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Abstract
We formulate variational material modeling in a space-time context. The starting point is the description of the space-time
cylinder and the definition of a thermodynamically consistent Hamilton functional which accounts for all boundary conditions
on the cylinder surface. From the mechanical perspective, the Hamilton principle then yields thermo-mechanically coupled
models by evaluation of the stationarity conditions for all thermodynamic state variables which are displacements, internal
variables, and temperature. Exemplary, we investigate in this contribution elastic wave propagation, visco-elasticity, elasto-
plasticity with hardening, and gradient-enhanced damage. Therein, one key novel aspect are initial and end time velocity
conditions for the wave equation, replacing classical initial conditions for the displacements and the velocities. Themotivation
is intensively discussed and illustrated with the help of a prototype numerical simulation. From the mathematical perspective,
the space-time formulations are formulated within suitable function spaces and convex sets. The unified presentation merges
engineering and applied mathematics due to their mutual interactions. Specifically, the chosen models are of high interest in
many state-of-the art developments in modeling and we show the impact of this holistic physical description on space-time
Galerkin finite element discretization schemes. Finally, we study a specific discrete realization and show that the resulting
system using initial and end time conditions is well-posed.

Keywords Hamilton principle · Variational material modeling · Space-time formulation

1 Introduction

Mechanics and mathematics share a common history: often,
mechanical problems inspired mathematicians to invent new
techniques to successfully describe the observed physical
phenomena. A prominent example is the brachistochrone
problem stated by J. Bernoulli in 1696 which was the ori-
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gin for the invention of variational calculus. Therefrom, a
long-standing fruitful history in the interaction of applied
mathematics andmechanics in variational material modeling
evolved, specifically the famous principles from Lagrange
and Hamilton which date back to 1788 [53] (Méchanique
Analytique1) and 1834 [36] (On a General Method in
Dynamics),2 respectively. For a concise historical back-
ground, we refer to the preface of [57]. A further example of
the interaction was the understanding that a thermodynamic
state is uniquely defined if and only if, along with displace-
ments and temperature, the current ‘inner state’ is known.
This idea, which originated from the pioneering works of
Onsager in the 1940s, was adapted in continuum mechanics
by introducing internal variables. This, in turn, stimulated a

1 http://sites.mathdoc.fr/cgi-bin/oeitem?id=OE_LAGRANGE__11_1_0.
2 https://www.maths.tcd.ie/pub/HistMath/People/Hamilton/
Dynamics/.
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strong and fruitful interrelation to mathematics by carefully
analyzing and discovering convexity properties of the free
energy density such as rank-1-convexity, poly-convexity, and
quasi-convexity, e.g. [4, 5, 19]. Both the variational calculus
and the convexity properties are related to the mathemati-
cal field of analysis. A more recent example is also given
in the context of numerics: the internal variables allowed to
formulate modern mechanical models, e.g., for visco-elastic
and plastic materials, which were supposed to be evaluated
in a finite dimensional context as soon as the computational
power had reached a level whichwas necessary for the break-
through of the finite element method. Then, the interplay
of mechanical modeling and the development of suitable
numerical solvers established a strong cooperation between
mathematics and mechanics, which continues further devel-
oping since the 1980s, e.g. [80].

Mechanical models usually result in nonstationary, non-
linear, coupled partial differential equations, inwhich several
equations interact, and most often demand numerical solu-
tions including physics-based discretizations and physics-
based solvers. Moreover, such systems can be subject to
inequality constraints (as we will see in this work as well)
yielding coupled variational inequality systems (CVIS) [86].
For a holistic numerical analysis of these partial differen-
tial equations in space and time, the so-called space-time
approach is known since 1969 in the pioneeringwork ofOden
[66], Argyris and Scharpf [1], and Fried [29]. It has been
further developed since then; we refer the reader to recent
overviews [54, 55, 83, 87] and references cited therein.

In space-time modeling, temporal and spatial coordinates
are treated in one common continuum, the so-called space-
time cylinder, and then allow for a joint discretization. The
terminology ‘cylinder’ is commonly used, e.g., [54], and
has to be understood in a larger geometrical sense for all
cases in which both the spatial and the temporal geometries
are still ‘domains’; for the definition see for instance [21].
Specifically, this enables for common mathematical models,
a common mathematical theory, and a common numerical
analysis and corresponding algorithms. It offers the huge
advantage of analyzing the properties of the numerical solu-
tion of a physical problem in a holistic manner and thus,
to identify suitable solution strategies for a particular model.
Specifically, similar types of discretizations in space and time
(generically implicit, A-stable schemes, numerical stability,
e.g., [22]) are of interest. Often, these are Galerkin finite
element methods (FEM), either continuous Galerkin (cG),
discontinuous Galerkin (dG), or mixtures, as for instance
cG in space and dG in time. This allows for flexible dis-
cretizations in space and time. In a natural way, higher-order
basis functions can be employed. Considering in particular
the temporal discretization in terms of FEM, the integral form
comprises information on the entire continuous time inter-
val Im rather than only at discrete time points tm−1 and tm

as for finite differences. In the numerical analysis, this has
the advantage that well-known best approximation (Galerkin
orthogonality) and convergence results from FEM theory
can be employed that usually require weaker regularity con-
ditions of the governing functions than finite difference
schemes. Based upon these results, FEM-based a priori and
a posteriori error estimates can be derived, where the latter
enable error-controlled (space-time) adaptivity. Specifically,
working in optimization [39, 84] or dual-weighted residual
error estimation, e.g., [6, 10, 79] and selected chapters in
[71], the adjoint equation is needed which is derived and
discretized in a consistent fashion utilizing space-time mod-
eling. The biggest shortcomings in space-time discretizations
are often heavy notations, specifically when dG discretiza-
tions are involved, and clearly the computational cost and
memory requirements for truly space-time numerical solu-
tions [30, 78].

In the 1970s and 1980s, similar studies to ours by
using Hamilton’s principle and Hamilton’s law for model-
ing dynamics and elastodynamics in a space-time context
have been published [8, 68] and we also refer to the classical
textbook [26] in which engineering models are formulated
within space-time function sets and the research papers [6,
41, 42, 45], where specifically [42][pp. 327–332] provides
an exhaustive literature review from the late 80s viewpoint.
However, it seemed that space-time approaches were only
used for conservative and isothermal systems or they were
derived from the respective strong forms for the balance of
linear momentum and, in case of thermo-mechanics, the heat
conduction equation.

Our intention is to show in this contribution that these
procedures can be replaced: indeed and as already noticed
in various works, a space-time formulation was already
present in Hamilton’s principle of stationary action, which
is of special interest: it has recently been demonstrated
that an extended Hamilton’s principle yields the thermo-
mechanically coupled model equations following from the
stationarity conditions for all thermodynamic state variables,
which are displacements, internal variables for microstruc-
ture evolution, and temperature, cf. [46]. Consequently, the
extended Hamilton principle yields the space-time formu-
lation for thermo-mechanics of dissipative continua in a
holistic sense from a stationary principle which, form a
mathematical perspective, offers the benefit of providing the
correct test functions automatically.

It is worth mentioning that there exist other extremal prin-
ciples including thermal coupling. Examples can be found
in [11, 18, 60, 61], for instance. However, all of these
approaches share the very same procedure: to discretize first
the time derivatives. In a space-time context, this can be
interpreted that a special (dG) time approximation has been
chosen in advance to the evaluation of the stationarity. In
contrast, the Hamilton principle we use does not need this
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specification of the test functions. Conversely, the station-
arity conditions are all derived for arbitrary(ly smooth) test
functions. This implies that our formulation offers the most
general formulation. Consequently, the modeling of coupled
mechanical continua via this stationary principle directly
results in a holistic space-time formulation for all state vari-
ables. It hence serves as further example of how mechanics
and mathematics are overlapping research areas with mutual
exchanges. We demonstrate this important understanding by
means of four specific mechanical models which cover many
possible types of equations in solid mechanics. These are
the elastic wave problem, rate-dependent, rate-independent,
and gradient-enhanced equation types which result in ordi-
nary differential equations, differential-algebraic equations,
partial differential equations, and variational inequalities,
respectively. These all demand their own, specified space-
time formulations. A comparable approach has been pre-
sented in [31]whichwas restricted to systemswith no internal
variable. The previous descriptions can be summarized as
novelties in a compact fashion as follows:

1. Analysis of the classical principles of stationary action
and virtual work regarding boundary conditions;

2. Derivation of mathematical-consistent space-time formu-
lations from an extended Hamilton principle;

3. Detailed explanation of boundary conditions on the end-
time cylinder part, including a prototype numerical sim-
ulation;

4. Numerical discretization using Galerkin finite elements
in space and time in which the temporal part is based on
discontinuous Galerkin (dG). A well-posedness analysis
for three time points of the fully discrete elastic wave
equation is included as well;

5. Correspondance of classical strong formulations and
space-timeweak formulations in order to address research
communities starting from strong forms and vice versa.
These correspondances are explicitly stated in the
Appendix for each of our four principle problems to have
a one-to-one comparison.

The outline of this paper is as follows. First, in Sect. 2,
we introduce and describe the space-time cylinder and recall
the fundamentals of thermodynamics. Specifically, the key
notation is introduced as well as all boundary conditions
on the space-time cylinder surface. Second, we discuss the
boundary conditions for the classical extremal principles of
stationary action and virtual work in Sect. 3. In Sect. 4,
we setup the notation, recall the extended Hamilton prin-
ciple and provide a further roadmap of the paper. In Sect. 5,
we introduce a reformulated Hamilton functional which
results in a mixed formulation and apply it to the elastic
wave propagation for which a numerical simulation result
is presented. In Sect. 6, we address visco-elasticity. Next,

in Sect. 7, we consider elasto-plasticity with hardening, and
in Sect. 8, gradient-enhanced damage modeling will be dis-
cussed. In Sect. 9, we present a numerical discretization of
the gradient-enhanced damage model; here, also a numerical
regularization of the variational inequality is proposed. Our
work is summarized in Sect. 10 in which also some future
directions will be given.

2 Mathematical and thermodynamic
preliminaries

2.1 Notation

Let � ⊂ R
d be a bounded domain (connected set of points),

where d = 3 is the dimension. Let ∂� be a sufficiently
smooth boundary such that an outward pointing normal
vector n can be defined. Specifically, ∂� = ∂�D ∪ ∂�N

and ∂�D ∩ ∂�N = ∅ with ∂�D denoting the boundary
with Dirichlet conditions and ∂�N denoting the bound-
ary with Neumann conditions. Moreover, for each problem
(later three in this work), the respective Dirichlet and Neu-
mann boundaries are distinguished by ∂�D,u, ∂�D,θ , ∂�D,α

and ∂�N,u, ∂�N,θ , ∂�N,α , and they are respectively non-
overlapping for each variable. Next, the time interval is
denoted by I = (0, T ) with the end time value T ∈
]0,∞[. The closures of � and I are denoted by �̄ and
Ī , respectively. For the mathematical descriptions we often
employ (a, b) = ∫

�
a · b dV when a, b ∈ R

d . The same
notation is employed for second-order tensors: (A, B) =∫
�
A : B dV when A, B ∈ R

d×d , where the Frobe-
nius scalar product (double contraction) is defined as A :
B = ∑d

i, j=1 Ai j Bi j . The Frobenius norm is denoted by

‖A‖ := ‖A‖F =
(∑d

i, j=1 A2
i j

)1/2
and the Euclidian norm

by ‖a‖ :=
(∑d

i=1 a2
i

)1/2
for a ∈ R

d .

2.2 Solution sets: function spaces and convex sets

For the mathematical descriptions of the problem statements
in this paper, we work with the usual Hilbert spaces L2(�)

and H1(�) and their time-dependent extensions, namely
Bochner spaces, L2(I , V ), which means L2 regularity in
time of functions mapped from the time interval I to val-
ues in V , where V := L2(�) or V := H1(�); see, for
instance, [88] or [52] or [56, Chapter 1]. Furthermore, for
differentiation in normed function spaces, we introduce some
notation below and refer for a compact summary of impor-
tant concepts such as Gâteaux derivatives and chain rules to
[21]. Since we frequently deal with variational inequalities
(and coupled variational inequality systems (CVIS) [86]), we
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also need convex closed sets, e.g., denoted by K , in suitable
function spaces; see e.g., [26, 50].

2.3 Definitions

Continuous physical bodies are characterized by a closed
set � ⊂ R

d . Then, material properties are assigned to all
spatial points x ∈ � such that these spatial points are
referred to as material points [21, 40, 73]. The properties
of the material points can be both time-independent and
time-dependent. The time-independent properties are usually
referred to as material parameters which can be experimen-
tally determined for a specific material. The time-dependent
properties, in contrast, characterize the thermodynamics state
and are thus referred to as thermodynamic state variables.
Examples for the internal variables might be plastic strains,
damage states, volume fractions, concentrations, or com-
binations of the latter. In this contribution, we investigate
dissipative thermo-mechanics for which the thermodynamic
state is uniquely set by the displacements u, the material-
specific internal variables α, and temperature θ . Then, we
arrive at

Definition 1 (Thermodynamic state) The thermodynamic
state is defined by the set

� := {u,α, θ} (1)

which provides full thermo-mechanical information includ-
ing dissipative effects.

