′
(even in the elasticity range) with a possible

incremental relationship of the following form:

(

σ̇
′

˙̄pc

)

�
(

Dσσ Dσ p̄c
D p̄cσ

Dp̄c p̄c

)(
ε̇
˙̃pc

)

(67)

whereDσσ indicates elastoplastic stress–strainmatrix, Dpc pc
describes the incremental relationship between p̃cp and pc
whereas the other two are couplingmatrices in this incremen-
tal relationship. The incremental form ofσ′ (for the particular
case of αe f f (Sw) � 1) was highlighted in [41] and more
recently in [42]. It may also be noted that since the effect of
porosity in the term n ˙̄pc can also be captured by the consti-
tutive matrices, ˙̄pc may be used in place of n ˙̄pc as shown in
Eq. (67).

It is important to note that the above constitutive mod-
elling approach is only one possible approach, and there may
be many other alternatives that can be defined and used. For
instance, we may define an elastic and plastic portion of the
degree of saturation (Swe and Ṡwp , respectively) and express

the degree of saturation rate as the sum of these two compo-
nents, i.e., Ṡw � Ṡwe + Ṡwp . In this case, we can define free
energy as follows:

e f � e f
(
εe, Swe , qI

)
(68)

which leads to the following dissipation inequality:

σ′ : ε̇p − n pc Ṡwp + Aq : q̇I ≥ 0 (69)

and the following incremental relationship:

(
σ̇′
˙̄pc

)

�
(

Dσσ Dσpc
Dpcσ Dpc p̄c

)(
ε̇

Ṡw

)

(70)

Where Dσσ has a role similar to Dσσ but describes the incre-

mental relationship between strain and σ′ instead of σ
′
. It is

important to emphasise that the above assumption implies
that even in the elastic range, the rate of change in the degree
of saturation still contributes to the behaviour of the unsat-
urated soil mixture. This version of effective stress appears
to be more prevalent in the constitutive modelling of unsatu-
rated soils. For the particular case of αe f f � 1, the effective
stress tensor coincides with those adopted in [29, 40, 43–47]
and many more. Also, the presented assumptions on decom-
posing the degree of saturation into reversible and irreversible
parts and using the degree of saturation as the effective stress
parameter appear to be adopted in studies such as [30, 48,
49] and more recently in [50].

Another possibility is the use of net stress as follows:

(
σ̇net
˙̄p′
c

)

�
(
Dσnetσnet Dσnet p′

c

D p̄′
cσnet

Dp̄′
c p̄

′
c

)(
ε̇

ėw

)

(71)

where pc′ � pc
1+e and ew � Sw.e. Similarly, Dσnetσnet

describes the incremental relationship between net stress and
strain and the other matrices have a similar role to their
counterparts in the previous cases. For the particular case
of χ � Sw, in [51] and [52], the authors were among those
who mentioned this possibility.

While the theoretical frameworks presented above show
promise, enforcing the numerous constraints they require
is difficult in practice due to experimental limitations. For
instance, the associated flow rule assumption is usually
inadequate for describing granular soil behaviour and over-
consolidated clays (e.g., [53]). Furthermore, many elasticity
equations are phenomenological models and hypoelastic,
with the sole constraint that strain is incrementally recovered
upon unloading. However, these models can violate general
thermodynamic restrictions in an isolated system (e.g., [54,
55]). Additionally, obtaining precise experimental measure-
ments of the required elasticity matrices can be a significant
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challenge. For many practical applications, the elastic range
is only described by using Dσσ (or its counterparts in other
arrangements) as an incremental relationship only between
the chosen stress tensor and strain. These elasticity models
are typically generalisations of existing elastic matrices for
saturated soils by substituting Terzaghi’s effective stress with
unsaturated effective stress. If this assumption is followed,
the internal energy term associated with the degree of satu-
ration may only be considered in the dissipation inequality
(an assumption that appears to be used in [12, 56]) and as
a term that will have negligible contribution in the elasticity
range. This assumption relaxes some of the above constraints
and can lead to the development of a simpler constitutive
equation for unsaturated soils. In this context, to describe
the behaviour of unsaturated soils using the proposed effec-
tive stress definition we may use the following incremental
relationship:

(
σ̇

′

˙̄pc

)

�
(

Dσσ Dσ p̄c

D p̄cσ Dp̄c p̄c

)(
ε̇

Ṡw

)

(72)

Referring to the arrangement discussed in Eqs. (61) to
(67), it is worth mentioning an alternative phenomenologi-
cal approach that can avoid the difficulties associated with

obtaining the incremental term αe f f (Sw)
(
Sw + e ∂Sw

∂e

)
in the

definition of σ
′
. For a particular case where αe f f (Sw) � 1,

[41] showed that a phenomenological function B (which
takes only suction as input) can be defined in such a manner
that

B(pc) �
(

Sw + e
∂Sw

∂e

)

(73)

However, if B(pc) is explicitly given using effective stress
data, Eq. (73) adds a new constraint where the evolution of
the degree of saturation with respect to void ratio must be
obtained from B. Further discussions on this approach can
be found in [57].

The above suggestions serve as general guidelines for
selecting appropriate work-conjugate pairs when an alterna-
tive to the degree of saturation is chosen as the effective stress
parameter.Wewould like to also emphasise the potential use-
fulness of pc as a stress-like quantity that can be incorporated
to develop hardening laws that are valid over a broader range
of saturation, especially near dryness. This quantity vanishes
at the limits of saturation and dryness and, when combined
with appropriate hardening law, can facilitate modelling the
gradual loss of strength toward the dry state.

Finally, it is worth noting that the idea of pinpoint-
ing a comprehensive effective stress definition that, when

utilised in isolation in constitutive models, can unravel vari-
ous aspects of soil behaviour such as collapse and shear, can
be appealing. However, deriving such a definition and estab-
lishing a thermodynamics basis for it can be an exceedingly
challenging task. As a result, following our previous dis-
cussions, a more pragmatic approach may be more viable.
This involves the synthesis of a phenomenological definition
of effective stress with an additional constitutive modelling
quantity, such as pc, to shed light on various aspects of unsat-
urated soil behaviour.

Still, the necessity for an additional stress-like compo-
nent does not necessarily imply its universal application in
all aspects of the constitutive model’s formulations. Instead,
there are worthwhile practical simplification strategies to
consider. One such strategy acknowledges the fundamental
role of the critical state in traditional soil plasticity. It is based
on the widely accepted assumption that the internal friction
angle remains relatively constant across different saturation
levels, even under fully saturated conditions (e.g., [30] and
many others). This approach makes it possible to determine
the χ parameter through shear data analysis. In this context,
χ would be a parameter that when adjusted will result in a
unique internal friction angle covering a wide range of satu-
ration levels.

Moreover, the incorporation of an additional constitutive
modelling variable such as pc can effectively handle other
facets of soil behaviour, such as isotropic hardening, which
often correlates with isotropic compression data [58]. This
proposition presents itself as one potential systematic frame-
work for the constitutive modelling of unsaturated soils.

3 Finite element simulations

Here we present a finite element discretisation of the dynam-
ics of unsaturated soils that can also model frictionless
contact with impervious solids as outlined in [59]. Simi-
lar to [60], this approach takes displacement, suction, and
pore water pressure as primary unknown variables, although
alternative arrangement can also be done e.g., by taking dis-
placement, pore water pressure and pore air pressure [61].

