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Abstract
Inclusion of contact in mechanical designs opens a large range of design possibilities, this includes classical designs with
contact, such as gears, couplings, switches, clamps etc. However, incorporation of contact in topology optimization is chal-
lenging, as classical contact models are not readily applicable when the boundaries are not defined. This paper aims to address
the limitations of contact in topology optimization by extending the third medium contact method for topology optimization
problems with internal contact. When the objective is to maximize a given contact load for a specified displacement, insta-
bilities may arise as an optimum is approached. In order to alleviate stability problems as well as provide robustness of the
optimized designs, a tangent stiffness requirement is introduced to the design objective. To avoid a non-physical exploitation
of the third medium in optimized designs, small features are penalized by evaluating the volume constraint on a dilated
design. The present work incorporates well-established methods in topology optimization including Helmholtz PDE filtering,
threshold projection, Solid Isotropic Material Interpolation with Penalization, and the Method of Moving Asymptotes. Three
examples are used to illustrate how the approach exploits internal contact in the topology optimization of structures subjected
to large deformations.

Keywords Nonlinear topology optimization · Third medium contact · Large deformation

1 Introduction

Topology optimization has foundmultiple applications rang-
ing from micro- and macro-scale problems to multiphysics
problems such as fluid flow, heat transfer, and nanophotonics.
Non-linearities are nothing new to topology optimization,
and geometrical and material non-linearity for large strain
topology optimization has been applied successfully in the
design of structures with large deformations [2, 3, 5, 8, 12,
16, 23]. When subjected to large deformations, such struc-
tures may engage in contact, and including such contact in
the topology optimization process extends the solution space,
makingmore advanced designs possible. This may be of spe-
cial interest in the design of compliant mechanisms or soft
robotics, where human-made designs already utilize contact.
However, until recently, there has been no viable approach
to include internal contact in topology optimization due to
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the seeming paradox: How to assign contact forces when the
boundaries are not defined?

Some approaches exist to include internal contact in topol-
ogy optimization. One such approach [11] has been applied
successfully in the design of shape-morphing compliant
mechanisms. This approach employs an explicit treatment
of contact surfaces—solid and void phases are determined
based on a negative mask scheme, a smooth boundary is
then determined by a boundary resolution and smoothing
scheme. Contact between these surfaces is modeled by a
Lagrange multiplier approach. A related approach, which
is based on frame-structures and includes contact between
different members, also exists [18].

Another approach, which also includes internal contact,
is the level set based approach for sliding contact interfaces
proposed by [13]. This approach is based on the distribu-
tion of two separate materials sharing an interface. A level
set method is used to define the interface, along which the
contacting bodies may slide or separate. Tractions along
these interfaces are modeled through a Lagrange multiplier
approach. Lawry & Maute illustrate the approach on the
design of anchors embedded in a host material. It should be
noted that the method is developed based on small displace-
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ment gradients and that there are no gaps in this approach,
i.e. there is no void region between the contacting surfaces,
which has to be passed before contact is established.

A promising new approach to include internal self-contact
in topology optimization has recently been proposed [1]. This
approach is very appealing to topology optimization since
it: (1) utilizes the already present void region as a contact
medium, i.e. requires no additional regions or surfaces to
be defined, and (2) implies a differentiable contact formula-
tion. Specifically, the method incorporates the third medium
contact method [25] into density-based topology optimiza-
tion by exploiting the void region as a contact medium. Third
medium contact is an implicit contact established by the stiff-
ening of a highly compliantmedium compressed between the
contactingbodies.Themethod is differentiable since the third
medium has a finite stiffness, albeit very low, at any level of
compression with non-zero volume. This results in the con-
tact being included in the sensitivities during optimization,
thus making the third medium contact method very attractive
for gradient-based topology optimization.

The works by [1, 11, 13, 18] are at present the only
approaches known to the authors which include internal con-
tact in topology optimization with the aforementioned limi-
tations. In addition to these, a range of different approaches
to include external contact interfaces exist. A good overview
may be found in [9], where the authors themselves introduce
an approach to include frictional contact betweenmembers of
the design domain and some external boundary. An overview
of earlier work is given in a review paper by Hilding, Klar-
bring, and Petersson [7]. The authors of [11] also have prior
work with a very similar approach, however, without contact
between different members in the design domain, i.e. contact
is limited to masks specified in the method [10].

Usually, in fictitious domain methods, the void region will
tend to invert and introduce numerical instabilities when
severely deformed. This issue can be alleviated in vari-
ous ways. Common approaches include (1) convergence
criterion relaxation [17], (2) void element removal [4],
and (3) void element linearization [24]. However, none of
these approaches are well suited for topology optimization
with third medium contact. Convergence criterion relaxation
relaxes the convergence criterion for void regions; however,
for third medium contact, the void region is vital as it serves
as a contact medium and thus should not be compromised.
Void element removal is not a viable option since the void
elements are needed as a contact medium. Void element lin-
earization is not a suitable option either, as shear locking
in the contact, where elements are highly compressed, will
add non-physical stiffness to the contact. An approach more
suitable when considering third medium contact has recently
been introduced [1]. This method introduces a void regular-
ization term that adds strain energy to bending and warping
deformations in the void elements. The effect of void regu-

larization on the physical behavior of the structure without
contact is negligible, since a very lowdegree of regularization
provides sufficient stabilization.