The set of state variables needs to be adjusted depending on
the material behavior to be described. For instance, for dis-
sipative electro-thermo-mechanics, the electric field E and
the magnetic field B need to be added. On the other hand, for
purely reversible processes, the thermodynamic state reduces
to �e := {u, θ}. Then, the physical state is given by evalua-
tion of all elements in� for all elements in�, i.e., u = u(x),
α = α(x), and θ = θ(x), where the spatial domain � 	 x
can be imagined without loss of generality as a circle. How-
ever and as mentioned, the thermodynamic state variables
are time-dependent. This property can be included into the
schematic picture by extruding the circle into the perpen-
dicular direction, which denotes the time dimension. The
resulting ‘geometric’ object is thus a cylinder in the space-
time continuum. The dimensions are given by the geometric
length [m] , i.e., the radius of the circle, and the time length
[s], i.e., the height of the cylinder, and they are given in SI
units. However, the presented derivations in this work hold
true for arbitrary three-dimensional spatial domains with
sufficiently smooth boundaries. Thus, we arrive at (see for
instance [52, 56])

Definition 2 (Space-time cylinder) Let Rd+1 be the (d + 1)-
dimensional Euclidian space with points (x, t), where x =

Fig. 1 Schematic plot of the space-time cylinder for a two-dimensional
spatial domain

(x1, . . . , xd) ∈ R
d . The space-time cylinder is defined by

Q := � × I (2)

with the time interval I = (0, T ), with t ∈ I , where T ∈
]0,∞[ is the end time point, and � ⊂ R

d is the spatial
domain.

Of course, the space-time cylinder transforms to a four-
dimensional space with the coordinates (x1, x2, x3, t) and
arbitrary shape for a general three-dimensional spatial
domain. A schematic plot of the space-time cylinder for a
two-dimensional spatial domain is given in Fig. 1. We rec-
ognize

Definition 3 (Integration over the volume of the space-time
cylinder) The integration over the volume of the space-time
cylinder for an integrable scalar-valued function f : Q → R

with f = f (x, t) is given by

BQ[ f ] :=
∫

I

∫

�

f (x, t) dV dt . (3)

2.4 State variables

It has been demonstrated in a recent publication [46] that
an extended Hamilton principle provides not only the gov-
erning equations for the displacements, in analogy to the
principle of least action; in contrast, it provides the govern-
ing equations for all thermodynamic state variables which
are the displacements u = u(x, t), the internal variables
α = α(x, t) which describe the microstructural state, and
the temperature θ = θ(x, t), see [46]. All thermodynamic
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state variables are functions of space x ∈ � and time t ∈ I ;
consequently, all state variables are elements of the space-
time cylinder: (x, t) ∈ Q, u : Q → R

d , α : Q → R

or α : Q → R
d×d , depending on the specific microstru-

ture evolution to be modeled, and θ : Q → R. The internal
variables are interpreted in the following derivations as vec-
torial quantity; for other cases, e.g., scalar- or matrix-valued
internal variables, the products have to be adapted accord-
ingly, i.e. the scalar products (•) · (•) reduces to (•)(•) for
scalar-valued internal variables or expands to (•) : (•) for
matrix-valued internal variables.

2.5 Space-time boundary conditions and evolution
laws

The thermodynamic state � is not fixed but time-dependent.
To be more precise, it depends both on the externally applied
conditions at the space-time point (x, t) and also on the states
at other points in time. Consequently, two quantities are of
interest

1. the boundary conditions and
2. the evolution of � within the space-time cylinder.

We will come to 2. later. For the first part, we can return to
the figure of the space-time cylinder.

2.5.1 Space-time boundary conditions

First, we introduce

Definition 4 (Boundary of the space-time cylinder) The
boundary of the space-time cylinder is defined by

∂ Q = {∂� × I } ∪ {� × ∂ I }. (4)

We see that the lateral surface (i.e., classical boundary con-
ditions of the spatial domain) of the space-time cylinder is
defined by {∂� × I } whereas the end faces are defined by
{� × ∂ I }. To capture the entire space-time cylinder, we thus
need to define the boundary conditions at all surfaces. Specif-
ically, we notice that ∂ I = {0, T } with ∂ I = ∂ I0 ∪ ∂ IT ,
wherein the boundary part ∂ I0 = {0} constitutes the well-
known initial condition. Specific definitions for t = T (end
time space-time cylinder face) are rather unusual in the clas-
sical literature and much less (if at all) discussed; we refer
the reader for a further discussion to Sect. 3.4.

We thus specify the integration over the surfaces by

Definition 5 (Integration over the surface of the space-time
cylinder) The integration of an integrable scalar-valued func-
tion f = f (x, t) over the lateral surface of the space-time

Fig. 2 A spatially two-dimensional representation of the space-time
cylinder including boundary conditions, exemplary for the displace-
ments: Dirichlet boundary conditions are indicated in yellow; spatial
Neumann boundary conditions are indicated in green; temporal Neu-
mann boundary conditions are indicated in blue. (Color figure online)

cylinder is given by

B∂�[ f ] :=
∫

I

∫

∂�

f (x, t) dA dt, (5)

and the integration of a different integrable scalar-valued
function p = p(x, t) over the end faces of the space-time
cylinder is given by

B∂ I [p] :=
∫

∂ I

∫

�

p(x, t) dV ds . (6)

Here, dA indicates the integration over the spatial surface
∂� and ds indicates the integration over the temporal sur-
face ∂ I . We specify the respective boundary integration for
some scalar-valued function g on the Dirichlet and Neumann
boundaries for the three governing variables u, θ and α by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B∂�D,u [g] :=
∫

I

∫

∂�D,u

g dA dt

B∂�N,u [g] :=
∫

I

∫

∂�N,u

g dA dt

B∂�D,θ [g] :=
∫

I

∫

∂�D,θ

g dA dt

B∂�N,θ [g] :=
∫

I

∫

∂�N,θ

g dA dt

B∂�D,α [g] :=
∫

I

∫

∂�D,α

g dA dt

B∂�N,α [g] :=
∫

I

∫

∂�N,α

g dA dt

(7)
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and the initial condition

B∂ I ,0[g] :=
∫

�

g dV

∣
∣
∣
∣
t=0

. (8)

The results of the operators for surface integration, i.e., B∂�

and B∂ I , have the same physical units.

The notation for a function f = f (x, t) and its space-time
boundary conditions, i.e., spatial boundary conditions aswell
as temporal conditions is as follows:

⎧
⎪⎨

⎪⎩

f (x∂ , t) =: f �

f (x, t = 0) =: f �
0

f (x, t = T ) =: f �
T

(9)

where x∂ = x ∈ ∂�. Moreover, f � is also used to indicate
quantities which depend on the current material behavior and
which thus need to be modeled. Hence, they are treated as
given data, which are frozen variables during variations, i.e.,
δ f � ≡ 0. The space-time cylinder including all boundary
conditions is schematically plotted in Fig. 2.

Let us assume that the function f is a traction and thus
has the physical SI unit N/m2. Then, it holds that B∂� has
the physical unit N×s. Furthermore, if f has the physical
unit N/m2, it follows that p has the physical unit kg

m3
m
s , i.e.,

p has the unit of a volume-specific linear momentum. The
time dimension is, in contrast to the space dimension, scalar-
valued. The fundamental theorem of calculus implies that∫
∂ I p ds ≡ p(x, T )− p(x, 0). Consequently,

∫
�

p(x, t) dV
already needs to yield the final unit of B∂ I [p], which needs
to be identical toB∂�[ f ]. Thus, p has the physical unit kg

m3
m
s .

2.5.2 Evolution of3within the space-time cylinder

It remains to provide the second quantity of interest: the
evolution of � in the space-time cylinder, i.e., we need to
describe how the thermodynamic state variables evolve over
space and time. As we will show in the next section, this can
be holistically achieved by an extended Hamilton principle.

2.6 Fundamental balance laws of thermodynamics

The starting point for the derivation of the extendedHamilton
principle are the fundamental balance laws of thermodynam-
ics specified via the first and second law of thermodynamics.

The first law of thermodynamics (balance of energy) is
given by

∫

I
K dt +

∫

I
E dt =

∫

I
W dt +

∫

I
Q dt (10)

with the following energy functionals:

1. kinetic energy

K := K[u] :=
∫

�

1

2
ρ‖u̇‖2 dV

2. internal energy

E := E[u,α, θ ] :=
∫

�

	(ε,α,∇α, θ) dV +
∫

�

θs dV

3. external mechanical work

W := W[u] :=
∫

�

b� · u dV +
∫

∂�N,u

t� · u dA

4. external thermal work

Q :=
∫

�

∫
h� dt dV −

∫

∂�N,θ

∫
n · q� dt dA.

Here, ρ is the density with the unit [ρ] = kg/m3, 	 is the
free energy density with the unit [	] = J/m3, ε = ∇symu ≡
1
2 (∇u + u∇) is the dimensionless linearized strain, and s is
the entropy density with the unit [s] = J/(Km3). Quantities
marked with (•)� are externally given and thus do not follow
from any stationarity condition, but need to be modeled. In
a practical sense, this means that they are treated constant
when computing a variation. Body forces are denoted by b�

with the unit [b�] = N/m3, the traction vector is t� with the
unit [t�] = N/m2, the external heat source is h� with the unit
[h�] = W/m3, and the heat flux is termed as q� with the unit
[q�] = W/m2. Furthermore, n is the outward pointing unit
normal vector. For later use, let us introduce the mechanical
stress σ , which is related to the free energy density by

σ := ∂	

∂ε
, (11)

with the physical unit [σ ] = N/m2 and the heat flux vector
q�, which is modeled by Fourier’s law as

q� := −ω∇θ� (12)

with the heat conductivityω, having the unit [ω] = W/(mK).
Later from Sect. 4 on, θ� will be replaced by θ in all station-
arity conditions that follow.

Remark 1 The thermal workQ results as time integration of

the thermal power P therm :=
∫

�

h� dV −
∫

∂�N,θ

n · q� dA.

The negative sign ensures an increase of energy in the body
when the heat flux vector q� is pointing inside of the body.

The second law of thermodynamics (balance of entropy)
is given by

Ṡ = Qs
s + Qs

f + D (13)
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where Ṡ := d
dtS, with the following temperature-specific

energy functionals:

1. total entropy S :=
∫

�

s dV

2. entropy source Qs
s :=

∫

�

h�

θ
dV

3. entropy flux Qs
f := −

∫

∂�N,θ

n · q
�

θ
dA

4. entropy production D :=
∫

�

�s dV

Remark 2 Irreversible processes are characterizedbya strictly
positive entropy production �s > 0 while �s = 0 holds
for reversible processes. Moreover, from �s ≥ 0, it follows
Ṡ ≥ 0 which is the well-known Clausius-Duhem inequality.
The division of h� and q� by temperature ensures (13) to
be a one-form (also known in German as Pfaff’sche form),
e.g., we have for reversible processes the path-independence
of the integrals in S(T ) = S(0) + ∫

I Qs
s dt + ∫

I Qs
f dt ,

i.e., the value of S(T ) can be determined by evaluating the
antiderivatives of Qs

s and Qs
f on I and thus only depend on

the values at the beginning and the end of the time interval.

2.7 Free energy and total potentials

Next, we continue with the free energy:

Definition 6 (Free energy) Let us define the free energy as

G[u,α, θ ] :=
∫

�

	(ε,α,∇α, θ) dV . (14)

Then, the first and second law of thermodynamics can be
combined by elimination of h� inQ in (10), and rearranging
yields

∫

I
K dt = −

∫

I
G dt +

∫

I

∫

�

b� · u dV dt

+
∫

I

∫

∂�N,u

t� · u dA dt −
∫

I

∫

�

∫
θ̇s dt dV dt

−
∫

I

∫

�

∫
1

θ
q� · ∇θ dt dV dt

−
∫

I

∫

�

∫
�sθ dt dV dt . (15)

It is worth mentioning that an indefinite time integral is
present in the last three terms in (15) due to the definition
of the thermal work Q, cf. [46] for more details.

Furthermore, we come to

Definition 7 (Total potential) We define the total potential in
the space-time cylinder by

GI :=
∫

I
G dt −

∫

I

∫

�

b� · u dV dt −
∫

I

∫

∂�N,u

t� · u dA dt (16)

where BQ[b� · u] and B∂�N,u [t� · u] are the external contri-
butions to the total potential.

The thermodynamic state of each material point in the space-
time cylinder x ∈ � is expressed by the momentum vector
defined by dm u̇ where dm is the mass of the material point.
Then, the evolution of the thermodynamic state can be related
to a scalar when integrating the momentum vector in the
space-time domain. This scalar is referred to as action. The
position within the space-domain is uniquely related to the
time-dependent displacement vector u. This motivates to
define the action for each material point by

dA :=
∫

u
dm u̇ · du =

∫

u
ρ u̇ · du dV (17)

with fixed start and end points u0 := u(0) and uT = u(T ),
respectively. Due to the time dependence, the displacement
increment can be reformulated by du = u̇dt . Consequently,
we obtain for the action of the total body

A =
∫

A
dA =

∫

�

∫

u
ρ u̇ · du dV

=
∫

I

∫

�

ρ‖u̇‖2 dV dt =
∫

I
2K dt . (18)

The action can be interpreted as integration of ρ‖u̇‖2 over
the volume of the space-time cylinder, i.e.,A = BQ[ρ‖u̇‖2].
Later, we will explicitly work with the velocity variable
defined as v := u̇.