The finite element equations can be obtained based on the
weak forms ofEqs. (17) and (14). It isworth recalling someof
the key simplifying assumptions before presenting the weak
forms. They include ignoring the compressibility of solid
particles, an isothermal and chemically reactive environment,
and ignoring the spatial variations of solid density. In addition
to these, following [20], we assume üβs is negligible.
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Considering δpg � δpc + δpw, Eq. (17) can lead to the
following weak form:

(74)

∫

�

δpw (Aw) d� +
∫

�

(δpc + δpw)
(
Ag
)
d�

+
∫

�qw

δpw

[
ẇw.n∗ − ẇ

w
]
d�

−
∫

�qg

(δpc + δpw)
[
ẇg.n∗ − ẇ

g
]
d� � 0

where

(75)

Aβ � nSβ

Kβ

Dpβ

Dt
+ n

DSβ

Dt
+ Sβdiv (u̇)

+ div
(
ẇβ
)
+ ẇβ.

1

ρβ

grad(ρβ )

In addition to the presented conservation of mass and
linear momentum balance of the mixture, we assume a gen-
eralised Darcy’s law, which can be defined in the following
form [7]:

ẇβ � kβ

[−grad(pβ ) + ρβ(b − ü)
]
, (β � w, g) (76)

where that kw and kg are the permeability matrices of the
medium governing the flow of the pore fluids, defined by

kβ � kint · krβ
ηβ

(77)

The relative permeability of the water and air phases, krw
and krg , respectively, are defined as the ratio between the
permeability at an unsaturated state and when fully saturated
for which we have used the van Genuchten model. Thus,
krw and krg are bounded between 0 and 1. The intrinsic or
absolute permeability matrix of the soil is denoted by kint
and the viscosity of each fluid is denoted by ηβ .

Furthermore, Eq. (14) leads to the following weak form:

∫

�

δu
(
LTσ + ρb − ρü

)
d� +

∫

�t

δu
(
t − ITσ σ

)
d� � 0 (78)

The imposed Dirichlet boundary conditions for the pri-
mary variables on the boundaries are:

u � u on �u (79)

pw � pw on �pw (80)

pw � pc on �pc (81)

whereas theNeumann boundary conditions on the prescribed
tractions and fluxes are:

ITσ σ � t on �t (82)

kw

[−grad(pw) + ρw(b − ü)
]
.n∗ � ẇw on �qw (83)

kg
[−grad

(
pg
)
+ ρg(b − ü)

]
.n∗ � ẇg on �qg (84)

where ẇβ (β � w, g) are the prescribed values of the
outflow rate of non-solid phase on the permeable boundaries
�qβ (β � w, g).

In addition, we define,

ITσ �
⎡

⎢
⎣

nx 0 0 ny 0 nz
0 ny 0 nx nz 0
0 0 nz 0 ny nx

⎤

⎥
⎦ (85)

and

n∗ �
⎡

⎢
⎣

nx
ny
nz

⎤

⎥
⎦ (86)

with nα(α � x , y, z) as a unit outward normal vector to the
boundaries in x, y and z directions.

After linearisation of the additional energy arising from
frictionless contact in the governing equation, the finite ele-
ment discretisation of the fully coupled equations can be
expressed as presented in [59, 62]:

MuÜ + CU̇ +
∫

BTσd� +
ns⋃

i�1

KNCi � Fu +
ns⋃

i�1

FNCi (87)

MwÜ +QT
wU̇ + CwwṖw + CwcṖc +HwwPw +HwcPc � Fw

(88)

McÜ + RT
c U̇ + CcwṖw + CccṖc +HT

wcPw +HccPc � Fc

(89)

where ns is the number of active contact segments. The
unknown variables in the equations are displacement, pore
water pressure, and suction represented by U, Pw and Pc,
respectively. The force vectors and matrices (Appendix A)
are denoted by F, M, Q, H, and C. The subscripts NC, u, w,
and c denote the association of a force vector or matrix to
normal contact and the degrees of freedom of displacement,
pore water pressure, and suction. The definitions of all matri-
ces as well as the contacted-related terms, KNCi and FNCi ,
are given in [62].
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The load and the flow vectors appearing in the governing
finite element equations are defined by:

Fu �
∫

�

NT
uρbd� +

∫

�t

NT
u td� (90)

