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Abstract
This paper presents a novel plasticity-based formulation for three-dimensional (3D) topology optimization of continuum
structures. The proposed formulation addresses the optimization problem by combining mixed rigid-plastic analysis with
density-based topology optimization, resulting in a volume minimization approach. Unlike conventional stress-constrained
topology optimization methods that rely on linear elastic structural analysis, our developed formulation focuses on enhancing
the loading capacity of the designed structures based on the plastic limit theory, leading to more cost-effective designs. To
improve computational efficiency, we employ the smoothed finite element technique in our proposed method, enabling the
utilization of linear tetrahedral elements for 3Dmesh refinement.Moreover, the final formulation of our developedmethod can
be efficiently solved using the advanced primal–dual interior point method, eliminating the need for a separate nonlinear finite
element structural analysis. Numerical examples are presented to demonstrate the effectiveness of the proposed approach in
offering enhanced design possibilities for continuum structures.

Keywords Topology optimization · Limit analysis · Plasticity theory · Density-based method · Smoothed FEM

1 Introduction

Topology optimization is an advanced structural design
method that aims to achieve the optimal structural config-
uration by distributing materials in a rational manner to meet
specified load conditions, properties, and constraints. Com-
pared to size and shape optimization, topology optimization
is not dependent on the initial configuration and offers a
broader design space. Due to its advantages, topology opti-
mization has become a widely used technique in engineering
structural design.

Several topology optimization approaches have been
developed over the past few decades, including but not lim-
ited to the density approach [1–3], the level set approach
[4–6], the evolutionary structural optimization approach
[7–9], the phase field method [10–12], and the moving mor-
phable components [13–15]. For a comprehensive review
of these approaches, interested readers are referred to [16].
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Among these approaches, the density-based topology opti-
mization method is particularly popular. In this approach,
discrete optimization problems of 0–1 are transformed into
continuous optimization problems to relax the binary design
form. Initially, material layouts were controlled by den-
sity variables using the homogenisation method, which is
mathematically complex and challenging to implement [17].
Subsequently, an alternative method called Solid Isotropic
Materials with Penalty (SIMP)was proposed. SIMP enforces
exponential penalties on elemental elastic modulus [18].
Due to its simplicity and high computational stability, SIMP
quickly became the most widely adopted topology optimiza-
tion method.

Traditional density-based approaches primarily focus on
compliance design, which involves minimizing the elas-
tic strain energy of a structure under given external loads,
a volume constraint, and linear elastic material behavior.
While these approaches are efficient, they often lead to high
stress concentrations in the designed layout, necessitating
troublesome sequential changes [19], especially when stress
states exceed the material strength. To address this issue,
researchers are dedicated their efforts to stress-constrained
topology optimization [20]. The stress-constrained topol-
ogy optimization can be approached in two ways: either as
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a conventional stiffness-based topology optimization with
additional stress constraints [19, 21] or as a volume mini-
mization problem subject to equilibrium equations and stress
constraints [22, 23]. It is important to note that, in the con-
ventional stress-constrained topology optimization, linear
elastic structural analysis is employed despite the inclusion
of additional stress constraints. This means that only elastic
behavior of materials is considered, leading to more conser-
vative designs.

Recently, Kammoun et al. [24] introduced a density-based
topology optimization formulation that incorporates limit
plasticity. Building upon the lower bound finite element
limit analysis, this method ensures the optimization pro-
cess maintains a statically admissible stress field. As such,
it can determine the ultimate plastic limit of a structure
during topology optimization. Subsequently, an alternative
plasticity-based formulation was presented in [25], enabling
both upper and lower bound finite element limit analysis
through the use of different elements. However, the formu-
lation in [25] only yields a grey design. To address this
limitation, an extension of the work in [25] was proposed
in [26], allowing for black-and-white designs. Notably, this
extension demonstrates that the method does not require a
stress-relaxation technique. Another formulation for topol-
ogy optimization incorporating plastic limit analysis was put
forth in [27]. Unlike the approaches in [24–26], the formula-
tion in [27] seeks to maximize the load-bearing capacity of
the structure, while considering material strength properties
and a material volume constraint.

Despite the progress made in developing topology opti-
mizationmethods basedonplastic limit analysis, themajority
of contributions have been limited to two-dimensional (2D)
cases [24–27]. Building upon the work presented in [26], this
paper introduces a novel plasticity-basedmethod specifically
tailored for three-dimensional (3D) topology optimization.
The proposed method integrates a mixed rigid-plastic analy-
sis formulation into the density-based topology optimization
approach to account for plasticity effects. By applying an
exponential penalty to the objective function, a black-and-
white solution is achieved. To enhance computational effi-
ciency in 3D modelling, linear tetrahedral elements, known
for their favorablemesh refinement properties, are employed.
The issue of volumetric locking associated with these con-
stant stress elements is addressed by utilizing the smoothed
finite element technique. In 3D formulations with von Mises
yield criterion, an additional constraint, not required in plane-
stress cases, must be included to prevent the occurrence
of spherical stress states in void regions. The developed
plasticity-based method exhibits excellent convergence rates
and computational efficiency for 3D topology optimization.
To illustrate its features and advantages, a series of numerical
examples are presented with results compared to these from
the traditional stress-constrained method.