A challenging design problem is that of a stiff coupling
subjected to large deformations. For such problems, maxi-
mization of reaction forces can lead to designs at the very
limit of their stability, where small displacement perturba-
tions may cause the coupling to disengage. The present work
addresses this issue by adding tangent stiffness terms to
the design objective for couplings subject to large deforma-
tions; i.e. if an objective function maximizes a given point
on a curve, then the slope of the curve at this point is also
included in the objective function. A topology optimization
approach that includes a dilated and an eroded density field is
applied together with a staggered solution approach employ-
ing the widely used Method of Moving Asymptotes (MMA)
[22]. Third medium contact is included through the applied
material law and Solid Isotropic Material Interpolation with
Penalization (SIMP) [20].

Section 2 outlines the modeling approach by (a) defining
the material model including void regularization, (b) defin-
ing the material interpolation scheme including the filtering
and projection method employed, and (c) stating the min-
imization problem and the solution algorithm employed to
solve the problem. Section3 applies the modeling approach
to three problems: (A) a lifting mechanism, (B) a stiff cou-
pling problem resulting in the formation of hooks, and (C) a
bending problem inspired by an endoscope bending section.
Conclusions are included in Sect. 4 and the general nota-
tion employed throughout the present work is summarized
in Table 1.

2 Modeling approach

2.1 Material model

The hyperelastic material model including void regulariza-
tion presented by [1] is adopted. The model is restated below
with a minor change to the scaling of the regularization term.

Material strain energy density is expressed by an isotropic
neo-Hookean law

�(u) = K

2
(ln |F |)2 + G

2

(
|F |−2/3||F ||2 − 3

)
(1)

where F = I + ∇u is the deformation gradient tensor, and
K and G are bulk and shear modulus respectively, which are
K = 5/3MPa and G = 5/14MPa for all examples treated
in the present work.

Anaugmented strain energydensity expression is obtained
by adding a void regularization term to the material strain
energy density
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Table 1 Notation conventions

A · B = Ai Bi Scalar product

A : B = Ai j Bi j Double contraction

A
.
.
. B = Ai jk Bi jk Triple contraction

|A| = det(A) Determinant of matrix A

||A|| = √
A : A Frobenius norm of matrix A

∇A = ∂Ai

∂X j
Spatial gradient of a vector field A

HA = ∂2Ai

∂X j∂Xk
Spatial Hessian of a vector field A

〈x〉 = max(0, x) Positive part function

�(u) = �(u) + kr
1

2
Hu

...Hu (2)

where Hu is the Hessian of the displacement field u, and kr
is a scaling constant given by

kr = k̄r L
2K , (3)

where L is a characteristic length scale of the structure. In
the original form presented in [1], the regularization term in
Eq. (2), was scaled by the factor exp(−5|F |), such that reg-
ularization diminishes in regions under tension. This term
has been omitted in the present work to have a homogeneous
regularization throughout the domain. Additionally, the void
indicator function from [1] which ensured that regulariza-
tion was only applied in void regions has been removed.
With an adequately small value of k̄r the contribution of the
regularization to the strain energy density in solid regions is
negligible. The constant k̄r is set to k̄r = 10−6 for consis-
tency with [1]. Lower values reduce possible stiffening of the
void region, whereas higher values stabilize the problem.

The regularization term effectively stabilizes void regions
by penalizing higher order deformations, i.e. warping and
bending deformations. A value of k̄r should be chosen as
small as possible to reduce the effect of regularization on
the physical behavior of the problem, yet sufficiently large
to effectively stabilize void regions.

Mechanical equilibrium can be expressed in a general
weak form

V(u, q; δu, δq) = 0 ∀ δu, δq (4)

where

V(u, q; δu, δq) =
∫

�

�,u(u; δu) d �

+
∫

�D

{q · δu + (u − uD) · δq} d �D.

(5)

Here, � is the modeling domain, �,u(u; δu) is the first vari-
ation of the strain energy density with respect to u, �D is
a boundary on the domain where a displacement uD may
be prescribed, and q is a vector field representing the reac-
tion traction on the boundary �D as a result of the enforced
displacement uD .

2.2 Contact throughmaterial interpolation

In topology optimization, the stiffness of the material at any
given point should depend on the material density such that
solid regions represent the material model and void regions
represent the absence of material. Values in between these
two extremes are interpolated. In this case, the material inter-
polation may be introduced by multiplying the strain energy
density from Eq. (1) with a material interpolation function,
here denoted by γ (ρ̃). By introducing this material inter-
polation, the mechanical equilibrium, as introduced in the
previous section, takes the form

R(ρ̃, u, q; δu, δq)

=
∫

�

{
γ (ρ̃)�,u(u; δu) + kr Hu

...Hδu

}
d �

+
∫

�D

{q · δu + (u − uD) · δq} d �D = 0 (6)

where ρ̃ is a density field.
The material interpolation γ (ρ̃) is obtained by combining

the SIMP scheme [20] and a smooth Heaviside projection
function ¯̃ρ(ρ̃), resulting in

γ (ρ̃) = γ0 + (1 − γ0) ¯̃ρ(ρ̃) p, (7)

where p is a penalization parameter and γ0 is a minimum
stiffness value of γ (ρ̃). The projection function ¯̃ρ(ρ̃), which
yields the physical material density, projects values of ρ̃

towards 0 and 1. It is described in the following section. A
penalization of p = 3 is applied throughout the presentwork.
In solid regions γ (1) = 1 and in void regions γ (0) = γ0.
Thus, γ0 expresses the difference in magnitude of the strain
energy density expression from Eq. (1) between solid and
void regions. In the undeformed configuration, this corre-
sponds to the stiffness ratio between solid and void regions.