Similarly to the boundary terms for the total potential, we
arrive at

Definition 8 (Total action) We define the total action by
expandingA by boundary terms at the end faces of the space-
time cylinder. This results in

AI := A −
∫

∂ I

∫

�

ρ u̇� · u dV ds

=
∫

I

∫

�

ρ‖u̇‖2 dV dt −
∫

∂ I

∫

�

ρ u̇� · u dV ds , (19)

where ρ u̇� is the volume-specific linear momentum with the
prescribed velocity field u̇� at the end faces of the space-time
cylinder, i.e., at t = 0 and t = T , respectively.

Remark 3 We notice that the time boundary integral

∫

∂ I

∫

�

ρ u̇� · u dV ds

includes the difference of both temporal boundaries, namely
at t = 0 and t = T . Specifically, the possibility of prescribing
a condition for u̇ on t = T is rather unusual since we pretend
the solution u̇ at the end time; we refer the reader to Sect. 3
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and Remark 6. As we will demonstrate, this indeed provides
more flexibility for the formulation of boundary conditions.
Further details about this alternative understanding are also
provided in our discussion in Sect. 3.4.

3 The principle of least action and boundary
conditions

The purpose of this section is the mechanical analysis of
the standard procedure of extremal principles in mechan-
ics. First, we demonstrate special requirements on the test
functions. Then, we show how modified functionals yield
stationarity conditions that also include the boundary/initial
conditions in weak form. This observation motivates us
to formulate boundary conditions on the entire space-time
cylinder (including end time conditions) which do not pose
any requirements on the test functions. However, we notice
that the entire procedure presented remains also valid when
classical functionals are used.

3.1 The classical principle of least action

Let us start with the principle of least action which is usually
stated for systems of rigid particles in standard form as

Lc :=
∫

I

(
1

2
mq̇2 − 1

2
dq2
)

dt → stat
q

(20)

with the coordinate q = q(t), the mass m and the positive
spring constant d. The stationarity condition reads

δLc =
∫

I
(mq̇ δq̇ − dq δq) dt

= mq̇ δq|t=T − mq̇ δq|t=0

−
∫

I
(mq̈ + dq) δq dt = 0 ∀δq (21)

which can only be fulfilled if and only if

1. the (strong form) differential equationmq̈+dq = 0 holds
true and

2. the test function δq vanishes for t = 0 and t = T .

For solving the differential equation in Condition 1, two
conditions are required which might be initial or boundary
conditions on t = {0, T }, i.e., we need to assume informa-
tion on the position and/or velocity at the starting or/and
end point. Usually, the position and velocity at t = 0 are
prescribed, i.e., initial conditions are chosen. These condi-
tions are mainly used since they are immediately plausible
because of temporal causality, when information goes into
the direction of positive time. However, other choices are

also admissible. Furthermore, the test function δq needs to
fulfill the constraints on the boundary of the time interval in
Condition 2. This property is usually neglected in numerical
implementations.

3.2 The principle of least action including initial
conditions

The fundamental idea is to postulate an extended action func-
tionalwhose stationarity condition alsoyields theusual initial
condition as discussed above. To achieve this goal, we model
the extended action functional by

LIC :=
∫

I

(
1

2
mq̇2 − 1

2
dq2
)

dt + mq̇�
0q|t=0

+1

2
c̃(q − q�

0)
2|t=0 → stat

q
(22)

where q�
0 and q̇�

0 denote some prescribed initial conditions
for the position and velocity, respectively, and c̃ is a penalty
parameter with the physical unit [c̃] = kg/s. The stationarity
condition is computed to

δLIC =
∫

I
(mq̇ δq̇ − dq δq) dt

+mq̇�
0δq|t=0 + c̃(q − q�

0)δq|t=0

= mq̇ δq|t=T − mq̇ δq|t=0 −
∫

I
(mq̈ + dq) δq dt

+mq̇�
0δq|t=0 + c̃(q − q�

0)δq|t=0

= mq̇ δq|t=T − m(q̇ − q̇�
0)δq|t=0 + c̃(q − q�

0)δq|t=0

−
∫

I
(mq̈ + dq) δq dt = 0 ∀δq . (23)

Then, the following conditions must be fulfilled as stationar-
ity condition:

1. the differential equation mq̈ + dq = 0 holds true,
2. the test function δq vanishes for t = T ,
3. the initial position equals the prescribed one by q = q�

0
at t = 0 and

4. the initial velocity equals the prescribed one by q̇ = q̇�
0

at t = 0.

By using this extended functional, the initial conditions arise
naturally in the weak form within the stationarity condition.
However, the constraint on the test function at the end time
(Condition 2) is still present.
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3.3 The principle of virtual work including initial
conditions

The principal of virtual work is related to the principle of
stationary action in Sec. 3.1 by

LVW :=
∫

I
(K − GI ) dt → stat

u
. (24)

For solving this problem, the finite element method can be
applied. However, it remains to model the boundary and/or
initial conditions. The goal is to propose an extended func-
tional from whose stationary conditions the boundary and/or
initial directly follow inweak form. To this end, we postulate,
in analogy to Sec. 3.2, the following extended total potential:

LVW,IC :=
∫

I
(K − GI ) dt +

∫

�

ρ u̇�
0 · u dV

∣
∣
∣
∣
t=0

+
∫

�

1

2
cu‖u − u�

0‖2 dV

∣
∣
∣
∣
t=0

→ stat
u

(25)

with the initial displacement and velocity fields u�
0 and u̇�

0,
respectively, and a penalization parameter cu with the phys-
ical unit [cu] = kg/(m3s). The stationarity condition is
computed as

δuLVW,IC =
∫

I

∫

�

ρ u̇ · δu̇ dV dt −
∫

I

∫

�

∂	

∂ε
: δε dV dt

+
∫

I

∫

�

b� · δu dV dt+
∫

I

∫

∂�N,u

t� · δu dA dt

+
∫

�

ρ u̇�
0 · δu dV

∣
∣
∣
∣
t=0

+
∫

�

cu(u − u�
0) · δu dV

∣
∣
∣
∣
t=0

= 0 ∀δu (26)

Let us perform integration by parts in space and time. This
gives us

δuLVW,IC =
∫

�

ρ u̇ · δu dV

∣
∣
∣
∣
t=T

−
∫

�

ρ u̇ · δu dV

∣
∣
∣
∣
t=0

−
∫

I

∫

�

ρ ü · δu dV dt

−
∫

I

∫

�

∇ · (σ · δu) dV dt

+
∫

I

∫

�

∇ · σ · δu dV dt

+
∫

I

∫

�

b� · δu dV dt+
∫

I

∫

∂�N,u

t� · δu dA dt

+
∫

�

ρ u̇�
0 · δu dV

∣
∣
∣
∣
t=0

+
∫

�

cu(u − u�
0) · δu dV

∣
∣
∣
∣
t=0

= 0 ∀δu (27)

where we made use of the constitutive relation σ = ∂	/∂ε.
Let us collect the terms with identical integrals and those
evaluated at the same time points. Furthermore, we make
use of Gauss’ theorem. Then, we obtain

δuLVW,IC =
∫

�

ρ u̇ · δu dV

∣
∣
∣
∣
t=T

−
∫

�

ρ (u̇ − u̇�
0) · δu dV

∣
∣
∣
∣
t=0

−
∫

I

∫

�

(
ρ ü − ∇ · σ − b�

) · δu dV dt

−
∫

I

∫

∂�N,u

(
n · σ − t�

) · δu dA dt

+
∫

�

cu(u − u�
0) · δu dV

∣
∣
∣
∣
t=0

= 0 ∀δu .

(28)

Due to the independence of the respective integrals, the terms
above must vanish individually. We thus identify the follow-
ing conditions to hold true for stationarity of LVW,IC:

1. the balance of linear momentum ρ ü − ∇ · σ − b� =
0 ∀(x, t) ∈ � × I ;

2. the spatial boundary condition n · σ = t� ∀(x, t) ∈
∂�N,u × I ;

3. the test function δu vanishes for t = T ;
4. the initial velocity equals the prescribed velocity u̇ =

u̇�
0 ∀(x, t) ∈ � × {0};

5. the initial displacement field equals the prescribed one
u = u�

0 ∀(x, t) ∈ � × {0}.

Concluding, the formulation of extended functionals
enables us to obtain boundary and/or initial conditions in
weak form. The strategy of extended functionals is thus
equivalent to the usual way of modeling the boundary and/or
initial conditions. However, the usage of extended function-
als provides the advantage to obtain the weak form from the
stationarity condition whose solution in a space-time setting
directly fulfills the prescribed conditions. As we see later,
a different extension can be formulated which is free of any
constraints on the test functions (as Condition 3 above); here,
as consequence, the velocities at the initial time and end time
have to be prescribed for which a physical interpretation will
be given below.

3.4 Boundary term at the end time face of the
space-time cylinder

Regarding our goal to derive the entire boundary value prob-
lem in a holistic manner from a stationary principle, it is
unsatisfactory that the boundary conditions are to bemodeled
additionally to the postulation of the functional. Furthermore,
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restrictions on the test functions are questionable when the
stationarity conditions are interpreted in the holistic perspec-
tive of the space-time domain. Thus, we aim at formulating
an extended functional which is free of these requirements
while simultaneously yielding the required boundary condi-
tions in weak form. As we will see in Sect. 4, this goal can be
achieved.However, the boundary conditions are then given in
terms of temporal derivatives, i.e., the velocities, which need
to be known both at the beginning and at the end of the time
interval I . Since rather unusual when compared to classical
approaches, we discuss the end time space-time boundary
condition in more detail.

As alreadymentioned, this condition is an end time condi-
tion of the temporal part. An extensive literature research in
space-time contributions, e.g., [6, 41, 54, 55], did not reveal
the need for end time conditions to the best of our knowledge.
However, discussions can be found, for instance, in [41][p.
340] and [81]. There, the end-time condition is argued to
contradict causality (information is transported into the pos-
itive time direction) since in this case solutions depend on the
past and the future. This perspective is motivated by inter-
preting time as a unidirectional coordinate in which physical
processes evolve. In this work, we interpret the space-time
domain as a holistic four-dimensional object in which time
does not have a specified direction. We will see that our for-
mulation as a stationarity problem yield less restrictions for
the test functions while simultaneously the boundary condi-
tions appear naturally in weak form also on ∂ IT = {T }. This,
however, does not contradict causality of the time domain
since time is considered as a unity. We will see furthermore
that only temporal Neumann boundary conditions, i.e. in
terms of the velocities, appear at the start and end time face of
the space-time cylinder; see also Remark 6. In turn, classical
initial conditions for the function in term of Dirichlet bound-
ary conditions are here not necessary anymore. Interestingly,
this condition arises only due to the fact that we start from
the viewpoint of a stationarity problem, namely Hamilton’s
principle. In classical formulations that begin with the strong
form, the end time condition is not required, which, in com-
bination with the deduced argument of causality, may be one
of the reasons why this setting is not employed so far in the
literature.

4 The Hamilton principle as guidance
through the space-time cylinder

The Hamilton principle can be interpreted as generalization
of the well-known principle of least action for rigid bodies
as presented above.

4.1 Extended Hamilton functional and
Euler–Lagrange equations

Replacing one of the kinetic energies in (19) by (15) results
in the extended Hamilton functional, cf. [46], denoted here
as HEX:

HEX[u,α, θ ] :=
∫

I

(
K − GI −

∫

�

∫
θ̇s dt dV

−
∫

�

∫
1

θ
q� · ∇θ dt dV −

∫

�

∫
�sθ dt dV

)
dt

−
∫

I
C[α] dt . (29)

For a holistic representation, we add additional terms to
includeDirichlet boundary conditions and initial data inweak
fashion in analogous fashion as presented in Sect. 3.3. These
parts are collected in the functionalHBC, defined as

HBC[u,α, θ] :=
∫

I

∫

∂�D,u

1

2
cu‖u − u�‖2 dA dt

−
∫

∂ I

∫

�

ρ u̇� · u dV ds

+
∫

I

∫

∂�D,α

1

2
cα‖α − α�‖2 dA dt +

∫

�

1

2
r̃ ‖α − α�

0‖2 dV

∣
∣
∣
∣
t=0

+
∫

I

∫

∂�D,θ

1

2
cθ (θ − θ�)2 dA dt +

∫

�

1

2
κ (θ − θ�

0 )2 dV

∣
∣
∣
∣
t=0

(30)

with the penalty constants cu, cθ and cα with the physi-
cal units [cu] = kg/(m3s), [cα] = kg/(ms) and [cθ ] =
kg/(msK2), respectively, and the heat capacity κ with the
physical unit [κ] = J/(m3K). The parameter r̃ and its phys-
ical unit depends on the respective model. As demonstrated
later, it might be a viscosity (see Sect. 6), a yield stress
(see Sect. 7) or an energetic threshold value for microstruc-
ture evolution (see Sect. 8). It is worth mentioning that
the integrals evaluated at t = 0 set the initial conditions
for temperature and internal variable whereas the integral
B∂ I [ρ u̇� · u] sets the initial and end velocities which are the
temporal gradients of the displacements. Then, we obtain

H[u,α, θ ] := HEX[u,α, θ ] + HBC[u,α, θ ], (31)

which constitutes of the physically motivated parts in HEX

and the mathematically motivated parts in HBC. The weak
imposition of Dirichlet values is often done in discontinuous
Galerkin (dG) methods, e.g., [23, 76], and goes back to [64];
see also [3]. In Sect. 9, we employ dG in time, where we
prescribe initial conditions in an analogous fashion.