2 Mixed smoothed finite element limit
analysis

2.1 Mixed limit analysis

Limit analysis determines the maximum load that a mechan-
ical system can withstand. There are three categories of
limit analysis: the upper bound (kinematical) formulation, the
lower bound (static) formulation, and the mixed formulation.
The kinematical formulation considers the displacement as
the only variable and provides an upper limit for the maxi-
mum load. On the other hand, stress is the sole variable in the
static formulation, resulting in a lower limit for themaximum
load. Themixed formulationmakes use of both displacement
and stress as variables. According to [28, 29], a mixed limit
analysis formulation can be expressed as a min–max opti-
mization problem

min
u

max
(σ ,α)

α + ∫
�

σ T∇T (u)d� − α ∫
�t

t̄Tud� − ∫
�

bTud�

subject to f (σ ) ≤ 0
(1)

where

σ �
(

σxx σyy σzz σyz σzx σxy

)T
is the Cauchy stress;

u is the displacement;
b is the body force;
t is the prescribed traction;
f (σ ) is the yield function;
α is the collapse load factor meaning α t the ultimate force

the structure can sustain; and ∇ is the differential operator
matrix taking the form of

∇ �
⎡
⎢⎣

∂
∂x 0 0 0 ∂

∂z
∂
∂y

0 ∂
∂y 0 ∂

∂z 0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x 0

⎤
⎥⎦ (2)

As illustrated in (1), both the stress and displacement
fields are considered as independent variables in the mixed
limit analysis. Remarkably, the mixed formulation is versa-
tile since it can also provide a rigorous upper bound solution,
as demonstrated in [28, 30, 31].

2.2 Nodal integration basedmixed FELA
formulation

In this section, we derive the formulation for 3D smoothed
Finite Element Limit Analysis (FELA) based on the limit
analysis problem (1). This formulation allows the use of
linear tetrahedral elements without encountering volumet-
ric locking issues. The computational domain is discretized
using four-node tetrahedral elements whereas the integra-
tion is carried out over cells rather than finite elements. In
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the following, we will provide a comprehensive explanation
of domain discretization, cell construction, and numerical
interpolation and integration, which together yield the final
formulation for 3D mixed smoothed FELA.

2.2.1 Domain discretization and cell construction

For clarity, we will initially consider a 2D case to explain
the process of domain discretization and cell construction.
However, it should be noted that extending this approach to
3D cases is forthright.

Figure 1a shows a 2D domain that has been discretized
using three-node triangles. To facilitate the construction of
cells, each triangle is divided into three quadrilaterals of equal
area by connecting the centroid of the triangle to its three
mid-edge points as depicted in Fig. 1b. These quadrilaterals
have an area equivalent to one-third of the triangle’s area.
In this context, the cell associated with each node consists
of one-third of the triangles that are adjacent to that node.
Figure 1b highlights two representative cells, specifically the
cells associated with the kth and lth nodes for the purpose of
illustration.

Cell construction in 3D can be achieved using a similar
procedure. Initially, the domain is discretized using four-
node tetrahedrons. Each tetrahedron is then divided into four
hexahedrons, as illustrated in Fig. 2a. This division is accom-
plished by connecting the centroid of each surface triangle
(green nodes) to the three mid-point nodes of that surface
triangle (yellow nodes) and to the centroid of the tetrahedron
(red node). In the 3D case, the four resulting hexahedrons
have equal volume, each corresponding to one-fourth of the
volume of the tetrahedron. The cell associatedwith each node
in the 3Ddomain consists of all hexahedrons that are adjacent
to that particular node. To illustrate this, Fig. 2b provides an
example of the cells constructed for a cube.

2.2.2 Numerical interpolation and integration

The optimization problem (1) involves two master fields,
namely the displacement and the stress. We start by approx-
imating the displacement field, u, using the four-node tetra-
hedron as shown in Fig. 3. The approximation is given by:

u(x) ≈ Nû (3)

In the above equation, the symbol
(·̂) denotes the variable

at mesh nodes, and N is the shape function defined as:

N �
⎡
⎢⎣
N 1 0 0 N 2 0 0 N 3 0 0 N 4 0 0
0 N 1 0 0 N 2 0 0 N 3 0 0 N 4 0
0 0 N 1 0 0 N 2 0 0 N 3 0 0 N 4

⎤
⎥⎦

(4)

with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N 1 � 1 − ξ − η − ζ

N 2 � ξ

N 3 � η

N 4 � ζ

(5)

where ξ , η, and ζ are the natural coordinates as depicted in
Fig. 3.