It should be emphasized that thematerial interpolation, i.e.
the scaling of the strain energy density, naturally introduces
third medium contact to the mechanical model. If the param-
eter γ0 is chosen sufficiently low, the void may be deformed
with close to no resistance. However, when void regions are
compressed towards zero volume, the neo-Hookean mate-
rial model stiffens the region and thus enables it to transfer
loads. If the parameter γ0 is chosen too high, parasitic forces
will affect the design obtained as a result of the optimiza-
tion. This has been a point of critique of the third medium
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Fig. 1 C-shape problem with void region �v and solid region �s .
Thickness t = 0.1L

contact method [26]. However, choosing a sufficiently low
value alleviates this issue. Figure 1 shows the contact prob-
lem from [1] which serves as an example. The effect of γ0 is
shown in Fig. 2 for three different displacements imposed on
the problem. From Fig. 2 it is evident that high values of γ0
1) transfer forces between non-contacting members through
the void and 2) do not establish proper contact when contact
is expected. A value of γ0 = 10−6 yields results with an
acceptably low level of parasitic forces for the neo-Hookean
material fromEq. (1). Thus γ0 = 10−6 is used throughout the
present work. This stiffness contrast value is also common
in structural topology optimization in general.

An evaluation of the total strain energy in a given finite
element for the case of uDy = −0.4L and γ0 = 10−6, reveals
that the ratio between energy from the regularization termand
the Neo-Hookean material is 1.25 · 10−3, when evaluated in
the element with the highest level of regularization energy in
the void region. This emphasises that the physics are dom-
inated by the material law and not void regularization. The
corresponding ratio in the solid region is 0.67 · 10−3, which
supports the argument from Sect. 2.1 stating that the void
indicator function may be neglected.

2.3 Parametrization of the physical material density
field

A well-established method in topology optimization is to
work with a smooth density field ρ̃, obtained through a filter-
ing step applied to an underlying design field ρ, discretized
either as elementwise constant or with linear finite elements
[21, 23].

Helmholtz filtering, proposed in [14], is a rather simple
and universal approach which finds a smooth field ρ̃ by solv-
ing a linear PDE

∫

�

(ρ̃ − ρ) δρ̃ + r2∇ρ̃ · ∇δρ̃ d� = 0 (8)

with natural boundary conditions on ∂�. In general, ρ and ρ̃

canbe approximated in distinct discrete finite element spaces.
After discretization, Eq. (8) is equivalent to

M1 · ρ̃ + M0 · ρ = 0 ⇒ ρ̃ = −M−1
1 M0 · ρ (9)

where ρ and ρ̃ are the corresponding discretized vectors, and
M0 andM1 are the assembled tangent matrices from Eq. (8),
for the coupling between the two variables. Linearity with
respect to ρ̃ allows for a factorization of the system, as done
in [14]. Here, an LU factorization is applied to M1 and its
transpose.

The filtering step outlined above yields a smooth density
field ρ̃ characterized by intermediate densities. In order to 1)
obtain a design dominated by solid and void regions and 2)
enable sharper transitions between solid and void, the filtered
density ρ̃ is projected through the function

¯̃ρ(ρ̃) = tanh(βη) + tanh(β(ρ̃ − η))

tanh(βη) + tanh(β(1 − η))
(10)

where β is a projection parameter and η is a threshold param-
eter. Values of ρ̃ above η are projected towards 1, and values
below η are projected towards 0. The intensity of this projec-
tion is controlled by β. Two thresholds are applied, ηe and
ηd with ηe > ηd . The application of the thresholds, which
respectively yield an eroded design ¯̃ρe and a dilated design
¯̃ρd , is outlined in Sect. 2.4 [23]. Here, the aim is to penalize
small features in the design, and not to control the length
scale directly. Thus the choice of the thresholds is not vital,
they are set to ηe = 0.50 and ηd = 0.40 throughout the
present work. Subscripts e and d are added to ρ̃ to indicate
whether the filtered design ρ̃ shall be eroded or dilated if
passed through the projection function of Eq. (10).

2.4 Minimization problem

A general formulation of the design problem is the mini-
mization of an objective function C( ¯̃ρ, u, q) subject to the
constraint of mechanical equilibrium, an upper bound on the
total material volume in the design domain, and a box con-
straint on the design variable

minρ C(ρ̃e, u, q)

s.t . : R(ρ̃e, u, q; δu, δq) = 0 ∀ δu, δq∫
�

¯̃ρ(ρ̃d) d� ≤ V ∗
0 ≤ ρ ≤ 1.