The Hamilton functional was complemented by the func-
tional C which accounts for model specific constraints. More
details will be provided later. It is worth mentioning that the
boundary term B∂ I [ρ u̇� · u] results in boundary conditions
at the end of the time interval, i.e., at t = {0, T }. However,
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different other options are possible as discussed in Sec. 3.
These different options do not restrict our derivations which
follow. In our opinion, the functional as proposed in (31)
yields the physically and mathematically most convincing
formulations.

The Hamilton principle postulates stationarity of the
Hamilton functional H in (31) with respect to all variables,
i.e.

δH[u,α, θ ](δu, δα, δθ) = δuH[u,α, θ ](δu)

+δαH[u,α, θ ](δα) + δθH[u,α, θ ](δθ)

= 0 ∀δu, δα, δθ

Proposition 1 (Total derivative) Let F : � ⊂ X → Y be
a mapping, where X := X1 × X2 × X3, here with u ∈
X1,α ∈ X2, θ ∈ X3, and Y are normed vector spaces and
� is open in X. If F is differentiable at a point a ∈ �, the n
(above n = 3with u, α and θ ) partial derivatives ∂ jF[a](δa)
for 1 ≤ j ≤ n exist and it holds into all directions δa =
(δa1, . . . , δan) ∈ X that

F ′[a](δa) =
n∑

j=1

∂ jF[a](δa j ).

A proof can be found in [21, Theorem 7.1-2, p. 455]. In (4.1),
we identify F := H and a = (a1, a2, a3) = (u,α, θ) and
lastly δa1 := δu, δa2 := δα and δa3 := δθ .

Due to the independence of the variations of the displace-
ments, the internal variables, and the temperature, i.e., δu, δα
and δθ , respectively, the necessary conditions are evaluated
independently:

⎧
⎪⎨

⎪⎩

δuH = 0

δαH = 0

δθH = 0

(32)

System (32) constitutes the well-known Euler-Lagrange
equations which are mathematically the first-order necessary
conditions for optimality.

Definition 9 (Gâteaux derivative) Let X and Y be normed
vector spaces and� be open in X . Note, in this paper Y = R.
Let F : � ⊂ X → Y be a mapping and a ∈ � and non-zero
vector δa ∈ X and assume that ε ⊂ R → F[a + εδa] ∈ Y
is differentiable at ε = 0. Then, F has at a ∈ � the Gâteaux
derivative into the direction δa, i.e., a directional derivative,
which is defined by

δF[a](δa) := lim
ε→0

F[a + εδa] − F[a]
ε

,

with δF[a](δa) ∈ Y .

Proposition 2 The Gâteaux derivatives of H are computed
to be

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

I

( ∫

�

∂	

∂ε
: δε dV −

∫

�

b� · δu dV −
∫

∂�

t� · δu dA
)
dt

−
∫

I

∫

�

ρ u̇ · δu̇ dV dt −
∫

I

∫

∂�D,u

cu(u − u�) · δu dA dt +
∫

∂ I

∫

�

ρ u̇� · δu dV ds = 0 ∀δu
∫

I

( ∫

�

∂	

∂α
· δα dV +

∫

�

∂	

∂∇α
: δ∇α dV +

∫

�

pdiss,� · δα dV + δαC
)
dt

−
∫

I

∫

∂�D,α

cα(α − α�) · δα dA dt −
∫

�

r̃ (α − α�
0) · δα dV

∣
∣
∣
∣
t=0

= 0 ∀δα

∫

I

∫

�

∫
1

θ

(
κθ̇ + ∇ · q� − θ

∂2	

∂θ∂ε
: ε̇ +

[∂	

∂α
− θ

∂2	

∂θ∂α

]
· α̇
)
δθ dt dV dt

−
∫

I

∫

∂�D,θ

cθ (θ − θ�)δθ dA dt −
∫

�

κ (θ − θ�
0 )δθ dV

∣
∣
∣
∣
t=0

−
∫

I

∫

∂�N,θ

∫
1

θ
n · q�δθ dt dA dt = 0 ∀δθ

(33)

where δu, δα, δθ are admissible directions in suitable func-
tion spaces. The condition (33)1 is also known as principle
of virtual work and is mathematically known as the so-called
weak form of the balance of linear momentum. In contrast
to classical formulations, we receive here the boundary con-
ditions in weak form at the beginning and end time for the
velocities: − ∫I

∫
�

ρ u̇ · δu̇ dV dt + ∫
∂ I

∫
�

ρ u̇� · δu dV ds =
− ∫

∂ I

∫
�

ρ(u̇ − u̇�) · δu dV ds + ∫I

∫
�

ρ ü · δu dV dt =
− ∫

�
ρ(u̇ − u̇�) · δu dV |t=0 − ∫

�
ρ(u̇ − u̇�) · δu dV |t=T +∫

I

∫
�

ρ ü · δu dV dt . Here, we used mass conservation, i.e.,
ρ̇ = 0. Furthermore, we receive the Dirichlet boundary con-
ditions for the displacements, the internal variable and the
temperature on the respective boundaries ∂�D,u, ∂�D,α and
∂�D,θ .

For the computation of the variations in (33), we start from
(31) and employ Definition 9. Then, we differentiate in the
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points a := u, a := α and a := θ into the directions
δa = δu, δa = δα and δa = δθ , subsequently. The first
equation is obtained from δuH[u,α, θ ] = δu

∫
I (K[u] −

G[u,α, θ ]) dt + δuBQ[b� · u] + δuB∂�D,u [ cu
2 ‖u − u�‖2] +

δuB∂�N,u [t� ·u]− δuB∂ I [ρ u̇� ·u], where we notice that ε :=
ε(u). The second equation is obtained from δαH[u,α, θ ] =
δα

( ∫
I (−G[u,α, θ ]−∫

�
D dV ) dt +B∂�D,α [ cα

2 ‖α−α�‖2]+
∫
�

r̃
2‖α − α�

0‖2 dV |t=0 − C[α]) with the definition for
the dissipated energy D := ∫

�s,�θ dt which is modeled
as D = pdiss,� · α. The third equation is obtained from
δθH[u,α, θ ] = δθ

( ∫
I (−G[u,α, θ ] − ∫

�

∫
θ̇s dt dV −∫

�

∫ 1
θ
q� ·∇θ dt dV −∫

�

∫
�s,�θ dt dV ) dt +B∂�D,θ [ cθ

2 (θ−
θ�
0 )

2]+∫
�

κ
2 (θ −θ�

0 )
2 dV |t=0

)
with the definition of the heat

capacity κ := −θ∂2	/∂θ2. Here, we made use of the con-
stitutive equation for the entropy s = −∂	/∂θ and modeled
the entropy production by�s,� = −∂	/∂α·α̇/θ . For details,
we refer to [46].

Remark 4 Modeling the dissipated energy D = ∫
�s,�θ dt

independently of �s,� violates the fundamental theorem of
calculus. However, this is intended: physically observed
path-dependence is achieved by doing so. More details on
the derivation of (33) are provided in [46].

Proposition 3 (Isothermal and quasi-static problem state-
ment) For the isothermal and quasi-static case, the station-
arity conditions in (33) reduce to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

I

( ∫

�

∂	

∂ε
: δε dV −

∫

�

b� · δu dV −
∫

∂�N,u

t� · δu dA
)
dt −

∫

�

ρ(u̇ − u̇�) · δu dV

∣
∣
∣
∣
t=0

−
∫

�

ρ(u̇ − u̇�) · δu dV

∣
∣
∣
∣
t=T

−
∫

I

∫

∂�D,u

cu(u� − u) · δu dA dt = 0 ∀δu
∫

I

( ∫

�

∂	

∂α
· δα dV +

∫

�

∂	

∂∇α
: δ∇α dV +

∫

�

pdiss,� · δα dV + δαC
)
dt

−
∫

I

∫

∂�D,α

cα(α − α�) · δα dA dt −
∫

�

r̃ (α − α�
0) · δα dV

∣
∣
∣
∣
t=0

= 0 ∀δα

(34)

where δu and δα are admissible functions from suitable
function spaces.

Proof Follows immediately from Proposition 2 when there
are no temperature variations, i.e., δθ ≡ 0 and no velocity
variations, i.e., δu̇ ≡ 0. ��

The non-conserving forces are usually derived from a so-
called dissipation function �diss by

pdiss,� := ∂�diss

∂α̇
. (35)

The non-conserving forces pdiss,� are related to changes in
the microstructure of the materials. They need to be modeled
depending on the experimentally observed material behav-
ior. Consequently, they are treated as ‘external’ forces which

are treated constant during variations (which is indicated by
(•)�). In the same sense, the displacement-dependent trac-
tions, i.e., t� = t�(u), are kept frozen for the variation. As
a counter-example, the variations are considered for fluid-
structure interaction since they serve here as ‘internal’ forces
acting within the fluid-structure system.

Let us investigate (34)2 further: integration by parts of the
second integral results in

∫

�

∂	

∂∇α
: δ∇α dV =

∫

∂�N,α

n · ∂	

∂∇α
· δα dA

−
∫

�

∇ · ∂	

∂∇α
· δα dV (36)

with the normal vector n on the surface of the body indicated
by ∂� = ∂�D,α∪∂�N,α , ∂�D,α∩∂�N,α = ∅,where the sur-
face with Dirichlet boundary conditions is denoted by ∂�D,α

and the one with Neumann conditions by ∂�N,α , respec-
tively. Since the volume and the surface of the body may be
chosen independently, the stationarity condition demands the
volume and surface integrals to vanish individually, which is
mathematicallywell-known as the fundamental lemma of the
calculus of variations, e.g., [21].3 Consequently, we obtain
from (34)2 the strong form

∂	

∂α
− ∇ · ∂	

∂∇α
+ ∂�diss

∂α̇
= 0 ∀x ∈ � (37)

with the Neumann condition

n · ∂	

∂∇α
= 0 ∀x ∈ ∂�N,α (38)

and the Dirichlet and initial conditions

3 For Poisson’s problem in the classical mathematical finite element
literature, the derivation of the strong form from the variational formu-
lation is discussed in detail in [16, Chapter 5].
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α = α� ∀(x, t) ∈ ∂�D,α × I ,

α = α�
0 ∀(x, t) ∈ � × {0} . (39)

Defining the (extended) thermodynamic driving force by

p := −∂	

∂α
+ ∇ · ∂	

∂∇α
, (40)

the local condition (37) can be written in short as

− p + ∂�diss

∂α̇
= 0 ⇔ ∂�diss

∂α̇
= p (41)

which is (an extended version of) the famous Biot equation
[12, 13]. Considering the functional dependency �diss =
�diss(α̇), we recognize that the dissipation function can be
alternatively formulated in terms of p by employing a Leg-
endre transformation: the thermodynamic flux α̇ is replaced
by the thermodynamic force p.

Proposition 4 The stationarity condition for the temperature
in (33)3 provides an equivalent class, but not equal condition,
as the usual weak form for the heat conduction equation.

Proof Let us redefine the test function for the temperature by

δ
˙̃
θ = 1

θ
δθ and the bracket term in (33)3 as

a := κθ̇ + ∇ · q� − θ
∂2	

∂θ∂ε
: ε̇ +

[∂	

∂α
− θ

∂2	

∂θ∂α

]
· α̇ .

(42)

Then, by fulfilling the Dirichlet boundary conditions and the
initial conditions for θ , (33)3 can be rewritten as

∫

I

∫

�

∫
a δ

˙̃
θ dt dV dt

−
∫

I

∫

∂�N,θ

∫
n · q� δ

˙̃
θ dt dA dt = 0 ∀δ

˙̃
θ .

Volume and surface integrals can be chosen independently.
Thus, the two terms have to vanish separately. Then, the
surface integral yields the well-known Neumann boundary
condition for adiabatic bodies n · q� = 0. Furthermore, let
us integrate the inner undefined integral in the first term by
parts. This yields

∫

I

∫

�

∫
a δ

˙̃
θ dt dV dt =

∫

I

∫

�

a δθ̃ dV dt

−
∫

I

∫

�

∫
ȧ δθ̃ dt dV dt = 0 ∀δθ̃ (43)

which yields the equivalent expression

d

dt

∫

I

∫

�

∫
a δθ̃ dt dV dt =

∫

I

∫

�

a δθ̃ dV dt

= 0 ∀δθ̃

such that both terms, again, have to vanish individually. From
the first term, we recognize that indeed a = 0 and conse-
quently, ȧ = 0. The condition a = 0 constitutes the usual
strong form of the heat conduction equation. ��

Remark 5 The formulations presented here can also be given
for a finite deformation setting. However, for improved read-
ability for both communities, i.e., engineering and applied
mathematics, we restrict ourselves to the linearized kinemat-
ics in this contribution. More details for finite kinematics can
be found, e.g., in [46].