The strain,∇T u, in (1) is uniformwithin each tetrahedron
given by:

∇T u ≈ ∇T (
Nû

) � Bû (6)

in which B is the strain–displacement matrix expressed as
below

B � ∇T N �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b1 0 0 b2 0 0 b3 0 0 b4 0 0
0 c1 0 0 c2 0 0 c3 0 0 c4 0
0 0 d1 0 0 d2 0 0 d3 0 0 d4
c1 b1 0 c2 b2 0 c3 b3 0 c4 b4 0
0 d1 c1 0 d2 b2 0 d3 c3 0 d4 c4
d1 0 c1 d2 0 c2 d3 0 b3 d4 0 b4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7)

In Eq. (7), the coefficients are partial derivatives of the
shape functions with respect to the physical Cartesian coor-
dinates. Specifically, they are calculated by

⎧⎪⎪⎨
⎪⎪⎩

b1 � ∂N1

∂x ; b2 � ∂N2

∂x ; b3 � ∂N3

∂x ; b4 � ∂N4

∂x

c1 � ∂N1

∂y ; c2 � ∂N2

∂y ; c3 � ∂N3

∂y ; c4 � ∂N4

∂y

d1 � ∂N1

∂z ; d2 � ∂N2

∂z ; d3 � ∂N3

∂z ; d4 � ∂N4

∂z

(8)

where x , y, and z are physical Cartesian coordinates. The
derivative of shape functions with respect to physical coor-
dinates can be determined using the chain rule

⎡
⎢⎢⎣

∂Ni

∂x
∂Ni

∂y
∂Ni

∂z

⎤
⎥⎥⎦ � J−1

⎡
⎢⎢⎣

∂Ni

∂ξ
∂Ni

∂η
∂Ni

∂ζ

⎤
⎥⎥⎦ (9)

with Jacobian matrix being

J �
⎡
⎢⎣

∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

⎤
⎥⎦ �

⎡
⎢⎢⎣

∂N1
u

∂ξ

∂N2
u

∂ξ

∂N3
u

∂ξ

∂N4
u

∂ξ
∂N1

u
∂η

∂N2
u

∂η

∂N3
u

∂η

∂N4
u

∂η
∂N1

u
∂ζ

∂N2
u

∂ζ

∂N3
u

∂ζ

∂N4
u

∂ζ

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4

⎤
⎥⎥⎥⎦

(10)
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Fig. 1 Cell construction in 2D: a a domain discretized using linear triangular element, and b cells constructed for the domain

Fig. 2 Cell construction in 3D:
a division of a tetrahedron into
four hexahedrons, and b cells
constructed based on
tetrahedrons for a cube

Fig. 3 Mapping the four-node
tetrahedron from the physical
Cartesian coordinate to the
natural coordinates

Substituting Eqs. (3) and (6) into min–max problem (1),
we have

min
û

max
(σ ,α)

α + ∫
�

σ T Bd�û − α ∫
�t

tT Nd�û − ∫
�

bT Nd�û

subject to f (σ ) ≤ 0
(11)

Theminimization part of (11) can be resolved analytically,
leading to the following maximization problem:

max
(σ ,α)

α

subject to ∫
�

σ T Bd� � α ∫
�t

tT Nd� + ∫
�

bT Nd�

f (σ ) ≤ 0

(12)

The nodal integration of maximization problem (12) over
cells result in

max
(σ ,α)

α

subject to

{
B
T
σ̂ � Fext

f i
(
σ̂
) ≤ 0 i � 1, 2, · · · , NN

(13)

in which the notation ( · )i represents the value of ( · ) at
the i th node, unless otherwise specified, and NN is the total
number of nodes, which is also equal to the total number
of cells (NC), indicating that the yield criterion is applied
to all nodes. In (13), the stress is denoted by the symbol σ̂ ,
which is a vector comprising stress components at all mesh
nodes. Notably, the stress at each node can be considered as
a weighted average of the stress at the tetrahedrons adjacent
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to that node. For instance, this includes the tetrahedrons that
make up the cell associated with that specific node.

The global matrix B
T
is calculated based on nodal inte-

gration as

B
T � ∫

�

BTd� �
NN∑
i�1

⎛
⎝ 1

V i

ne∑
j�1

(
1

4
BT
i j V

j
)⎞

⎠ (14)

in which
∑

( · ) represents the standard finite element assem-
bly operator; V i is the volume of the i th cell; V j is the
volume of the j th tetrahedron; ne is the total number of
tetrahedron elements adjacent to the i th node; and Bi j is
the strain–displacement operator at the i th node, which is
estimated based on the j th adjacent tetrahedron. Therefore,
1
V i

∑ne
j�1

(
1
4 B

T
i j V

j
)
represents the weighted average of BT

at the i th node.
Similarly, Fext is estimated based on nodal integration

(15)

Fext � α ∫
�t

tT Nd� + ∫
�

bT Nd�

� α

NN∑
i�1

β i
�

(
t̃ in�

i
)
+

NN∑
i�1

(
b̃
i
nV

i
)

in which �i is the nodal contour area; and β i
� is a factor that

equals to one if the node belongs to a Neumann boundary
and is null otherwise.