(11)

The utilization of two different design fields ρ̃e and ρ̃d is
adapted from the robust formulation in topology optimiza-
tion [23], where an eroded, an intermediate, and a dilated
design are used to enforce a length scale on the final design.
The full robust formulation relies on a min-max formulation
including all three designs. This is costly, and not strictly
needed in this case as no specific length scale has to be
enforced. Thus, a different approach is applied where the
objective and the mechanical equilibrium are both defined
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γ0 = 10−4 γ0 = 10−5 γ0 = 10−6

Fig. 2 C-shape structure deformed by uDy = 0.5L , uDy = −0.3L , uDy = −0.4L for three different values of γ0

on an eroded design, while the volume constraint is defined
on a dilated design. Letting the volume constraint be defined
on a dilated design and themechanical equilibriumbe defined
on an eroded design, essentially serves as a penalization of
thin features, i.e. thin features will add little stiffness and
be very costly in terms of the material volume they require.
By increasing the difference between ηe and ηd in Eq. (10)
or by increasing the filter radius r in Eq. (8) small features
become increasingly uneconomical. This approach is distinct
from the robust formulation, as it neither directly controls the
length scale nor necessarily eliminates all gray-scale. Rather,
it only serves as a penalization for thin features. It should be
noted that since the volumeconstraint is definedon thedilated
design only, the eroded design will always use less material
volume as specified on the dilated design.

Following the approach in [1] the mechanical equilibrium
constraint can be eliminated by minimizing the augmented
objective function

C∗(ρ̃e, u, q) = C(ρ̃e, u, q) + R(ρ̃e, u, q; λu, λq), (12)

where λu and λq are Lagrange multipliers in the spaces of
δu and δq respectively. Assuming an additive split of the
objective function

C(ρ̃e, u, q) = Cρ̃ (ρ̃e) + Cu(u) + Cq(q) (13)

allows for a direct application of the adjoint method. The
additive split results in the total variation of the objective
function

δC∗ = Cρ̃,ρ̃ (ρ̃e; δρ̃) + R,ρ̃ (ρ̃e, u, q; λu, λq; δρ̃)

+ Cu,u(u; δu) + R,u(ρ̃e, u, q; λu, λq ; δu)

+ Cq,q(q; δq) + R,q(ρ̃e, u, q; λu, λq; δq), (14)

which is simplified by determining the multipliers λu and λq
satisfying the adjoint equations

0 = Cu,u(u; δ̂u)

+ R,u(ρ̃e, u, q; λu, λq; δ̂u) = 0 ∀ δ̂u (15)

and

0 = Cq,q(q; δ̂q)

+ R,q(ρ̃e, u, q; λu, λq; δ̂q) = 0 ∀ δ̂q, (16)

wherê is used to distinguish the variations in the adjoint
Eqs. (15) and (16), from the variations in the mechanical
equilibrium Eq. (2.2). The solution of the adjoint system
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eliminates the variations in δu and δq from the variation of
the objective function, thus reducing it to

δC∗ = Cρ̃,ρ̃ (ρ̃e; δρ̃) + R,ρ̃ (ρ̃, u, q; λu, λq ; δρ̃). (17)

This variation is stationary, i.e. δC∗ = 0 at optimum. How-
ever, in the approach outlined in the following section, this
stationary condition is not solved explicitly. Rather, Eq. (17)
is used to determine the sensitivities of the objective function.

In the above, variations in the design are with respect to
the field ρ̃, however, ρ̃ depends on the field ρ, which in this
case represents the design variable. The twofields ρ̃ andρ are
related through the filtering outlined in Sect. 2.2. Since the
system for the filtering in Sect. 2.2 is factorized, the transition
from ρ̃ to ρ may be done efficiently after discretization. This
is relevantwhen computing the sensitivities of the augmented
objective function (12) and the volume constraint (11) with
respect to the design variable. These sensitivities are needed
in order to apply MMA for the design update. To clarify
this, consider the example ofR,ρ̃ (ρ̃, u, q; λu, λq ; δρ̃)which
may be written as ∂R/∂ρ̃ · δρ in its discrete form. Then the
discrete form ofR,ρ(ρ̃, u, q; λu, λq; δρ) can be obtained as

∂R
∂ρ

· δρ =
(

∂ρ̃

∂ρ

)T
∂R
∂ρ̃

· δρ

= −MT
0 M

−T
1

∂R
∂ρ̃

· δρ, (18)

where, rather than computing the inverse of M1, the factor-
ized system is solved. The same procedure is applied when
calculating the volume constraint sensitivities.

2.5 Solution algorithm

In contrast to [1] where a monolithic approach is used, here
we apply a staggered solution approach where the mechani-
cal equilibrium Eq. (2.2), the adjoint problem Eqs. (15, 16),
and the design update are solved in a consecutive order. The
procedure is illustrated in Fig. 3.

Optimization is only considered in the deformed config-
uration, which initially is reached by ramping up the dis-
placement on the initial guess. Since reaching the deformed
configuration by ramping up the displacement is costly, this
is only done once. All following updates to the deformed
configuration are based on the deformed configuration from
the previous design iteration.