4.2 Specific material models

Having the space-time cylinder from Sect. 2, the considera-
tions in Sect. 3 and the Hamilton principle from the current
section both at hand, we consider in the following four spe-
cific material models to illustrate our proposed paradigm of
space-time material modeling. The key procedure relies on
four ingredients, namely specifying

1. the material-dependent internal variables α needed to
describe the thermodynamic state;

2. the free energy density 	;
3. the dissipation function �diss;
4. experimentally observed constraints for the evolution of

the internal variables.

These then allow us to model the deformation as well
as microstructure and temperature evolution of a specific
material. To be more precise, exemplary, we consider elas-
tic wave propagation, visco-elasticity, elasto-plasticity with
hardening, and a gradient-enhanced damage model. Hereby,
we consider, i) an elastic model including self-heating,
ii) rate-dependence (visco-elasticity), iii) rate-independence
(elasto-plasticity with hardening), and iv) non-local material
modeling (gradient-enhanced damagemodel). After deriving
the individual models, we demonstrate how these models,
and thus the variational modeling technique, is related to a
mathematical perspective. To be more precise, we showcase
how the variational modeling can be interpreted by formulat-
ing space-time function spaces and convex sets which opens
the field for a new paradigm to account for space-time weak
formulations of variational material modeling.
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5 Elastic wave propagation

As first example, we consider elastic wave propagation and a
reduced set of thermodynamic state variables. Our plan is as
follows: first, we introduce constitutive laws and parameters.
Afterwards, we introduce a mixed first-order-in-time system
for the displacements. Then,we introduce the function spaces
and finally the weak formulation in space-time format. The
corresponding strong forms are summarized in theAppendix.

5.1 Modeling

For the elastic wave equation, the reduced set of thermody-
namic state variables �e := {u, θ} is used. We assume an
isotropic thermal strain and postulate the free energy as

	 := 	e = 1

2
(ε − αtθ I) : C : (ε − αtθ I) (44)

with the elasticity tensor C ∈ R
d×d×d×d where each com-

ponent has the unit [Ci jkl ] = N/m2, the thermal expansion
coefficient αt with unit [αt] = 1/K, and the identity matrix
I . Then, the term for elastic self-heating reads

θ
∂2	e

∂θ∂ε
: ε̇ = −αtθ I : C : ε̇ . (45)

Since we deal with an elastic problemwith the reduced set of
thermodynamic state variables �e, only the stationarity con-
ditions for the displacements in (33)1 and for the temperature
in (33)3 are considered for the elastic wave propagation.

5.2 Mixed system

For numerical purposes,4 it is beneficial to introduce a mixed
formulation in which the velocity v := u̇ is introduced as
independent variable. Such a mixed system fits exactly to
the thermodynamical considerations in Sect. 4 and we shall
see how the mathematical space-time formulation and the
Hamilton principle complement each other in an intriguing
way. To begin, the Hamilton functional in (31) has to be
reformulated accordingly and we arrive at

Definition 10 (Mixed Hamilton functional)ThemixedHamil-
ton functional Hm is defined as

Hm[u, v,α, θ ] := BQ[ρ u̇ · v] − BQ[ 12ρ‖v‖2]
− GI − BQ[∫(θ̇s + 1

θ
q� · ∇θ + �sθ) dt]

+ B∂�D,u [ 12cu‖u − u�‖2] − B∂ I [ρv� · u]
+ B∂�D,α [ 12cα‖α − α�‖2] + B∂ I ,0[ 12 r̃‖α − α�

0‖2]

4 The mixed formulation is the starting point for Galerkin discretiza-
tions in time, e.g., [6, 25].

+ B∂�D,θ

[
1
2cθ (θ − θ�)2

]
+ B∂ I ,0[ 12κ (θ − θ�

0 )
2]

− B∂ I [ρv� · u] −
∫

I
C[α] dt (46)

where the first two terms BQ[ρ u̇ · v] −BQ[ 12ρ‖v‖2] replace
the time integral of the kinetic energy. Consequently, they
reduce to the previously used formulation for the unmixed
system as

∫
I K dt ≡ BQ[ 12ρ‖u‖2] when v = u̇. The term

BQ[ρ u̇ · v] couples the displacements and the velocity, and
the term B∂ I [ρv� · u] accounts for the boundary condition
at the front ends of the space-time cylinder which is now
formulated in terms of the prescribed velocity v�.

Consistently, the stationarity of the mixed Hamilton func-
tional Hm in (46) now reads

δHm[u, v,α, θ ](δu, δv, δα, δθ)

= δuHm[u, v,α, θ ](δu) + δvHm[u, v,α, θ ](δv)

+δαHm[u, v,α, θ ](δα) + δθHm[u, v,α, θ ](δθ)

= 0 ∀δu, δv, δα, δθ . (47)

Proposition 5 The Gâteaux derivatives of H with respect to
the displacements u and the velocity v are computed to be

δuHm = −
∫

I

∫

�

∂	

∂ε
: δε dV dt

+
∫

I

∫

�
b� · δu dV dt +

∫

I

∫

∂�N,u

t� · δu dA dt

+
∫

I

∫

∂�D,u

cu(u − u�) · δu dA dt

+
∫

I

∫

�
ρv · δu̇ dV dt −

∫

∂ I

∫

�
ρv� · δu dV ds = 0 ∀δu

(48)

and

δvHm = −
∫

I

∫

�
ρv · δv dV dt +

∫

I

∫

�
ρ u̇ · δv dV dt = 0 ∀δv

(49)

Integration by parts of (48) yields

δuHm = −
∫

I

∫

∂�N,u

n · σ · δu dA dt +
∫

I

∫

�
(∇ · σ ) · δu dV dt

+
∫

I

∫

�
b� · δu dV dt +

∫

I

∫

∂�N,u

t� · δu dA dt

+
∫

I

∫

∂�D,u

cu(u − u�) · δu dV dt

+
∫

∂ I

∫

�
ρv · δu dV ds −

∫

I

∫

�
ρv̇ · δu dV dt
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−
∫

∂ I

∫

�
ρv� · δu dV ds = 0 ∀δu (50)

where we used σ = ∂	/∂ε. We finally notice that the vari-
ation of Hm with respect to the internal variables α and the
temperature θ remain the same as those of H.

Remark 6 The velocity boundary conditions v�
0 and v�

T pro-
voke two implications:

1. The initial displacement field u = u(x, 0) is not pre-
scribed but results from the mechanical equilibrium
with the spacial boundary conditions b�|t=0, t�|t=0, and
u�

∂�D,u
|t=0. From a numerical perspective this means that

the displacement field and the boundary conditions are
also conform at t = 0, as supposed to be.

2. The displacement field depends on the velocity at the end
time v�

T . When assuming that the end time point T is cho-
sen such that the system is in mechanical equilibrium, v�

T
can be computed from the condition that the acceleration
termvanishes:ρv̇ = 0 at t = T . Fromanapplicationpoint
of view, thismeans that v�

T is not explicitly prescribed, but
replaced by a boundary value problem for t = T with the
condition ρv̇ = 0. Since this end-time problem is coupled
to the displacements and velocity fields of the entire time
interval I , solving for the fields can only be performed in
a holistic way.

5.3 Numerical experiment

Let us investigate a numerical experiment for our rather
unusual temporal boundary conditions at t = {0, T }. To
this end, we make use of the equations (49) and (50) which
simplify for the one-dimensional case and a linear elastic
material with σ = Eε = Eu′ and the Young’s modulus
E > 0 to the strong form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Eu′′ + b� = ρv̇ ∀(x, t) ∈ � × I
u̇ − v = 0 ∀(x, t) ∈ � × I

Eu′ = t� ∀(x, t) ∈ ∂�N,u × I
u = u� ∀(x, t) ∈ ∂�D,u × I
v = v�

0 ∀(x, t) ∈ � × {0}
v = v�

T ∀(x, t) ∈ � × {T }

(51)

Here, we assume homogeneous surface tractions, i.e., t� = 0.
For a numerical solution, we employ a central finite differ-
ence scheme for the discretization in space and an implicit
Euler scheme for the discretization in time. Then, the differ-
ential equations (51)1 and (51)2 transform to the algebraic
equations

⎧
⎪⎪⎨

⎪⎪⎩

E
um

i+1 − 2um
i + um

i−1

�x2
+ b� = ρ

vm
i − vm−1

i

�t
um

i − um−1
i

�t
− vm

i = 0

(52)

with the spatial increment �x and the temporal increment
�t . Here, the subscript i refers to the node number and
the superscript m to the current time point. As an exam-
ple, we compute a rotating bar (with rotating coordinate
system) which is supported at x = 0 mm, resulting in
u(0, t) = 0 mm and v(0, t) = 0 mm/s. The body force
is given by b� = b�(x) = ρω2x with the angular velocity
ω = ω̇t for constant angular acceleration ω̇ = const. We
chose 11 spatial elements in the bar with equal length, and a
total length of the bar of l = 2000 mm. The time interval is
0.5ms. The material parameters and the spatial and temporal
increments used for the numerical experiment are collected
in Table 1.

Weperformnumerical experiments for two cases. The first
case is chosen with homogeneous velocities at the initial and
at the end of the time interval I , i.e., v(x, 0) = v�

0(x) =
v(x, T ) = v�

T (x) = 0 mm/s. The resulting displacements
and velocities over space and time are plotted in Fig. 3 at
the top. The second case also has homogeneous initial veloc-
ities, but the spatially linear velocity v(x, T ) = v�

T (x) =
0.5 x

l mm/s at the end of the time interval. It is obvious that
the different boundary conditions for the velocity provoke
very different deformation and velocity fields in space and
time. For the first case, the initial deformation, which is a
computation result and not an initial condition, is almost a
quadratic function in space. This initial deformation reduces
under the influence of inertia effects and the body force. The
‘back swinging’ then results in the prescribed homogeneous
velocity at the end of the time interval.

For the second case, the initial deformation is much more
complex. Then, again influenced by inertia and body force,
waves in space and time evolve which reflect at the spatial
boundaries and are effected by the space- and time-dependent
body force.During the course of time, the initial ‘wavy’ fields
homogenize due to the complex interplay until the prescribed
linear velocity at the end of the time interval is eventually
present.

It is worth mentioning that the initial deformation field
is always an automatic outcome of this space-time formu-
lation of the wave equation as derived in Sect. 5.2 with a
well-posedness justification in Sect. 9.6. This alternative for-
mulation might also be much more beneficial for application
examples than using the classical formulation with initial
conditions for both the displacements and the velocities. For
instance, path-dependent optimization problems might be
solvable in a much easier way using our formulation: when
‘history’ is treated in a holistic way, the dependence on the
entire path is always present and thus, all variables are intrin-
sically optimized in this regard.
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Table 1 Model parameters Young’s modulus E Density ρ Ang. acceleration ẇ Spatial inc. �x Temporal inc. �t

210GPa 1000kg/m3 10001/s 2000/11mm 0.01ms

Fig. 3 Simulation results. Top: v(x, T ) = 0 mm/s; bottom: v(x, T ) = 0.5 x
l mm/s. Displacements are given as [u] = 10−4 mm and velocities as

[v]=mm/s over space [x]=mm and time [t]=ms

5.4 Function spaces and weak formulation

In this subsection,we design function spaces andweuse them
tomathematically specify the previous variations in the weak
formulation. Formally, weak forms were already introduced
before.

Displacements We begin with the vector-valued displace-
ment variable u. From the strong form in (102), we identify
non-homogeneous Dirichlet conditions u∗ on the boundary
∂�D,u. To this end, we define for the spatial (not yet time)
components

V u
0 := {u ∈ H1(�)d | u = 0 on ∂�D,u}

where the index 0 indicates that we are dealing with homo-
geneous Dirichlet boundary conditions.5 Specifically, V u

0
serves as space for the test functions, namely the displace-
ment variations δu. By a suitable extension of the Dirichlet
boundary data (e.g., [15, Chapter II, §2] or [56, Chapter 2]),
the trial space for u is V u := {u∗|∂�D,u + V u

0 }. In time, we

5 The rigorous mathematical justification of boundary conditions
requires the trace theorem; see e.g., [16, Section 1.6 and Chapter 5]
or [28].

assume L2 regularity, as it is usually done [26, 52, 56]. This
means

u ∈ Xu := L2(I , V u), δu ∈ Xu
0 := L2(I , V u

0 ) .

Again, the index 0 in Xu
0 indicates that the spatial space V u

0
has homogeneous Dirichlet boundary data.

Velocities Next, we discuss the vector-valued velocity vari-
able v. Since we have no spatial boundary conditions and due
to regularity, we set for the spatial part

V v := L2(�)d

which is well-known in this context, e.g., [6]. The time-
dependent Sobolev space then reads Xv := L2(I , V v) such
that

v ∈ Xv, δv ∈ Xv .

In the space-time solution, the goal is to determine both vari-
ables in a way such that ([6, 33] or [88, Chapter 5])

u ∈ Xu
0 , v ∈ Xv, v̇ ∈ L2(I , (V u

0 )∗) .
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Here, (V u
0 )∗ is the dual space associated to V u

0 . The dual
space consists of all linear, boundedmappings from the space
V ε into the real numbers R, i.e., (V u

0 )∗ := L(V u
0 ,R). For

further information on dual spaces, we refer the reader to
functional analysis textbooks, e.g., [17, 21, 85].