Hence, the formulation for mixed smoothed FELA can be
summarized as:

max
(σ ,α)

α

subject to

{
B
T
σ̂ � Fext

f i (σ̂ ) ≤ 0 i � 1, 2, · · · , NN

where

⎧⎪⎪⎨
⎪⎪⎩

B
T � ∑NN

i�1

(
1
V i

∑ne
j�1

(
1
4 B

T
j V

j
))

Fext � α
∑NN

i�1 β i
�

(
t̃ in�

i
)
+

∑NN
i�1

(̃
b
i
nV

i
)

(16)

Although the above maximization problem lacks the
upper/lower bound feature, the solution obtained from this
formulation is often much closer to the exact solution for the
bearing capacity of a structure [32].

3 Topology optimization formulation

3.1 Black-and-white topology optimization in limit
analysis

Based on reference [25], density-based topology optimiza-
tion in limit analysis can be formulated as a volume min-
imization problem by introducing a new design variable,
‘density’ρ ∈ [0, 1], in (16). Themodified optimization prob-
lem, considering the density variable, can be expressed as:

min
(σ̂ , ρ̂)

LTρ̂

subject to

{
B
T
σ̂ � Fext

f i
(
σ̂ , ρ̂

) ≤ 0 i � 1, 2, · · · , NN

(17)

where ρ̂ � [ρ1, ρ2, · · · , ρNN ]T is a vector consisting of
density at all nodes, and L � [V1, V2, · · · , VNC ]T is a vec-
tor consisting of the volumes of all cells. NN refers to the
total number of nodes, which is equal to the total number of
cells NC . In this study, we have employed the von Mises
yield criterion to enable consistent comparisons between
the developed method and the traditional stress-constrained
topology optimization approach (i.e., PolyStress [33]). This
is because a stress constraint for the traditional stress con-
strained topology optimization is usually expressed as the
von Mises equivalent stress as indicated in [34]. However, it
is crucial to highlight that the developed framework is flexible
and can accommodate other plasticity models. For instance,
the Mohr–Coulomb model and the Rankine model can also
be incorporated within the proposed methodology following
[27, 35]. The yield criterion for the ith node/cell (i.e., f i in
(16)) is defined as:

f i � √
3J2 − ρi f y ≤ 0 (18)

where J2 � 1
6

(
σx −σy

)2 + 1
6

(
σy −σz

)2 + 1
6 (σz −σx )

2 +σ 2
xy +

σ 2
yz + σ 2

zx is the second invariant of the deviatoric stress, fy
is the yield stress, and ρi denotes the density at the ith node.

Remark 1 The modified criterion (18) indicates that when
ρi � 0, shear stresses are zero (i.e., σxy � σyz � σzx � 0)
but a spherical stress state (i.e., σx � σy � σz) is allowed. To
address this issue, an additional inequality condition f isp �∣∣σx +σy +σz

∣∣− k fyρi ≤ 0 should be enforced for each node
as suggested in [24], where k is a constant with a sufficiently
large value. Obviously, this additional condition ensures that
stress states are unaffected when ρi � 1, while all stress
components are zero when ρi � 0 recalling (18).

Remark 2 Formulation (17) tends to produce grayscale solu-
tions. To obtain a black-and-white layout, penalties should
be applied to the objective function. Following [26, 36], the
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vector L is replaced with L̃ � [c1V1, c2V2, · · · , cNCVNC ]T,
where the penalty factor for the ith node is determined by.

ci � ep(1−ρ∗
i ) (19)

The above exponential penalty function is based onρ∗
i , the

density at the ith node obtained in the previous iteration, and
a constant, p. The performance of this exponential penalty
function has been investigated in [26, 36].

Thus, the black-and-white topology optimization formu-
lation in the context of mixed smoothed FELA can be
summarized as:

min
(σ̂ , ρ̂)

L̃
T
ρ̂

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B
T
σ̂ � Fext

f i (σ̂ , ρ̂) ≤ 0
f isp(σ̂ , ρ̂) ≤ 0 i � 1, 2, · · · , NN

0 ≤ ρ̂i ≤ 1 i � 1, 2, · · · , NN

where

⎧⎪⎪⎨
⎪⎪⎩

L̃
T � [c1V1, c2V 2, · · · , cNCVNC ]

B
T � ∑NN

i�1

(
1
V i

∑ne
j�1

(
1
4 B

T
j V

j
))

Fext � α
∑NN

i�1 β i
�

(
t̃ in�

i
)
+

∑NN
i�1

(̃
b
i
nV

i
)

(20)

The above optimization problem can be reformulated as a
standard second-order cone programming (SOCP) problem,
as described in [26, 37]. It can then be resolved straightfor-
wardly using the advanced primal–dual interior pointmethod
available in MOSEK [38].