After an update of the mechanical equilibrium (2.2), the
adjoint variables λu and λq are determined by solving Eqs.
(15) and (16). The adjoint variables are used to determine the
value of the augmented objective function from Eq. (12) and
its sensitivity with respect to the design variable given in Eq.
(17). These are needed for the MMA design update.

Start, initialize variables, i = 0, β = βini

Set variables, u = 0, q = 0

Solve mechanical equilibrium (u, q)

uD = min(uD + Δuincr, uD0) on ΓD

uD = uD0 on ΓD? repeat

Solve adjoint problem (λu, λq)

MMA, update design (ρ, ¯̃ρ)

β = βmax &
max(Δρ) ≤ (Δρ)max?

i = i+1
if mod(i,20) = 0:
β = min(1.2 β, βmax)

Solve mechanical equilibrium (u, q)

End

NoYes

No

Yes

Fig. 3 Staggered solution approach

Each design iteration is followed by an evaluation of
a criterion for the increase of β. This is according to the
standard robust formulation [23] where the β-continuation
yields increasingly sharp transitions between solid and void
regions. The upper limit βmax is chosen such that the transi-
tion between solid and void regions is sharp, yet sufficiently
smooth for the contact not to depend directly on the dis-
cretization. Convergence is evaluated based on the change
in the design variable ρ, where (�ρ)max is the limit for the
maximum change in any value of ρ when the design has con-
verged. It should be noted that β is increased by a factor of
1.2 when the threshold is progressed in Fig. 3. This is a rather
low value for the progression parameter, however, this level
is chosen in order to retain stability when the threshold is
progressed.

The approach outlined above is implemented in Python
where all tangent matrices and residual vectors are computed
through the library GetFEM [19] which performs all under-
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Fig. 4 Periodic design domain L× L for push-lift with indicated initial
guess on ρ for t = 0.5L

lying computations in C++. Design updates are based on a
Python implementation [6] of MMA [22].

3 Results and discussion

3.1 Push-lift mechanism

To illustrate how the method may be applied, we use the
example shown in Fig. 4 with periodic boundaries on the
left and right side of the domain. In general, four horizontal
translations:

(a+) uD = umax , (a−) uD = −umax

(b+) uD = umin, (b−) uD = −umin

are enforced on the top boundary �D . As a first example, an
objective function is considered that utilizes only the first two
cases (a+) and (a−). This objective function maximizes the
sum of the vertical reaction forces on�D in the two deformed
configurations. It has the form

C0(ρ̃e, u, q) = kq (−(Qa+ · n) − (Qa− · n)) (19)

where

Qi =
∫

�D

qi d�D (20)

are the reaction forces in configuration (a+) and (a−) respec-
tively. The factor kq is a scaling constant and n is the upward
unit normal vector shown in Fig. 4.

Numerical parameters for the problem are specified in
Table 2. The initial guess is as indicated by ρ in Fig. 4, where
the lower density in the t × t-area serves to break symme-
try. The displacement field u is discretized by Q2 elements
and the density fields ρ and ρ̃ are discretized byQ1 elements.
Surface traction q is discretized identically to u on the bound-
ary �D . Gauss quadrature with nine Gauss points is applied

Table 2 Parameters for push-lift mechanism

Domain size L × L 1 × 1 mm2

Displacements (umin, umax ) (0.35, 0.40)L mm

Mesh size Nx × Ny 100 × 100 –

Filter radius r 0.10 mm

Threshold (βini , βmax ) (2, 240) –

Objective weight kq 104 –

Force weight ks 103 1/N

for the numerical integration of all elements. Results without
volume constraint, i.e. V ∗ = 1.0, are shown in Fig. 5.

Despite having no volume constraint, the design shown in
Fig. 5 has a clear gap separating the structure into an upper
and a lower part. The maximum threshold value βmax from
Table 2 ensures a fast transition from solid to void, this is in
order to have a physically sound contact interface.

The gap width is indirectly controlled by changing the fil-
ter radius. However, the curved interfaces of the gap in the
optimized design are not intuitive. An intuitive alternative to
the optimized design could be a narrow gap at a 45◦ angle as
shown in Fig. 5 as a reference design. A better understand-
ing of the optimized design can be obtained by comparing
the force-displacement curves for the two designs, shown in
Fig. 6. In the deformed configuration uD = umax the opti-
mized design (blue curve) has a higher vertical load, thus
also performing better with respect to the objective function
C0. Two red dots have been added to Fig. 5 to motivate why
this is the case. The dots are initially at the same height, with
equal spacing for the optimized and the reference design.
In the deformed configuration, the vertical distance between
the points is higher for the optimized design than for the ref-
erence design, this indicates a higher level of compression
at this point, and thus a higher reaction force in the vertical
direction. Thus, the wave-like shape appears to provide an
adaption of the contact surfaces that provides a larger force
at large horizontal translation.