Temperature It remains to introduce the function spaces for
the parabolic heat equation with the scalar-valued tempera-
ture variable θ . For such parabolic evolution problems, we
refer the reader again to [52, 56, 88] and we employ for the
test space

V θ
0 := {θ ∈ H1(�)| θ = 0 on ∂�D,θ },

and for the trial space V θ := {θ�|∂�D,θ + V θ
0 }. In the space-

time context, this means

θ ∈ X θ := L2(I , V θ ), δθ ∈ X θ
0 := L2(I , V θ

0 ),

θ̇ ∈ L2(I , (V θ
0 )∗)}

where (V θ
0 )∗ is the dual space of V θ

0 .

Imposing boundary conditions Before we state the weak
formulations, in view of the space-time cylinder geometry
(see Sect. 2), let us notice that we treat spatial and tempo-
ral boundary conditions differently from now on. We recall
that in Sect. 4 the extended Hamilton principle yielded all
conditions in a weak form. As described (and well-known)
in, for example [76], Dirichlet boundary conditions can be
prescribed in a functional framework either in the weak form
or by building (essential) boundary into the function space.
In the following, we choose the later option in which spa-
tial Dirichlet boundary conditions are built into the function
spaces. The temporal conditions will be imposed weakly and
will appear explicitly as right hand side data in the following
weak formulations.

Weak formulation To this end, we can state the weak
formulation.We define abstract forms for the equations (left-
hand side) and the data (right-hand side). Depending on
whether the governing partial differential equation is linear
or nonlinear, we employ different abstract notations for the
left-hand sides. For linear partial differential equations, let
X be a function space, we use as notation A(w, δw) with
A : X × X → R. This is a so-called bilinear form, which is
linear in both arguments. Therein, w ∈ X is the trial func-
tion and δw ∈ X is the test function. For nonlinear partial
equations, we rather use as notation A[w](δw), which is a
so-called semi-linear formwhich is nonlinear in thefirst argu-
ment and linear in the second argument. The right-hand sides
are denoted byL(δw)withL : X → R and they only depend
on problem data, but not on the solution function.

With these definitions and notation, the space-time mixed
system weak formulation reads:

Proposition 6 (Weak formulation) Find v ∈ Xv and u ∈ Xu

such that6

Au[u, v](δu, δv) = Lu(δu, δv) ∀{δu, δv} ∈ Xu
0 × Xv

where the semi-linear form is given by

Au[u, v](δu, δv) =
∫

I

∫

�

ρ v̇ · δu dV dt

+
∫

I

∫

�

σ : ∇symδu dV dt

−
∫

∂ I

∫

�

ρ v · δu dV ds

−
∫

I

∫

�

ρ v · δv dV dt

+
∫

I

∫

�

ρ u̇ · δv dV dt,

and the right-hand side functional is given by

Lu(δu, δv) :=
∫

I

∫

�

b� · δu dV dt

+
∫

I

∫

∂�N,u

t� · δu dA dt −
∫

∂ I

∫

�

ρ v� · δu dV ds .

The weak form of the temperature equation reads: find θ ∈
X θ such that

Aθ [θ ](δθ) = Lθ (δθ) ∀δθ ∈ X θ
0 ,

with

Aθ [θ ](δθ) :=
∫

I

∫

�

κ θ̇ δθ dV dt

+
∫

I

∫

�

ω∇θ · ∇δθ dV dt

+
∫

I

∫

�

αtθ I : C : ε̇ δθ dV dt

−
∫

�

κ θ δθ dV

∣
∣
∣
∣
t=0

6 The displacements and velocities are combined in one common semi-
linear form to be consistent with the literature, e.g., [6], but we could
also have defined Au[u](δu) and Av[v](δv) separately, i.e.,

Au[u](δu) =
∫

I

∫

�

ρ v̇ · δu dV dt

+
∫

I

∫

�

σ : ∇symδu dV dt −
∫

∂ I

∫

�

ρ v · δu dV ds,

Av[v](δv) = −
∫

I

∫

�

ρ v · δv dV dt +
∫

I

∫

�

ρ u̇ · δv dV dt

and respectively their right-hand sides.
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and

Lθ (δθ) := −
∫

�

κ θ�
0 δθ dV

∣
∣
∣
∣
t=0

.

Remark 7 In both the displacement-velocity system and the
temperature equation, the temporal boundary conditions are
prescribed in a weak sense. For the former, we have two
conditions, namely on ∂ I = {0, T } since the system is second
order in time. In the temperature equation, we only have
one initial condition on the bottom surface of the space-time
cylinder, namely for t = 0.We also refer the reader to Sect. 2
and specifically to Sect. 3.4.

Remark 8 Sometimes, the mixed formulation for the elastic
wave equation (102) raises difficulties for the design of the
correct function spaces. Starting from the strong formula-
tion, it is not immediately clear which variable is determined
in which equation. Having our derivations at hand, we auto-
matically arrive at the correct descriptions. In (102), the first
equation determines u (not v) and the second equation deter-
mines v (not u). From the Hamilton principle, we obtain
immediately the correct variations for each equation in the
weak formulationAu[u, v](δu, δv) and in particular the first
equation determines u ∈ Xu and the second equation deter-
mines v ∈ Xv . Specifically, the first equation is tested with
δu ∈ Xu

0 and the second equation is tested with δv ∈ Xv

which automatically yields the correct boundary conditions
for each equation through their respective function spaces.

6 Visco-elasticity

In this section, we consider our secondmodel. The procedure
is as before: first, we introduce the mechanical model. In a
second step, based on the extended Hamilton principle, we
provide the space-time formulation.

6.1 Modeling

For a visco-elastic material, the internal variable α → εv is
introduced by ε = εe + εv where εe is the elastic part of the
total strain ε. Then, the free energy density reads

	 := 	v = 1

2
(ε − εv) : C : (ε − εv) , (53)

again with the elasticity tensor of order fourC ∈ R
d×d×d×d .

The evolution of viscous strains is rate-dependent. For
such a behavior, a dissipation function of order two has to be
chosen, cf. [46], such that

�diss := �diss,v = 1

2
η‖ε̇v‖2 (54)

is chosen with the scalar-valued viscosity η > 0 with the unit
[η] = Js/m3.

The evolution of viscous strains is volume preserving
which is expressed by I : εv = 0 from which the constraint
function cεv := λv(I : ε̇v) is formulated. Here, we used the
identity matrix I and a Lagrange multiplier λv ∈ R with the
unit [λv] = N/m2. The constraint force pcεv := ∂cεv/∂ ε̇v

enables us to account for constraints formulated in the rates
of the internal variables by defining the constraints functional
to be

Cv :=
∫

�

pcεv : εv dV . (55)

Then, (33)2 transforms to

∫

�

(
− C : (ε − εv)ηε̇v + λv I

)
: δεv dV = 0 ∀δεv .

(56)

Evaluation of the local condition results in

− σ + ηε̇v + λv I = 0 (57)

and where we used

σ = ∂	v

∂ε
= C : (ε − εv) . (58)

Double contracting (i.e., the Frobenius scalar product, see
Sect. 2.1) of (57) and using the constraint I : ε̇v = 0 allows
us to compute

−σ : I + η ε̇v : I︸ ︷︷ ︸
≡0

+λv I : I︸︷︷︸
=3

= 0

⇒ λv = 1

3
σ : I . (59)

Then, (57) reads as

ε̇v = 1

η
devσ (60)

with the stress deviator devσ := σ − 1
3 trσ I .

6.2 Function spaces and weak formulation

In an analogous way as done in Sect. 5.4, we formulate
now function spaces and therefore specify mathematically
the variations for the weak formulations for visco-elasticity.

Displacements, velocities, temperature According to our
derivations in Sect. 6.1 and with the previous introduction of
the mixed-order system, we deal with four variables, namely
u, v, εv and θ , and we need four function spaces. For the
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displacement variable u and its variation (test function) δu
we use Xu and Xu

0 from before; see Sect. 5.4. For the veloc-
ity variable v and its variation δv, we employ Xv . For the
temperature equation, we have θ ∈ X θ and δθ ∈ X θ

0 .

Viscous strain The new variable in comparison to the previ-
ous section is the viscous strain for which we define

V ε := {εv ∈ L2(�)d},
Xε := {εv| εv ∈ L2(I , V ε) and ε̇v ∈ L2(I , (V ε)∗)}.

Proposition 7 (Weak formulation) Find v ∈ Xv and u ∈ Xu

such that

Au[u, v](δu, δv) = Lu(δu, δv)∀{δu, δv} ∈ Xu
0 × Xv

where the semi-linear form is given by

Au[u, v](δu, δv) :=
∫

I

∫

�

ρ v̇ · δu dV dt

+
∫

I

∫

�

σ : ∇symδu dV dt −
∫

∂ I

∫

�

ρ v · δu dV ds

−
∫

I

∫

�

ρ v · δv dV dt +
∫

I

∫

�

ρ u̇ · δv dV dt

and the right-hand side functional is given by

Lu(δu, δv) :=
∫

I

∫

�

b� · δu dV dt

+
∫

I

∫

∂�N,u

t� · δu dA dt

−
∫

∂ I

∫

�

ρ v� · δu dV ds .

The weak form of the temperature equation reads: find θ ∈
X θ such that

Aθ [θ ](δθ) = Lθ (δθ) ∀δθ ∈ X θ
0

with

Aθ [θ ](δθ) :=
∫

I

∫

�

κ θ̇ δθ dV dt

+
∫

I

∫

�

ω∇θ · ∇δθ dV dt

−
∫

I

∫

�

σ : ε̇vδθ dV dt

−
∫

�

κ θ δθ dV

∣
∣
∣
∣
t=0

and

Lθ (δθ) := −
∫

�

κ θ�
0 · δθ dV

∣
∣
∣
∣
t=0

.

The weak form of the viscous strain reads: find εv ∈ Xε such
that

Aε[εv](δεv) = Lε(δε
v) ∀δεv ∈ Xε

with

Aε[εv](δεv) :=
∫

I

∫

�

η ε̇v : δεv dV dt

−
∫

I

∫

�

devσ : δεv dV dt +
∫

�

η εv : δεv dV

∣
∣
∣
∣
t=0

and

Lε(δε
v) :=

∫

�

η ε
v,�
0 : δεv dV

∣
∣
∣
∣
t=0

where we notice from before that the initial viscous strain
field is set to ε

v,�
0 (x) = 0. Here, we inserted the Lagrange

parameter λv = 1
3σ : I such that the stress deviator devσ

appears.

7 Elasto-plasticity with hardening

In this section,we showhow to obtain an elasto-plasticmodel
with hardening from our Hamilton principle. In the space-
time formulation, the biggest difference to before is that one
of the solution variables is subject to an inequality constraint
which requires to work in closed convex sets rather than with
linear function spaces.

Plasticity is a complex phenomenum, both from the
mechanical and the mathematical side [7, 26, 34, 37, 58,
82] (and many references cited therein). In this work, we
do not have the most general plasticity formulation in mind
[82][Chapter II], but rather plastic materials with hardening.
First, we notice that the simplest models are Hencky-type
models [38] known as linear-elastic plastic materials, also
known as linear-elastic perfectly plastic type, [82][p. 66]
and [26][Chapter V]. For further comments on the Hencky
model, we refer the reader for instance to [58][p. 240].
The corresponding rate-dependent formulation is known as
Prandtl-Reuss model. These models rather belong to non-
linear elasticity [82][Chapter I, p. 77, Remark 4.2], and
can therefore still described with the help of usual Sobolev
spaces. Therein, the displacements still have H1 regular-
ity and the stresses have L2 regularity, while in the most
general case of plasticity, the stresses still satisfy L2 regu-
larity, but u looses H1 regularity [82][Chapter I, p. 58]. In
[82][Chapter I, Section 3.3], several models in the linear-
elastic and nonlinear elastic regime are discussed, inter alia
models with hardening, while [82][Chapter II] addresses
general plasticity models with a final existence result estab-
lished in [82][Chapter II, Section 8]. Therein, BD (bounded
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deformation) function spaces [59] are introduced that enlarge
the class of admissible trial and test functions to measures
and specifically allow for discontinuities in the displacement
field. This is also plausible from a mechanical viewpoint due
to strain localization.

In order to stay with usual Sobolev spaces and still being
mechanically reasonable, we proceed with plasticity with
hardening where the plastic evolution is given by an addi-
tional differential equation. Due to hardening, these models
still can be described in classical function spaces.