3.2 Density filtering andmesh refinement

Checkerboard issues are a common problem in density-based
topology optimization. To address this issue, the proposed
method employs density filtering, as outlined in [39]. The
filtered density at the ith point is calculated using the follow-
ing equation:

ρ̃i �
∑

j∈Nn
w

(
x j

)
v jρ j∑

j∈Nn
w

(
x j

)
v j

(21)

where v j is the volume of the jth cell; ρ j is the density at the
jth node; and Nn denotes the total number of nodes located
within the filtering region of the ith node. The filtering region
is defined as a circle with a radius of R. The weighting func-
tion, denoted asw

(
x j

)
, is a Gaussian (bell shape) distribution

function, as suggested in [39]:

w
(
x j

) � e
− 1

2

( ||x j−xi ||
σd

)2
(22)

in which xi represents the coordinates of the ith node whose
density is filtered, and x j represents the coordinates of the
jth nodes within the filtering region. It has been shown in
[26] that the above weighting function performs well for
plasticity-based topology optimization in 2D cases. There-
fore, it is adopted for 3D studies in this paper. The parameter
σd in Eq. (22) is set as R/2, where R is 1.5 times the mesh
size, as suggested in [26].

3.3 Algorithm steps

To summarize, the basic steps of the topology optimization
procedure are as follows:

(i) Assume an initial density ρ � 1 for all nodes in the
domain;

(ii) Calculate the exponential penalty factor ci using (19)
for each node;

(iii) Solve the optimization problem (20) using MOSEK to
obtain the density field;

(iv) Perform density filtering for each node using (21) and
use the filtered value as the density at each node;

(v) Check the convergence criterion: cease the iteration if
the criterion is satisfied (i.e., the change in the objective

function, Obj � L̃
T
ρ̂,between two iterations fulfils∣∣∣∣ Objn+1−Objn

Objn+1

∣∣∣∣ ≤ tolerance value); otherwise, go back

to step (ii) and repeat the process.

It is acknowledged that 3D topology optimization often
requires significant computational resources. Therefore,
enhancing the computational efficiency of the proposed
method is of paramount importance.While developing a par-
allelized computing scheme for resolving SOCP problems
is a common approach, we would also like to emphasize
the potential of employing warm start strategies to improve
computational efficiency. This is particularly relevant in our
solution scheme,which involves an iterative procedurewhere
the SOCP problem is repeatedly solved in step (iii) to obtain
a converged density field. Research has shown that warm
start strategies can substantially enhance the efficiency of
the interior point method when solving SOCP problems. For
more detailed information on this topic, interested readers
are encouraged to refer to [40, 41].

Remarkably, in conventional stress-constrained topology
optimization, elastic finite element analysis is conductedwith
stress constrains. This means that all materials are assumed
to behave elastically, and the structure is considered to fail
when any local yielding occurs. The maximum load that the
structure can sustain is denoted as Pe, as shown in Fig. 4. In
contrast, the plasticity-based topology optimization method
developed in this study treats the material as rigid plastic.
By incorporating plastic limit theory into the optimization
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Fig. 4 Illustration of the load–displacement curve for a structure made
of elastic-perfectly plastic materials

problem (20), the external force represents the load-bearing
capacity of the layout, denoted as PY in Fig. 4, as indicated
in the work of plasticity-based topology optimization [24,
26, 27]. Consequently, the developed plasticity-based topol-
ogy optimization method generally provides a more efficient
solution compared to the conventional stress-constrained
method. This will be demonstrated through numerical exam-
ples in the following section.

4 Numerical examples

In this section, several examples are presented to demonstrate
the correctness and robustness of the proposed method. All
simulations were conducted on a DELL PC with a 2.20 GHz
CPU and 32.0 GB memory, running on Microsoft Windows
server (Version 10.0). The final SOCP problem was solved
using MOSEK [38], an advanced optimization tool designed
for solving large-scale optimization problems. The imple-
mentation of the method was carried out in the MATLAB
environment (R2021b).

4.1 A short plate

The first example involves a thin short plate subjected to a
shear load, as depicted in Fig. 5. This classical problem has
been widely employed for the verification of various topol-
ogy optimization methods [42–44]. In this study, the plate
has dimensions of 1 m × 1 m × 0.01 m. The left surface
of the plate is clamped, and a shear force of F � 90kN is
applied at the lower right corner of the plate. The material
used in the analysis has a yield stress of fy � 220MPa. The
mesh size is set to 0.01 m, resulting in one layer element
along the thickness direction. A total of 60,000 elements are
employed in this simulation. Throughout all the simulations,
the penalization factor is set to p � 5, which is considered

Fig. 5 A plate under shear load

sufficiently large to achieve a black-and-white layout, as sug-
gested in [26]. The constant k for the spherical stress state is
set to 1 × 103, unless otherwise specified.