Fw �
∫

�

(
grad

(
Npw

))T (kgρg + kwρw

)
bd�

−
∫

�qw

NT
pwẇwd�−

∫

�qw∩�qg

NT
pwẇgd�

−
∫

�Pc∩�qw

NT
pwẇ

T
g n

∗d�

−
∫

�

NT
pw

(
ẇT

w

ρw

.grad(ρw) +
ẇT
g

ρg
.grad

(
ρg
)
)

d� (91)

Fc �
∫

�

(
grad

(
Npc
))Tkgρgb d�−

∫

�qg

NT
pcẇg d�

−
∫

�

NT
pc

ẇT
g

ρg
.grad

(
ρg
)
d� (92)

The convective terms grad(ρβ ) that appears in Eqs. (91)
and (92) is sometimes assumed to be negligible (e.g., [61,
63]). Nonetheless, if the incorporation of such a term is
needed in the analysis, such a term can be converted to
grad(pβ ) using Eq. (13) or more sophisticated alternatives
(see [38]).

Linearisation of the term
∫
BTσd� depends on the choice

of work-conjugate pairs used to develop the constitutive
model as discussed in Sect. 2.3.1. For instance, if the
approach outlined in Eq. (72) is adopted, in an elastoplas-
tic analysis, Eq. (87) may be written as follows:

(93)

MuÜ + CU̇ +KU +
ns⋃

i �1

KNCi − QwPw − Q∗
cPc

� Fu +
ns⋃

i�1

FNCi

where since the degree of saturation is a function of suction
and strain, we can assume:

dσ′ � D : dε + Sdpc (94)

By assuming mT �
{
1 1 1 0 0 0

}
, D and S will be

obtained as follows:

D � Dσσ +
∂Sw

∂εv

Dσpc ⊗ m (95)

and

S � ∂Sw

∂pc
Dσpc (96)

Therefore, according to Eq. (41), K or the so-called stiff-
ness matrix depends on both Dσσ and Dσpc . Additionally,

Q∗
c � Qc + Q2

c where Qc � ∫

�

BT

⎛

⎜
⎝1 − S

(
β1

S
β2
w

)

w

⎞

⎟
⎠mNpcd�

and Q2
c results from the contribution of Dσpc in the model

and may be defined as follows:

Q∗
c �

∫

�

BTSNpcd� (97)

Time integration is done following the extension of the
generalised-αmethod to fully coupled analysis in [64]. Also,
a special case of this approach known as the Newmark
method is presented in [60].

If hydraulic hysteresis is ignored, the equation SWRC can
be obtained following the suggestion in [65] by defining a
scaled suction, p∗

c � pce�′
(where e is the void ratio and �′

is a material parameter regulating the impact of void ratio on
SWRC) as follows [40]:

Sdw �
(

1 +
(
Pd p∗

c

)ndv
)−md

v

(98)

where Pd denotes the inverse of the air-entry value. ndv and
md

v are the model parameters that control the slope of the
SWRC. In the presence of hysteresis, it is assumed that the
main wetting and drying curves can be described by Eq. (98).
The region bounded by the two curves is described by ‘scan-
ning curves’ through an incremental relationship between the
changes of the saturation degree as follows [40]:

dSw � Y ∗.dp∗
c (99)

with Y ∗ defined as follows

Y ∗ �
(

p∗
c

p∗
c
α

)bα ∂Sα
w

∂p∗
c
+ Y ∗sc(α � w, d) (100)

where w and d denote wetting and drying, respectively, and
p∗
c
α is defined by:

p∗
c
α � Sα

w
−1(Sw), (α � w, d) (101)

Also, bw and bd are model constants with negative and
positive quantities in the wetting and drying processes,
respectively. Moreover, in Eq. (100), Y ∗sc ensures smooth
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transitions between the wetting and drying curves on the
scanning curves and is defined as follows:

Y ∗sc � Y ∗r
(

p∗
c − p∗

c
α

p∗
c
r − p∗

c
α

)bsc

, (α � w, d) (102)

where Y ∗r is the slope of the scanning curve that will be
stored in the memory upon a reversal in the wetting/drying
process [40]. bsc can be considered 25 as a default. Other
parameters in the upcoming analyses are set as follows: Pd �
Pw

2 � 98 kPa−1, ndv � nw
v � 0.28, md

v � mw
v � 0.98, and

bd � −bw � 3.0, and �′ � 10.6.
In the coming examples, we compare two cases with dif-

ferent values of β1 and β2 in the effective stress equation.We
assess the groundusing a contact-impactmodel that transmits
an impulse load with a duration of 0.3 and a peak of 1.0 kN.
In all analyses, we convert the measured displacement at the
centre of the impact to a dynamic hardness or indentation
hardness, Kd which is defined as the peak impact force, Fmax

divided by the peak of displacement, umax as follows:

Kd � Fmax

umax
(103)

In the mechanical model, we use the non-linear elastic
model for unsaturated soils presented in [66] as follows:

K � K0 patm
1 + e

e

(
p′

patm

) 2
3

(104)

where patm is the atmospheric pressure, p′ represents the
mean effective stress, and K0 is a material parameter that is
assumed to be 150 in all the coming analyses.

The shear modulus, G, is defined by:

G � G0 patm
(2.97 − e)2

1 + e

(
p′

patm

) 1
2

(105)

whereG0 is amaterial parameter that is set to 125 in the simu-
lations. It should be noted that aminimumpressure of 0.1 kPa
is chosen in all the analyses for p′ to avoid numerical insta-
bility when the initial mean effective stress is close to zero
(e.g., near saturation). A 2 m by 2 m domain of unsaturated
soil (which is schematically shown in Fig. 5) is discretised
into 900 nodes and 410 6-noded quadratic elements for dis-
placement coupledwith two 3-noded elements for porewater
pressure and suction. The side boundaries of the mesh are
restrained against horizontal displacements, and vertical dis-
placements are not allowed at the bottom boundary. Drainage
occurs only from the top boundary portion that is not in con-
tactwith the impervious plate. The initial void ratio is 0.5, and
the hydraulic state of the material is assumed to be lying on
the main drying curve. The at-rest earth pressure coefficient

Fig. 5 Schematic representation of the Finite Element model

Table 1 The constitutive and general material parameters

Description Symbol Value Unit

Density of solid particles ρs 2700 Kg m−3

Density of water ρw 997 Kg m−3

Density of air ρa 1.1 Kg m−3

Bulk modulus of water Kw 2.25 ×
106

kPa

Bulk modulus of air Kg 1.01 ×
102

kPa

Intrinsic permeability in the
saturated state

k 1 ×
10−10

m2

Viscosity of water ηw 1.0 ×
10−3

Ns m−2

Viscosity of air ηa 1.8 ×
10−5

Ns m−2

is 0.4, and geostatic stress is established initially. Dynamic
plate-soil interaction is simulated using 1000 time steps of
size 0.00003 s. Other parameters of the analysis are given in
Table 1.

Figure 6a displays the selected forms for χ used in the
analyses, and Fig. 6b and c show the corresponding shapes

of χpc. When χ � Sw

(
β1

Sw
β2

)

, the pair of the effective stress
parameters [β1, β2] are assigned the following values of [2.0,
0.5] (the reference case), [2.0, 0.4], and [1.5, 0.5]. It can be
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Fig. 6 a Assumed forms for χ in the analyses. b Sw pc. c) Sw

(
β1

Sw
β2

)

pc

observed that, for the selected SWRC parameter, the term
Sw pc increases continuously as the material becomes drier,
whereas the presented effective stress model predicts a peak
for χpc at a degree of saturation of approximately 0.3 in the
reference case. The two other cases with the proposed effec-
tive stress illustrate the impact ofβ1 andβ2 on the predictions
relative to the reference case.When β1 is decreased at a given
β2, the effect of capillary suction decreases at a slower rate,
and consequently, the peak in the χpc term shifts towards
dryness and increases in magnitude. Similarly, when β2 is
decreased at a given β1, the peak also shifts towards dryness
and increases.