7.1 Modeling

Similarly to themodeling of visco-elasticmaterials, the inter-
nal variable is a possibly permanent part of the strain denoted
by εp ∈ R

d×d
sym . Consequently, we decompose εe = ε − εp

which allows to define the free energy density as

	 := 	p = 1

2
(ε − εp) : C : (ε − εp) + 	h(αh) (61)

with some monotonically increasing hardening potential 	h

depending on the hardening variable αh ∈ R+. Thus, the
internal variable is in this case α = {εp, αh}. In contrast
to the rate-dependent evolution of the microstructure for
visco-elastic materials, the plastic strains evolve in a rate-
independent way. This demands to modify the ansatz for the
dissipation function to be homogeneous of order one (instead
of being homogeneous of order two for the rate-dependent
evolution). Hence, we use

�diss := �diss,p = σY‖ε̇p‖ (62)

with some dissipation parameter σY > 0 which will be
specified later. Since the plastic strains evolve in a volume-
preserving fashion as the viscous strains do, we introduce
the analogous constraint functional in this case. Furthermore,
we follow the standard assumption for the kinematic relation
between the plastic strain and the hardening variable, i.e.,
α̇h = ‖ε̇p‖. We thus introduce the constraint functional for
plasticity with hardening by

Cp :=
∫

�

pcεp : εp dV +
∫

�

pc
αhα

h dV (63)

with the constraint forces pcεp := ∂cεp/∂ ε̇p and pc
αh :=

∂cεp/∂α̇h, respectively. The constraint forces result from the
constraint function cεp := λ

p
1(ε̇

p : I) + λ
p
2(α̇

h − ‖ε̇p‖). This
is in similar fashion as the non-conservative forces result
from the dissipation function. In the constraint functions,
two Lagrange parameters (λ

p
1, λ

p
2) ∈ R × R both with the

unit [λp1] = [λp2] = N/m2 appear. Then, the stationarity con-
dition (33)2 is evaluated with respect to the plastic strain and

the hardening variable. This reads

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫

�

(
− C : (ε − εp) + σY ∂‖ε̇p‖

+λ
p
1 I − λ

p
2∂‖ε̇p‖

)
: δεp dV = 0 ∀δεp

∫

�

(∂	h

∂αh + λ
p
2

)
δαh dV = 0 ∀δαh .

(64)

It is worth mentioning that here a subdifferential appears:

∂‖ε̇p‖ =
⎧
⎨

⎩

ε̇p

‖ε̇p‖ ε̇p �= 0

A | ‖A‖ < 1 ε̇p = 0 .

(65)

The local evolution of (64) results in the differential inclu-
sion7 and the algebraic expression

⎧
⎨

⎩

−σ + (σY − λ
p
2) ∂‖ε̇p‖ + λ

p
1 I 	 0

λ
p
2 = −∂	h

∂αh ,
(66)

where σ = C : (ε − εp) and λ
p
2 < 0 due to the mono-

tonicity of 	h. If we consider the case of microstructure
evolution, i.e., ε̇p �= 0, and we double contract both sides
with the identity tensor I , we can insert the constraint of
volume preservation I : ε̇p = 0 such that the first Lagrange
multiplier is computed to be

λ
p
1 = 1

3
σ : I . (67)

Then, we can rearrange (66) yielding

ε̇p = ‖ε̇p‖
σY − λ

p
2

devσ = ρp devσ , (68)

where we define the consistency parameter ρp := ‖ε̇p‖
σY−λ

p
2
and

specifically, we have ρp ≥ 0 with the unit [ρp] = m2/Ns.
Furthermore, from the constraint for the evolution of αh, we
obtain

α̇h = ‖ε̇p‖ = ρp
(
σY + ∂	h

∂αh

)
(69)

which closes the set of evolution equations for the plastic
strain and the hardening variable.

Thematerialmodel for plasticity is not complete yet: there
is an indicatormissingwhich separates the frozenmicrostruc-
ture from the evolving one. Therefore, it is beneficial to

7 For mathematical descriptions and terminology of differential inclu-
sions, see, e.g., [2].
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perform the Legendre transformation of the dissipation func-
tion as mentioned in Sec. 4: it is formulated as

�̃diss,p = �̃diss,p(devσ )

= sup
ε̇p

{
ε̇p : devσ − �diss,p − λ

p
2‖ε̇p‖

}
(70)

where we made use that the thermodynamic driving force
p accounting for the constraint of volume preservation is
exactly the stress deviator devσ . Let us insert (68) into (70)
which gives

�̃diss,p = sup
ε̇p

{ ‖ε̇p‖
σY − λ

p
2

devσ : devσ − (σY − λ
p
2)‖ε̇p‖

}

= sup
ε̇p

{ ‖ε̇p‖
σY − λ

p
2

(
‖devσ‖2 − (σY − λ

p
2)

2
)}

=
{
0 if ‖devσ‖2 ≤ (σY − λ

p
2)

2

∞ if ‖devσ‖2 > (σY − λ
p
2)

2
. (71)

Consequently, the Legendre transform of the dissipation
function results in an indicator function. We thus define the
(von Mises) yield function (see also [82][p. 65])

�p := �p(σ ) := ‖devσ‖ − σY − ∂	h

∂αh ≤ 0, (72)

which serves as condition for the separation of elastic and
plastic material behavior: plastic strains are frozen, i.e. ε̇p =
0, as long as �p < 0, but may evolve, i.e. ε̇p �= 0, when
�p = 0. We recognize that the dissipation parameter σY is
indeed the deviator norm of the initial yield stress (tensor
for αh = 0) with the unit [σY] = N/m2 and an appropriate
modeling of 	h accounts for hardening.

It is worth mentioning that an alternative route to obtain
the same set of modeling equations is provided by first defin-
ing the yield function and then postulating that the plastic
strains evolve in shortest direction onto the yield surface with
unknown ‘length’ ρp. The shortest direction is provided by
∂�p/∂devσ due to its orthogonality with ∂devσ/∂ p with
some parameter p which parameterizes the yield surface
�p(devσ (p)) = �p(p) = 0. The benefit of using Hamil-
ton’s principle is easily identified: no driving forces have
to be defined that fulfill the constraints automatically. This
is a simple task for plasticity modeling but it turns out to
be challenging for more complex material behaviors. Using
the Hamilton principle, instead, yields equations that fulfill
the constraints in terms of the rates of the internal variables
identically. Therefrom, corresponding driving forces can be
defined which directly account for the constraints. In case of
plasticity, these driving forces are given by the stress deviator.

7.2 Differential inclusions versus variational
inequalities

In order to prepare the link between the previous section and
the next section, we briefly describe the relationship between
differential inclusions and variational inequalities. For rigor-
ous developments, we refer the reader to [2]; and specifically
therein Chapter 0. In both formulations, we have variations
δεp. However, these variations are restricted. In differential
inclusions, we are given a problem statment of the form

F(ε̇p, εp, λp) 	 0, εp(x, 0) = ε
p,�
0 .

For instance, from (66)1, we have

Fp := −σ +
(
σY + ∂	h

∂αh

)
∂‖ε̇p‖ + λ

p
1 I 	 0 . (73)

Now, the variations are directions in the Gâteaux deriva-
tive, but due to the differential inclusion, these derivatives
are only subdifferentials. These subdifferentials result from
a closed convex subset which provides the basis for varia-
tional inequality formulation. Let us nowdefine such a closed
convex set, see e.g., [26, 50, 51], denoted by K ,

K := {εp| εp subject to some constraint}.

Then, the variations δεp are restricted to convex sets and
convex combinations, i.e.,

δεp, εp ∈ K : ε δεp + (1 − ε)εp = εp + ε(δεp − εp) ∈ K

for 0 ≤ ε ≤ 1. In the weak form, only variations from K
are taken into account, i.e., Gâteaux derivatives as defined in
Def. 9. This yields then abstract formulations of the form:
find εp ∈ K such that

Aε[εp](δεp − εp) ≥ Lε(δε
p − εp) ∀δεp ∈ K

in which specifically in the argument of the test function,
still the trial function appears; see e.g., [50, Chapter 3]. A
concise derivation for the obstacle problem can be found in
[86, Section 4.4.3.4].

7.3 Function spaces and weak formulation

In this subsection, we derive the space-time weak formu-
lation. The principal variables u and ε̇p still appear in
equations, but the norm of ε̇p is subject to a constraint, yield-
ing complementarity conditions as we have seen just before.
We notice that extensive mathematical work can be found in
the standard reference [26].

Displacements, velocities, temperature In total, we deal
with four variables, namely u, v, εv and θ , and we need four
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solution sets. For the displacement variable, the velocities,
and the temperature there is no change in the function spaces
to before and we refer the reader to Sect. 5.4.

Plastic strain For the plastic strain εp, we assume sufficient
regularity,8 and we define the convex set9

V p := {εp ∈ L2(�)d×d
sym | �p(σ ) ≤ 0} X p := L2(I , V p)

where σ = C : (ε − εp). Therein, the space L2(�)d×d
sym :=

L2(�,Rd×d
sym )means that each component ofεp is an L2 func-

tion and furthermore εp is symmetric. Due to the inequality
constraint �p(σ ) ≤ 0, the object V p is not anymore a linear
function space, but rather a closed convex set only.10

Weak formulation The weak formulation corresponding to
Problem 3 reads:

Proposition 8 (Weak formulation) Find v ∈ Xv and u ∈ Xu

such that

Au[u, v](δu, δv) = Lu(δu, δv)∀ {δu, δv} ∈ Xu
0 × Xv

where the semi-linear form is given by

Au[u, v](δu, δv) :=
∫

I

∫

�

ρ v̇ · δu dV dt

+
∫

I

∫

�

σ : ∇symδu dV dt

−
∫

∂ I

∫

�

ρ v · δu dV ds

−
∫

I

∫

�

ρ v · δv dV dt +
∫

I

∫

�

ρ u̇ · δv dV dt

and the right-hand side functional is given by

Lu(δu, δv) :=
∫

I

∫

�

b� · δu dV dt

+
∫

I

∫

∂�N,u

t� · δu dA dt −
∫

∂ I

∫

�

ρ v� · δu dV ds .

The weak form of the temperature equation reads: find θ ∈
X θ such that

Aθ [θ ](δθ) = Lθ (δθ) ∀δθ ∈ X θ ,

8 For generalizations with plastic strains belonging to spaces of Borel
measures, we refer for instance to [58], with specific statements on the
spatial solution sets for u, ε, εp and σ on p. 240, and for quasi-static
small-strain plasticity with vanishing hardening, we refer to [7].
9 For related definitions of convex sets in terms of the stress σ = C :
(ε − εp), we refer the reader to [26][Chapter V], but also to a concise
format in [74].
10 In the design of numerical algorithms, working with closed convex
sets, rather than linear function spaces, has major consequences as one
needs to workwith projections, relaxations via penalization, augmented
Lagrangian formulations or active set methods [32, 43, 50].

with

Aθ [θ ](δθ) :=
∫

I

∫

�

κ θ̇ δθ dV dt

+
∫

I

∫

�

ω∇θ · ∇δθ dV dt

−
∫

I

∫

�

σ : ε̇p δθ dV dt

−
∫

�

κ θ δθ dV

∣
∣
∣
∣
t=0

,

and

Lθ (δθ) := −
∫

�

κ θ�
0 δθ dV

∣
∣
∣
∣
t=0

.

The weak form of the plastic strain reads: find εp ∈ X p such
that

Aε[εp](δεp − εp) ≥ Lε(δε
p − εp) ∀δεp ∈ X p ,

with

Aε[εp](δεp − εp) :=
∫

I

∫

�

(
σY + ∂	h

∂αh

) ε̇p

‖ε̇p‖ : (δεp − εp) dV dt

−
∫

I

∫

�

devσ : (δεp − εp) dV dt

+
∫

�

σY εp : (δεp − εp) dV

∣
∣
∣
∣
t=0

and the right-hand side functional

Lε(δε
p − εp) :=

∫

�

σY ε
p,�
0 : (δεp − εp) dV

∣
∣
∣
∣
t=0

where we notice from before that ε
p,�
0 = 0. Furthermore,

αh ∈ R+ is determined via the kinematic condition α̇h =
‖ε̇p‖ with the initial condition αh

0 = 0.

8 Gradient-enhanced damagemodeling

As last example, we consider a model for gradient-enhanced
damage (see [69, 70]) which is closely related to regularized
phase-field fracture and both have been intensively investi-
gated over the last years.11 In view of our developments of
the current work, the extension to plasticity is concernedwith

11 For phase-field fracture,we refer to the reviewpapers [24, 90] and the
many references cited therein. Specifically, in [24], a section provides
references to papers that relate gradient damage andphase-field fracture.
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the inequality constraint. While we deal with a local inequal-
ity constraint acting on the evolution of the plastic strain in
plasticity, the constraint is of a non-local type in gradient-
enhanced damage and acts directly on one of the solution
variables.