Remarkably, the adopted plastic model in this study is
the rigid-perfectly plastic model with von Mises yield cri-
terion, which assumes incompressible materials. Traditional
constant stress elements, such as the three-node triangular
element in 2D and the four-node tetrahedral element in 3D,
are uncompetitive for such problems due to volumetric lock-
ing issues. This issue has been extensively discussed in the
literature [37, 45, 46], and its adverse impact on topology
optimization has also been explored in [42]. To overcome the
volumetric locking issues associated with incompressibility,
the mixed smoothed finite element formulation developed
in [37] is employed in this study for constructing 3D limit
analysis based topology optimization. The effectiveness of
this formulation in tackling incompressibility issues has been
demonstrated in [37] and is not repeated in this study. In the
following, we will present a comparison between the simula-
tion results obtained from the developed 3D plasticity-based
method and the traditional stress-constrained topology opti-
mization method (i.e. PolyStress) [33].

The final layouts obtained from both simulations are
shown in Fig. 6a and b.Albeit they appear similar, the amount
of material required differs. Figure 6c illustrates the conver-
gence history of the twomethods in terms of the volume ratio.
It can be observed that the developed method achieves a con-
vergedvolume ratio of 20%,which is lower than that obtained
from PolyStress (i.e., 28.2%). This discrepancy arises from
the adoptionof the plasticity theory in the developed topology
optimization formulation. Our approach allows for material
yielding as long as the global structure remains stable which
means it targets the loading capacity of the overall struc-
ture. In contrast, the traditional stress constrained method
solves the elastic governing equation of the structure and
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Fig. 6 Simulation results: a layout from this study; b layout from
PolyStress [33]; and c convergence history in terms of volume ratio

restricts yielding in all material points, implying that the
structure designed using PolyStress behaves elastically under
the applied load. This point can be further verified by exam-
ining the distribution of von Mises stress across the layouts
from the two methods. Figure 7a illustrates that a significant
portion of the layout obtained from the developed method
exhibits a von Mises stress equal to the yield stress (e.g.
220 MPa) indicating that the structure has reached its maxi-
mum sustainable state. In contrast, fewer parts of the layout

Fig. 8 An illustration of a double clamped beam

obtained from PolyStress possess a von Mises stress equal
to the yield stress. Additionally, it is worth noting that the
proposed method demonstrates a faster convergence rate in
terms of volume ratios compared to the conventional stress-
constrained method, as shown in Fig. 6c. In fact, a converged
solution is obtained with 5 iterations using the developed
method.

4.2 A clamped beam

As the second example, we consider a double-clamped beam
as shown in Fig. 8. The length and height of the designed
domain are 20 m and 5 m, respectively, and the thickness of
the beam varies from t� 0.01 to 10 m. The yield stress of the
material is set to 300 kPa. A uniform pressure of p � 15.3
kPa is applied to the top central zone with a length of 2.5 m.
Due to symmetry, only half of the domain is considered in
the modelling process.

Fig. 7 Distribution of von Mises Stress on the designed layout for a short plate from from (a) the plasticity-based method developed in this study
and (b) PolyStress
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Fig. 9 The layout from
PolyStress and the developed
limit analysis-based topology
optimization method at different
iterations

4.2.1 Thin beam &mesh refinement

We begin by focusing on a thin beam with a thickness of
t � 0.01 m. The mesh size used on x–y plane is 0.15 m,
and only one layer is assigned in the thickness direction (i.e.
z axis) resulting in 20,604 nodes and 60,000 elements in
the simulation. Figure 9 illustrates the evolutionary history
of the structure in the optimal design using both PolyStress
and the plasticity-based method. A grey design is obtained
in both approaches if no iterations are conducted. A satis-
factory black-and-white layout is achieved with 8 iterations
using the developed method (Fig. 9), and the volume ratio
from the developed method is 33% (Fig. 10). PolyStress also
produces a black-and-white layout similar to that from our
approach. Nevertheless, the layout of the structure varies
slightly even after 8 iterations. This fluctuation is evident
in the curve of volume ratio against iteration, as shown in

Fig. 10 Volume ratio versus iteration in different approaches under dif-
ferent approaches
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Fig. 11 Distribution of von Mises Stress on the designed layout for a
thin beam from (a) the plasticity-based method developed in this study
and (b) PolyStress

Fig. 12 Distribution of the percentage of von Mises Stress

Fig. 10. In contrast, the volume ratio exhibits little change for
iteration greater than 6 in the modelling using our developed
method. The volume ratio from our method is 33%, which
is lower than the 45% obtained from the traditional stress-
constrained approach.Notably, the curves of the volume ratio
against iteration from this study and the 2D plasticity-based
method using quadratic elements [26] are in good agreement,
which further validates the proposed method.