In order to gain greater control over the contact as well as
the point at which contact is established, the two additional
control points (b+) and (b−) may be added to the objective
function

C1(ρ̃e, u, q) = kq
( − (Qa+ · n) − (Qa− · n)

+ ks ||Qb+||2 + ks ||Qb−||2), (21)

where ks is a new scaling constant. The additional terms
penalize any resulting force on �D at the displacement
±umin , thus discouraging contact for −umin < uD < umin .
Results using the objective function C1 are shown in Fig. 7.

The force-displacement curves obtained by these cases are
shown in Fig. 8. For the C1 objective function, there is a sig-
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Fig. 5 Grey-scale image
reference design and results for
physical design ( ¯̃ρ(ρ̃e))
optimized for objective function
C0 without volume constraint
V ∗ = 1.0. Red dots track
displacements from undeformed
to deformed configuration.
Results are shown for 2 periods
of the periodic domain

Reference

Optimized

uD = 0 uD = umax

0.0 0.1 0.2 0.3 umax 0.5
uD [mm]

0.00

0.02

0.04
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|Q
·n

|[
N

]

Reaction force vs. displacement

C0 optimized for V ∗ = 1.0
Reference design

Fig. 6 Force-displacement curves for lifting mechanism designs. C0
optimized design and reference design

nificant increase in the reaction force after the displacement
umin is reached. This reflects that contact is established in the
vicinity of this point. The objective function C1 thus serves
the intended purpose. Also, for V ∗ = 1.0 the reaction force
at umax is higher than for V ∗ = 0.6, and it is slightly lower
at umin , this reflects the improvement obtained with a higher
volume fraction.

3.2 Self-engaging hooks

Consider the domain shown in Fig. 9 where�D is a boundary
on which a vertical displacement is prescribed. The region
�v, which includes the boundaries �top and �bot , is a pre-

scribed void region, and �d designates the design region,
which is split into two partswith equal dimensions. An objec-
tive for this problemmay be tomaximize the vertical reaction
force on the boundary �D given a downward displacement
u0. If the displacement u0 is large, the reaction force on
the boundary �D of the optimized design is very likely an
extremum with respect to the displacement u0. In this case,
any perturbation increasing the displacement may cause the
structure to snap and disengage. Thus, the resulting design is
not expected to be robust with respect to the displacement in
its deformed configuration. A simple yet effective approach
to obtain amore robust design is to incorporate a requirement
for a positive tangent stiffness of the deformed configuration
in the objective function. Here, a small perturbation �u is
used either in the horizontal or vertical direction with respect
to the initial displacement (0,−u0). It should be noted that
controlling the behavior between the two displacement val-
ues u0 and u0 + �u does not provide any guarantee that
the force-displacement curvewill increasemonotonically for
imposed displacements between 0 and u0. If one would like
to enforce such a condition, a path following optimization
would be necessary that accounts for the entire loading path
and detects any critical points. The present work is limited
to the optimization of the structural behavior locally around
a specific point in the force-displacement response.

Let T and T ′ respectively be the vertical and horizontal
reaction forces on the boundary �D

T = Q · n̂ =
∫

�D

q · n̂ d�D, (22)

T ′ = Q · n =
∫

�D

q · n d�D, (23)

where n̂ is the unit tangent vector in the upward direction and
n is the unit normal vector, as indicated in Fig. 9.

Figure 10 illustrates a qualitative loading history for the
reaction force in the vertical direction T on the boundary
�D as a function of the applied vertical displacement uD .

123



Computational Mechanics (2024) 73:967–981 975

V ∗ =
1.0

V ∗ =
0.6

uD = 0 uD = umin uD = umax

Fig. 7 Grey-scale image of results for physical design ( ¯̃ρ(ρ̃e)) illustrated by 2 periods for objective function C1 at displacements uD = 0,
uD = umin , and uD = umax for volume fractions V ∗ = 1.0 and V ∗ = 0.6
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Fig. 8 Force-displacement curves for lifting mechanism designs
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Fig. 10 Representative illustration of loading history with indicated
control points

In order to incorporate the tangent stiffness in the objective
function, two control points, which are a distance �u apart,
are added, as shown in Fig. 10. A first order approximation

Fig. 9 Domain of self-engaging
hooks problem. Initial guess
ρ = 0.5 in �d . Points used for
enforced displacements of �D
are illustrated to the right
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of the aforementioned tangent stiffness can be based on these
two control points

dT

duD

∣∣∣∣
uD=u0

≈ �T

�u
. (24)

A straightforward way to include this tangent stiffness is to
penalize tangent stiffness values below a given threshold.
Here, we chose to penalize tangent stiffness values below the
average stiffness of the structure, represented by the secant
stiffness T0/u0. The tangent stiffness can now be controlled
by penalizing values of the tangent stiffness in the deformed
configuration being smaller than the average stiffness, i.e.
positive values of

T0
u0

− �T

�u
. (25)

For improved stability, the same logic canbe applied to a hori-
zontal perturbation�u′ on�D by penalizing tangent stiffness
values below 1/10 of the average stiffness. The perturbations
are illustrated in figure Fig. 9, note that the enforced dis-
placement is negative in the y-direction and positive in the
x-direction, thus the signs of the terms (25) are flipped. The
objective now has the form

C(ρ̃e, u, q) = kq

(
− (T0 + �T )