The predicted dynamic hardness during the contact in both
series of analyses is shown in Fig. 7. The dynamic hardness
is investigated at 15 different initial suction values ranging
from 0.005 to 10,000 kPa (0.005, 0.03, 0.3, 1, 5, 20, 60, 120,
250, 400, 800,1500, 3000, 5000, and 10,000 kPa). Figure 7.a
reveals that an ever-increasing dynamic hardness is predicted
as thematerial becomes drier when the degree of saturation is
selected as χ . However, the proposed effective stress model
can only predict an increase in dynamic hardness up to a

degree of saturation of roughly 0.3 for the reference case,
as shown in Fig. 7b. Below this degree of saturation, the
dynamic hardness decreases. The other two cases, also indi-
cate that decreasing β1 and β2 results in an increase in the
predicted dynamic hardness. Moreover, the peak of the hard-
ness shifts towards dryness as these values decrease.

The reason for the difference in the predicted dynamic
hardness between the two approaches is due to the way they
modify the initial mean effective stress and consequently,
the elastic modulus per Eqs. (104) and (105). In the first
approach, the effective mean stress is allowed to increase
indefinitely, leading to a continuous increase in the predicted
dynamic hardness. On the other hand, the proposed effective
stress model restricts the increase in effective mean stress
to a certain degree of saturation, beyond which it assumes a
more prominent vanishing capillary effect and a decline in
effective stress. As a result, the increase in dynamic hardness
is controlled and limited, leading to a different prediction of
dynamic hardness as compared to the first approach.
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Fig. 7 Obtained dynamic hardness when a χ � Sw . b χ � Sw

(
β1

Sw
β2

)

4 Conclusion

This paper presented an extension of Biot’s theory of
dynamic wave propagation in fluid-saturated media to model
dynamic structural interactionswith soils across awide range
of degrees of saturation. This was achieved by introduc-
ing a novel definition for effective stress, which is founded
on a rigorous thermodynamic basis and validated against
experimental evidence. Additionally, work-conjugate pairs
for the new effective stress are identified. The capabilities
of a fully coupled finite element contact model based on
the new effective stress parameters are then demonstrated
through numerical examples. Results indicate that the new
model successfully allows controlling the vanishing effect of
capillary suction toward dryness.
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Appendix A

The finite element matrices and vectors are defined by:

Mu �
∫

�

NT
u ρNud� (106)

Mw �
∫

�

(
grad

(
Npw

))T ( kgρg + kwρw

)
Nud� (107)

Qw �
∫

�

BTmNpwd� (108)

MC �
∫

�

(
grad

(
Npc
))TkgρgNud� (109)

Hww �
∫

�

(
grad

(
Npw

))T ( kg + kw

)(
grad

(
Npw

))
d� (110)

Hcc �
∫

�

(
grad

(
Npc
))T ( kg

)(
grad

(
Npc
))
d� (111)

Hwc �
∫

�

(
grad

(
Npw

))T ( kg
)(
grad

(
Npc
))
d� (112)

Cww �
∫

�

NT
pwC

*
1Npwd� (113)
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Ccc �
∫

�

NT
pcC

*
2Npcd� (114)

Cwc �
∫

�

NT
pwC

*
3Npc d� (115)

Ccw �
∫

�

NT
pcC

*
3Npwd� (116)

Rc �
∫

�

BTC6mNpcd� (117)

Also, we define.

C*
1 � nSw

Kw

+
nSg
Kg

(118)

C∗
2 � Sg

n

Kg
− n

∂Sw

∂pc
(119)

C∗
3 � Sg

n

Kg
(120)

C6 � 1 −
(

Sw + e
∂Sw

∂e

)

(121)
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