To further compare the results from the method devel-
oped in this study and the conventional stress-constrained
topology optimization method, the distribution of VM stress
on the layouts from the two methods is shown in Fig. 11,
and the percentage distribution is shown in Fig. 12. These
results are obtained using uniformmeshes, and themesh sizes
for the two simulations are the same (0.15 m). As expected,

Table 1 Computing cost for the simulation with/without mesh refine-
ment

Time (s) Node number
(iteration � 9)

Element
number
(iteration �
9)

With mesh
refinement

150.34 9,451 31,251

Without mesh
refinement

414.23 20,604 60,000

most areas of the layout from the developed plasticity-based
method exhibit a VM stress equal to the yield stress, whereas
many parts of the layout from PolyStress have a VM stress
smaller than the yield stress. The quantitative comparison
shown in Fig. 12 indicates that the percentages of VM stress
located in the ranges of 0–30 kPa and 270–300 kPa from the
developedmethod are larger than these fromPolyStress.Very
low percentages of VM stress in the range from 30–270 kPa
also demonstrates the efficiency of the adopted exponential
penalty function in Eq. (19).

Noteworthily, 3D simulations are generally computation-
ally demanding. To reduce the computational burden, we
employ a simple and efficient mesh refinement scheme. The
basic idea is to check the density of each node and the length
of all edges associated with the node. If both the density
and edge length exceed given threshold values, an additional
point is added to the middle of the associated edge for mesh
refinement.

To illustrate the efficiency of this approach, we re-analyze
this example with mesh refinement. Initially, we discretize
the domain with a larger mesh size of he � 0.2 m, result-
ing in 4,556 nodes and 13,068 meshes. The mesh refinement
is carried out using a density threshold of 0.9, and an edge
threshold of 0.15 m, which is identical to the mesh size used
in the simulation without mesh refinement. Figure 13 shows
the evolution of the layout in the two simulations. Clearly, a
satisfactory black-and-white structure is obtained with 5 iter-
ations in the simulation with mesh refinement. In contrast,
more than 7 iterations are required in the simulation without
mesh refinement. The convergence history in terms of vol-
ume ratio against iteration for the two cases is illustrated in
Fig. 14. As observed, the volume ratio exhibits little varia-
tion for iterations greater than 7 in the simulation with mesh
refinement, whereas there is a slight fluctuation, with a mag-
nitude of less than 2%, in the case without mesh refinement.

The computational cost for the two cases is presented in
Table 1. The simulation with mesh refinement requires only
half of the elements and nodes compared to the simulation
without mesh refinement to achieve a similar solution. The
time required for the simulation with mesh refinement for
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Fig. 13 The layouts from the
developed method with/without
mesh refinement at different
iteration steps

9 iterations is 150.34 s – approximately 36% of the time
required in the case without mesh refinement. Remarkably,
there is no need for 9 iterations in the simulation with mesh
refinement, as a converged solution is obtained at 7 iterations
(Fig. 14), suggesting that the computational cost of the case
with mesh refinement should be even lower than 150.34 s.

4.2.2 A thick beam

With mesh refinement, we further investigate a beam with
a significant thickness of t � 5 m. The parameters and the
imposed pressure are the same as those in Sect. 4.2.1. The

domain is initially discretized using a total of 41,106 nodes
and 225,000 meshes.

Figure 15 illustrates the evolution of the layout at different
iteration steps. As shown, a converged black-and-white lay-
out is obtained at the 6th iteration step, which is in line with
the curve of volume ratio against iteration shown in Fig. 16.
The volume ratio in this case is 32.5%, slightly lower than
the ratio for the thin beam case (33.1%). This is because the
topology structure can be optimized in the thickness direc-
tion, resulting in an optimal spatial structure as depicted in
Fig. 17a. Figure 17b displays the normalized VM stress. As
seen, the normalized VM stress is less than 1 in most parts
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Fig. 14 Convergence history in terms of volume ratio against iteration

of the designed structure surface, given that the surface is in
the thin blur area. This aligns with the distribution of the nor-
malized VM stress on the three specific slices at z � 2.5 m,
4.3 m, and 5.0 m (Fig. 17c–e). When subjected to the given
pressure, most inner parts of the structure have a σV M equal
to 1, while a thin layer exists on the surface of the optimal
structure. Remarkably, the layouts on the three slices differ
from each other, indicating that optimized structure adapts
to different sections along the thickness direction. The num-
ber of node and element at the 6th iteration is 211,546 and
1,291,368, respectively, and the computational cost for iter-
ations from step 1 to 6 is 10.9 h.