+ ks
1

2

〈
�T

�u
− T0

u0

〉2

+ ks
1

2

〈
−�T ′

�u′ − T0
u0

1

10

〉2 )
. (26)

The first term in the objective function (T0 + �T ) is the
reaction force in the deformed configuration (0,−u0 −�u).
The second term in Eq. (26) penalizes tangent stiffness val-
ues for downward perturbations �u being smaller than the
average stiffness−T /u0. The third term penalizes transverse
stiffness, i.e. the change in the reaction force T with respect
to a horizontal perturbation �u′ on �D . Thus, the objective
function includes a tangent stiffness term for vertical as well
as horizontal displacements on top of the deformed config-
uration. The factor kq scales the objective function in order
to obtain an adequate scaling for the augmented objective
function in Eq. (12) and ks is the relative weight applied to
the penalization of the tangent stiffness terms.

Numerical parameters for the problem are specified in
Table 3 and discretizations remain as specified in Sect. 3.1. A
relatively large filter radius is applied in order to avoid very
slender members that can lead to local nonlinear buckling.
Accounting for such buckling modes would add significant
computational cost and complexity to the proposed method
and it is left for future work. Results for three different values

of the enforced displacement u0 are shown in Fig. 11 with
the meshed region indicated on Fig. 11a. The three designs
all resemble two opposing hooks—to some extent. In the
deformed configuration, these hooks engage, this is shown
in Fig. 12 for the design from Fig. 11c. A magnification in
Fig. 12 shows the void—which remains stable due to the
regularization—being fully compressed to a state where it
reflects contact.

Force-displacement curves as shown in Fig. 13 are
obtained as the hooks are deformed through the prescribed
loading history. As may be expected, the design obtained for
u0 = 2.0 t has the highest force among the three designs at
uD = 2.0 t . Likewise for u0 = 2.5 t at uD = 2.5 t . In the
deformed configuration, as shown by the magnification for
the design obtained for u0 = 3.0 t in Fig. 13, the tangent
stiffness closely matches the average stiffness. Thus, show-
ing that the first penalization term in the objective function
Eq. (26) remains active until the converged state. A magni-
fication of the u0 = 2.5 t design in Fig. 13 shows a jump
in the force-displacement curve. This jump is caused by the
engagement of the non-overlapping tips of the hooks from
Fig. 11b.

3.3 Bendingmechanism

This section applies the method outlined in Sect. 2 to a bend-
ing problem that is inspired by the bending section found in
endoscopes. Endoscope bending sections, which comprise
the controllable part at the distal end of an endoscope, typ-
ically comprise periodic structures. Thus, when designing
such a component, it is reasonable to focus on a single unit of
the periodic structure.An illustration of a bending section and
the repeated unit is shown in Fig. 14. Let the design domain
of the repeated unit from Fig. 14 be defined as shown in
Fig. 15a where the boundaries �top and �bot are two consec-
utive cross sections through the periodic structure resulting
in a single repeated unit.

During use, the endoscope bending section is deformed
such that the segment in Fig. 15a forms a section of an annu-
lus as shown in Fig. 15b, where the arc length at the center of
the annular section has the length H . Deformations are pre-
scribed on the outer boundary ∂� by specifying the angle α

of the annular section. There are no strains along the bound-
aries �top and �bot , i.e. they rotate as rigid bodies.

From the perspective of the endoscopist, it may be desir-
able to have a bending section that can bend very easily at any
angle below a certain threshold. This way, the endoscopist
may easily maneuver the bending section without it surpass-
ing a certain curvature. Surpassing the threshold angle may
cause damage to tools being passed through the endoscope.
Further, it may be desirable for the obtained design to be sub-
ject to a state of pure bending. This may reduce interactions
with other components in the endoscope bending section.

123



Computational Mechanics (2024) 73:967–981 977

Table 3 Parameters for
self-engaging hook problem Domain size L × H 56 × 32 mm2

Design region size t × D 0.45H × 0.70L mm2

Displacement purturbation �u, �u′ 0.01t mm

Mesh size Nx × Ny 240 × 120 –

Volume constraint V ∗ 0.34 -

Filter radius r 1.60 mm

Threshold parameters (βini , βmax ) (2, 120) -

Objective weight kq 104 –

Tangent stiffness weight ks 104 mm2/N

(a) u0 = 2.0 t

(b) u0 = 2.5 t

(c) u0 = 3.0 t

Fig. 11 Optimized designs obtained for three different values of the
enforced displacement u0

Fig. 12 Hooks optimized for u0 = 3.0 t at displacement in deformed
configuration (uD = 3.0 t)

Additionally, the control of the endoscope is simpler for a
state of pure bending with no bending-stretching coupling.

Reaction forces and bending moment on the respective
boundaries are calculated through the reaction traction q by

Qi =
∫

�i

q d�i and

Mi =
∫

�i

((q − q̄i ) · n)(p · n̂) d�i , (27)

where n and n̂ respectively are the unit normal and tangent
vectors shown in Fig. 15b, p is a point on the boundary �i ,
and q̄i is the average surface traction.

Based on two angular control points α0 and α1 where
α0 < α1, the desired properties may be cast into an objective
function that approximates the desired outcome. Here we
propose an objective function defined by
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Fig. 13 Force-displacement curves for hook designs from Fig. 12

Undeformed Deformed

Repeated unit

Fig. 14 Bending section with periodic structure

C(ρ̃e, u, q)

= kq

(
− Mtop|α1 − Mbot |α1

+ km
(
M2

top|α0 + M2
bot |α0

)

+ ks
(
||Qtop||2|α0 + ||Qbot ||2|α0

) )
. (28)

The objective function in Eq. (28) minimizes any positive
or negative values of the bending moment at an angle α0,
this ensures low bending resistance at low angles. Simultane-
ously, it maximizes the bendingmoment at an angleα1 > α0,
which inhibits bending at large angles. Inclusion of the terms

L

H

Ωs

ΩdΩv

Γtop

Γbot

t2 t1

y

x

(a) Undeformed configuration.

∂ΩH

α
n

n̂

y

x

(b) Deformed configuration.

Fig. 15 Domain of bending section with prescribed solid (black) and
prescribed void (white). Initial guess ρ = 0.4 in �d

containing the reaction forces ensures that reaction forces are
minimized at the relevant boundaries. ks is a weighting fac-
tor for the reaction forces on the boundaries �top and �bot .
Likewise, km is a weighting factor for the bending moment at
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α0 =
14◦

α0 =
18◦

α = 0 α = α0 α = α1

Fig. 16 Bend design at angles α = 0, α = α0, and α = α1 for α0 = 14◦ and α0 = 18◦

angle α0. Higher values of km increasingly penalize bending
moments at lower angles.

Results for two different values of the control point α0 and
parameters listed in Table 4 are shown in Fig. 16. All designs
were obtained with symmetry enforced across the vertical
center line of the domain. Moreover, a buffer zone of solid
material is prescribed at the bottom and top of the domain
as shown in Fig. 15a. All discretizations remain as specified
in Sect. 3.1. Note that the regularization scaling term k̄r has
been increased to 3 · 10−6 compared to 10−6 used in the
previous two examples. This is in order to further stabilize
the problem, since k̄r = 10−6 was not sufficient to stabilize
void regions in this case.

The deformed configurations show how the optimized
designs establish contact around an angle α0. A notable
difference between the two designs is that the α0 = 14◦
design includes two void regions for contact, whereas the
α0 = 18◦ design only includes one. In contrast to the exam-
ple in Sect. 3.2 the contact in Fig. 16 does not form through
a forced void region, instead the void which serves as the
contact medium is a direct result of the optimization. This
could also be seen in the results from Sect. 3.1. It thus shows
that contacting surfaces can be established in design regions
without any pre-specification of a void to serve as the contact
medium.

Figure 17 shows the bending moment and the norm of
the force as a function of the bending angle for the resulting
designs. The slope of the moment curve, which represents
the bending stiffness, significantly increases around the point
α0. Both moment curves show a soft kink, indicating that
contact is established, at an angle of approximately 14◦ and
16◦ respectively. From the force curve, it can be seen that
the force is kept at a relatively low level, as intended by the
objective function until contact is established.
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Fig. 17 Resulting bending moment and force for bending problem
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Table 4 Parameters for bend
problem Domain size L × H 9.0 × 3.5 mm2

Max angle α1 24 deg

Mesh size Nx × Ny 200 × 100 –

Volume constraint V ∗ 0.55 –

Filter radius r 0.60 mm

Fixed region widths (t1, t2) (r , 2r) mm

Threshold parameters (βini , βmax ) (2, 240) –

Void regularization weight k̄r 3 · 10−6 –

Objective weight kq 104 –

Objective moment weight km 10 1/Nmm

Objective force weight ks 10−2 mm/N

4 Conclusion

The present work has adapted the third medium contact
method for topology optimization from [1] to standard
topology optimization methods and applied it to advanced
kinematic examples. This includes PDE filtering through an
inhomogeneous Helmholtz equation, threshold projection,
SIMP, as well as the application of MMA. To avoid non-
physical exploitation of void regions, which serve as the third
medium, it has proven useful to penalize small features by
evaluating the volume constraint on a dilated design—as it is
known from the robust formulation in topology optimization
[23]. This penalization also adds an indirect control of the
length scale of the obtained structures. In addition, a solu-
tion algorithm that includes β-continuation as proposed in
[23] is suggested.

The application of the third medium contact has been
extended to more complex applications, which e.q. require
additional control of the tangential stiffness of the structure.
Three examples have been used to illustrate possible applica-
tions as well as how the approach works for problems subject
to large deformations: (1) a lifting mechanism maximizing
vertical reaction force upon a horizontal displacement, (2)
a design of a coupling between two domains separated by
a void region, resulting in two hooks, and (3) the design of
a bending mechanism inspired by the bending section of an
endoscope. Results show that the optimized structures can
exploit prescribed void regions to establish contact, as well
as establish new void regions within the design domain to
be used for contact. This inclusion of contact extends the
possible solution space in topology optimization and should
allow programming even more complex force-displacement
responses in compliant mechanism design than provided in
[15].
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