Fig. 16 The layout evolution of a beam with t � 5 m obtained from the
developed method

It is worth noting that extracting a manufacturable struc-
ture from the 3D density fields obtained from topology opti-
mization is nontrivial. Here, we conducted a more detailed
investigation into the extraction of structure from different
density ranges. The topologies extracted from four density
ranges, namely ρ > 0.1, ρ > 0.3, ρ > 0.5, and ρ > 0.7, are
illustrated in Fig. 18. Very little difference can be identified
for the four layouts, which echoes the distribution of density
shown in Fig. 19. A large portion of the design domain pos-
sesses density either close to 0 or 1. Consequently, in this
study, all layouts are extracted for ρ > 0.5 unless otherwise
specified.

Fig. 15 The layout evolution of a beam with t � 5 m obtained from the developed method
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Fig. 17 Topology optimization
results of a thick beam: a optimal
layout, and the normalized VM
stress on b the structure and
slices at c z � 2.5 m, d z �
4.3 m, and e z � 5.0 m

Fig. 18 Layout extracted under different density ranges

4.3 Bridge design

The final example in this study focuses on the design of a
bridge. Figure 20 depicts the design domain with dimen-
sions of 18m × 6m × 4m. The bridge is clamped at the two
bottom supports, indicated by the shaped zones, each mea-
suring 2m × 4m. A uniformly distributed traffic load F �
875 kPa is applied to the top blue plate in the design. The
plate has a thickness of 0.1 m and is positioned 4.5 m from
the top and 1.4 m from the bottom of the design domain.
The yield stress of the material is 10 MPa, and the density of
the blue plate is set to be one in the simulation. The initial
discretization of the design domain employs a mesh size of
he � 0.2m, resulting in 59,241 nodes and 324,000 elements.

Fig. 19 Distribution of the percentage of density

Mesh refinement is carried out using a density threshold of
0.9 and an edge threshold of 0.08 m. The tolerance value for
this case is set to 0.5%.

Table 2 presents the simulation history in terms of the
volume ratio and error. A converged result is achieved with

5 iterations, and the error, defined as

∣∣∣∣ Objn+1−Objn
Objn+1

∣∣∣∣ from the

5th iteration, is 0.24%,which is lower than the tolerance value
of 0.5%. The resulting converged layout has a volume ratio
of 12.3%.

Figure 21 shows the design history of the bridge. As the
number of iterations increases, the bridge structure gradually
undergoes optimization, resulting in a trail bridge structure.
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Fig. 20 The bridge design
domain (unit: m)

Fig. 21 Evolution history of the bridge layout

The optimized structure features two walls with holes in the
upper part of the domain, with the holes separated from each
other by several cable-like structures. The lower part of the
bridge consists of two hollow piers connecting to the areas
with fixed boundaries. The computational cost for this design
is 6.55 h, and the converged solution is achieved with a total
of 154,615 nodes and 909,331 elements.

Additionally, the effect of the height of the deck surface on
the bridge design is investigated. The deck surface is varied
at the heights of 1 m, 2m, 3m, 4m, 5m, 6m from the bottom
of the design domain. Figure 22 shows that as the deck height
increases, the volume ratio decreases. For lower deck heights,
the optimal bridge design includes piers as well as upper part
arch-like structure to support the traffic load as illustrated
in Fig. 23. On the other hand, for higher deck heights, the

Fig. 22 Volume ratio against the height of deck
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Fig. 23 Optimal structures from the developed approach for a deck at
different heights

Table 2 Convergence history of the bridge design

Iteration Volume Ratio Error

0 0.09 –

1 0.111 18.92%

2 0.1186 6.41%

3 0.1232 3.73%

4 0.12354 0.28%

5 0.12324 0.24%

structure features piers with a more complex topology and
does not have an upper structure.

5 Conclusions

This paper presents a method for 3D black-and-white topol-
ogy optimization of continuum structures considering plas-
ticity. The method combines density-based topology opti-
mization and mixed limit analysis, formulating a sequence
of continuous convex topology optimisation problems. These
problems are efficiently solved using the primal–dual inte-
rior pointmethod inmodern optimisation engine. To enhance
computational efficiency, mesh refinement operations are
introduced using linear tetrahedral elements. Volumetric
locking issues commonly associated with linear tetrahe-
dral elements are effectively addressed by incorporating the
smoothed finite element technique.

In contrast to conventional stress-constrained topol-
ogy optimisation approaches, the proposed plasticity-based
method eliminates the need for a separate finite element
structural analysis procedure. It offers a more cost-effective
design solution by allowing material yielding as long as the
global structure remains stable. This stands in contrast to
the traditional stress-constrained method where structures
are restricted to elastic behavior only. The correctness and
robustness of the developed 3D plasticity-based approach
are demonstrated through a series of classical numerical
examples. Qualitative and quantitative comparisons with
traditional stress-constrained approaches validate the effec-
tiveness of the proposed method.
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