8.1 Modeling

The evolution of the damage variable d ← α is assumed to
be rate-independent. We thus define a dissipation function of
order one similar to elasto-plasticity as

�diss := �diss,d = μ|ḋ| (74)

where μ ≥ 0.
The current damaged state weakens the effective stiff-

ness of the material. In general, different definitions for
the damage function f = f (d) are possible, for instance
f = (1 − d)2. However, we propose

Definition 11 (Damage function) We define the exponential
damage function as

f (d) := exp(−d), (75)

with the obvious properties f (0) = 1 (undamaged),
lim

d→∞ f = 0 (fully damaged),12 and f ′ = − f . Furthermore,

it holds

d = − log f ⇒ ḋ = − ḟ

f
. (76)

For the mechanical part of the free energy density, we con-
sequently propose

	m = 1

2
ε : f C : ε =: f 	0 with 	0 = 1

2
ε : C : ε . (77)

For increasing damage variable d, the value of the damage
function f decreases such that 	m is a non-convex func-
tion, and therefore several (local) minima exist. It is thus
well-known that the characterizing stationary conditions of
the balance of linear momentum lack of uniqueness. To turn
the problem well-posed, we employ the strategy of gradient
enhancement. To this end, we make use of the enhancement

	r = 1

2
β‖∇ f ‖2 (78)

which regularizes the model, and where β > 0 with the unit
[β] = J/m. The total free energy density is thus

	 := 	d = 	m + 	r = 1

2
ε : f C : ε + 1

2
β‖∇ f ‖2 (79)

12 For the correspondence in phase-field fracture,we refer to [62]where
d denotes the damage function.

from which the stress results to be

σ = ∂	d

∂ε
= f C : ε . (80)

Then, the stationarity of theHamilton functional with respect
to the damage variable in(33)2 specifies with α → d and the
definition for the non-conservative force in (35) to

∫

�

f ′	0δd dV +
∫

�

β∇ f · ∇δ f dV

+
∫

�

∂�diss,d δd dV = 0 ∀δd , (81)

with the subdifferential

∂�diss,d = μsignḋ =
{

μ ḋ
|ḋ| ḋ �= 0

[ − μ,μ] ḋ = 0
. (82)

Let us investigate the second term in (81) and integrate it by
parts:

∫

�

β∇ f · ∇δ f dV =
∫

∂�

βn · ∇ f δ f dA

−
∫

�

β � f δ f dV

= −
∫

∂�

β f n · ∇ f δd dA +
∫

�

β f � f δd dV (83)

since δ f = f ′δd = − f δd. Considering the independence of
the volume and the surface of the body and sufficient regular-
ity of all integrands (again mathematically the fundamental
lemma of calculus of variations), (81) can be rearranged as

{− f 	0 + β f � f + ∂�diss,d 	 0 ∀(x, t) ∈ � × I
n · ∇ f = 0 ∀(x, t) ∈ ∂�N,α × I

(84)

Introducing the (extended) thermodynamic driving force by

pd := f 	0 − β f � f , (85)

the evolution equation (84) is given by the differential inclu-
sion

pd ∈ ∂�diss,d (86)

which is rearranged to

ḋ = |ḋ|
μ

pd . (87)

Similarly to themodeling of plasticity, a criterion for damage
evolution is required to close the material model. Thus, we
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perform a Legendre transform for the dissipation function
and we obtain

�̃diss,d = sup
ḋ

{
pdḋ − �diss,d} = sup

ḋ

{ |ḋ|
μ

[(pd)2 − μ2]
}

=
{
0 if (pd)2 ≤ μ2

∞ if (pd)2 > μ2
. (88)

Consequently, damage evolves for pd = r and does not
evolve for pd < r from which we find the unit [r ] = J/m3.

8.2 Function spaces and weak formulation

In extension to plasticity discussed in Sect. 7.3, the inequality
constraint acts now directly on a non-local solution variable,
namely the damage function f . From the mechanical view-
point, we deal with a local constraint in plasticity, while we
have now a non-local constraint in gradient-enhanced dam-
age. The function space for the damage variable f reduces
to a closed convex set of a suitable function space (here
the Sobolev space H1(�)) similar as for the obstacle prob-
lem [50, 51] and similar to what we encountered already in
Sect. 7.3 for the plastic strain evolution. The Euler-Lagrange
equations for the displacements, velocities, and temperature
remain the same as before. The resulting system is a coupled
variational inequality system (CVIS) [86] with in total four
coupled unknowns.

Displacements, velocities, temperatureAs before, we need
four solution sets. Here, for the displacement variable, the
velocities, and the temperature there is no change in the func-
tion spaces to before and we refer the reader to Sect. 5.4.

Damage function It remains to discuss the setting for the
damage function. For the relation from the differential inclu-
sion (84) and the design of concex sets, we refer the reader to
Sect. 7.2. Thus, the closed convex set for the damage func-
tion13 is defined as follows. First, we assume (see e.g., [49])

f ∈ L2(I , H1(�)), ḟ ∈ L2(I , H1(�)), f̈ ∈ L2(I , H1(�)),

resulting into

f ∈ H2(I , H1(�)), ḟ ∈ H1(I , H1(�)).

13 In variational phase-field fracture, we notice that the convex set is
defined in an analogous fashion. Therein, usually the inequality con-
straint ḟ ≤ 0 is discretized in time, e.g., ḟ ≈ f (tm) − f (tm−1) ≤ 0,
since in most studies a quasi-static evolution of damage/fracture is con-
sidered; see e.g., [63]. There exist, however, dynamic (i.e., second order
in time as we deal with in the current study) formulations, e.g., [14],
in which the convex set for the damage/fracture variable is defined in a
different way. Working with the time-continuous constraint ḟ ≤ 0 was
only considered recently in [48, Remark 2.1] and [49].

Consequently, the constraint ḟ ≤ 0 a.e. in I × � is well-
defined, and yields the convex set

X f := K := { f ∈ L2(I , H1(�))| ḟ ≤ 0 a.e. in I × �}.

Weak formulation The weak formulation corresponding to
Problem 4 reads:

Proposition 9 (Weak formulation) Find v ∈ Xv and u ∈ Xu

such that

Au[u, v](δu, δv) = Lu(δu, δv)∀ {δu, δv} ∈ Xu
0 × Xv

where the semi-linear form is given by

Au[u, v](δu, δv) :=
∫

I

∫

�

ρ v̇ · δu dV dt

+
∫

I

∫

�

σ : ∇symδu dV dt −
∫

∂ I

∫

�

ρ v · δu dV ds

−
∫

I

∫

�

ρ v · δv dV dt +
∫

I

∫

�

ρ u̇ · δv dV dt

and the right-hand side functional is given by

Lu(δu, δv) :=
∫

I

∫

�

b� · δu dV dt

+
∫

I

∫

∂�N,u

t� · δu dA dt

−
∫

∂ I

∫

�

ρ v� · δu dV ds .

The weak form of the temperature equation reads: find θ ∈
X θ such that

Aθ [θ ](δθ) = Lθ (δθ) ∀δθ ∈ X θ

with

Aθ [θ ](δθ) :=
∫

I

∫

�

κ θ̇ δθ dV dt

+
∫

I

∫

�

ω∇θ · ∇δθ dV dt

+
∫

I

∫

�

	0 ḟ δθ dV dt

−
∫

�

κ θ δθ dV

∣
∣
∣
∣
t=0

and

Lθ (δθ) := −
∫

�

κ θ�
0 δθ dV

∣
∣
∣
∣
t=0

.
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The variational inequality for the damage function reads:
find f ∈ X f such that

A f [ f ](δ f − f ) ≥ L f (δ f − f ) ∀δ f ∈ X f

with

A f [ f ](δ f − f ) :=
∫

I

∫

�

f ′	0(δ f − f ) dV dt

+
∫

I

∫

�

β ∇ f · ∇( f ′(δ f − f )) dV dt

+
∫

I

∫

�

μ (δ f − f ) dV dt +
∫

�

μ f (δ f − f ) dV

∣
∣
∣
∣
t=0

and

L f (δ f − f ) :=
∫

�

μ f �
0 (δ f − f ) dV

∣
∣
∣
∣
t=0

.

As final, abstract monolithic CVIS, we can write

Proposition 10 Find U := (u, v, θ, f ) ∈ X := Xu × Xv ×
X θ × X f such that

A[U](δU − Ū) ≥ L(δU − Ū) ∀δU ∈ X0,

where δU := (δu, δv, δθ, δ f ), and Ū := (0, 0, 0, f ) ∈ X,
and X0 := Xu

0 × Xv × X θ
0 × X f . Therein, A[U](δU) and

L(δU) are composed with the single semi-linear and linear
forms from Proposition 9.

9 Numerical regularization and
discretization

In this section, we perform a space-time Galerkin discretiza-
tion. Temporal discretization is based on a discontinuous
Galerkin (dG) finite element scheme while spatial dis-
cretization is executed with continuous Galerkin (cG) finite
elements. This combination iswell-known, e.g., [6, 79], since
the flexibility of a dG(r) discretization results into implicit,
strongly A-stable, time-stepping schemes [22, 44], while for
many problems in continuum mechanics classical cG finite
elements are employed. Of course, a dG discretization in
space is in principle possible as well as cG discretizations in
time. However, they suffer from a reduced numerical stabil-
ity since the functions are required to be globally continuous.
Consequently, our method of choice, as one example, is
a dG(r)cG(s) discretization. An open research question for
more complex choices is its technical realization, i.e., its
implementation and debugging.

Let us start from Proposition 10. The other formulations
from the other sections arise as adaptations. Our procedure
is as follows: first, we regularize the variational inequality

by simple penalization, then we semi-discretize in time, and
finally, we arrive at the full space-time discretization. The
penalization procedure allows us to relax the constraint such
that we can work again with linear function spaces rather
than convex solution sets (see e.g., [50, 51] or [89]).

9.1 Regularization of the inequality constraint

Aswe observe in Proposition 10, we deal with a convex set in
X f only. We now enlarge the solution set by introducing X f

γ

with X f
γ := L2(I , H1(�)) where we replace the convex set

K by the linear function space H1(�) in the image space. To
this end, the corresponding weak form becomes an equality:
find f ∈ X f

γ such that

A f [ f ](δ f ) + Aγ [ f ](δ f ) = L f (δ f ) ∀δ f ∈ X f
γ ,

with

A f [ f ](δ f ) :=
∫

I

∫

�

f ′	0δ f dV dt

+
∫

I

∫

�

β ∇ f · ∇( f ′(δ f )) dV dt

+
∫

I

∫

�

μ (δ f ) dV dt +
∫

�

μ f δ f dV

∣
∣
∣
∣
t=0

and the penalization functional

Aγ [ f ](δ f ) :=
∫

I

∫

�

γ 〈 ḟ 〉+δ f dV dt

with a penalization parameter γ > 0 with the unit
[γ ] = Js/m3 and 〈x〉+ = x for x > 0 and 〈x〉+ = 0 for x ≤ 0.
This penalization formulation is the same as for phase-field
fracture [48][Section 2]. Let us briefly comment on the con-
straint. According to our derivations in Sect. 8, i.e., (112), we
are interested in ḟ ≤ 0 only. The penalization functional is
constructed in such a way that the functional is zero when the
constraint is fulfilled and penalizes the weak form, when the
constraint is violated. For the penalization formAγ [ f ](δ f ),
it holds

⎧
⎨

⎩

Aγ [ f ](δ f ) = 0 for ḟ ≤ 0 ,

Aγ [ f ](δ f ) =
∫

I

∫

�

γ ḟ δ f dV dt for ḟ > 0 .

Finally, the right-hand side is given by

L f (δ f ) :=
∫

�

μ f �
0 δ f (0) dV .

With this, we arrive at the penalized formulation:
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Proposition 11 (Penalized formulation) Find
U := (u, v, θ, f ) ∈ X := Xu × Xv × X θ × X f

γ such
that

A[U](δU) + Aγ [ f ](δ f ) = L(δU) ∀δU ∈ X0,

where δU := (δu, δv, δθ, δ f ), and X0 := Xu
0 × Xv × X θ

0 ×
X f

γ .

Remark 9 We notice that other regularization strategies such
as augmented Lagrangians, active set methods, or interior
point methods could have been also employed. In terms of
robustness, efficiency and accuracy these approaches are usu-
ally better suited than simple penalization; see for instance
[32, 43, 65]. However, simple penalization provides a direct
first approximation of variational inequalities, specifically,
when we deal with coupled variational inequality systems
(CVIS) as in the current work. In future work in which
computationswill be addressed,wewill extend simply penal-
ization to one of the othermethods as already done for similar
type of problems in [86] by using augmented Lagrangian for-
mulations or primal-dual active set methods.

9.2 Temporal discretization with discontinuous
Galerkin

Based on the penalized formulation in Proposition 11, we
now derive a semi-discrete temporal version. Let

Ī = {0} ∪ I1 ∪ . . . ∪ IM

be a decomposition of the time interval I with half-open
subintervals Im := (tm−1, tm]14 and the non-constant time
step size km := tm − tm−1 for m = 1, . . . , M . For each
function space, we formulate the semi-discrete part:

X̃u,r1
k := {uk ∈ Xu | uk |Im ∈ Pr1 (Im , V u), uk(0) ∈ L2(�)} ,

X̃v,r2
k := {vk ∈ Xv | vk |Im ∈ Pr2 (Im , V v), vk(0) ∈ L2(�)} ,

X̃ θ,r3
k := {θk ∈ X θ | θk |Im ∈ Pr3 (Im , V θ ), θk(0) ∈ L2(�)} ,

X̃ f ,r4
k := { fk ∈ X f

γ | fk |Im ∈ Pr4 (Im , V f ), fk(0) ∈ L2(�)} ,

where k denotes the semi-discretization in time, and
r1, r2, r3, r4 ∈ N0 denote the respective polynomial degrees
of our finite elements in time.Wenote that X̃u,r1

k , X̃v,r2
k , X̃v,r3

k
and X̃v,r4

k are not subspaces of their corresponding continuous-
level function spaces, since we allow for discontinuities in
time. Moreover, specifically for the test function spaces,
namely for u and θ , we introduce

X̃u,r1
0,k := {δuk ∈ Xu | δuk |Im ∈ Pr1 (Im , V u

0 ), δuk(0) ∈ L2(�)} ,

X̃v,r3
0,k := {δθk ∈ X θ | δθk |Im ∈ Pr3 (Im , V θ

0 ), δθk(0) ∈ L2(�)} .

14 For the notation and reasoning of the half-open time intervals, we
follow [44, 79].

Next, we introduce jump terms that connect two solutions
from two adjacent time intervals.

Definition 12 Let Uk := (uk, vk, θk, fk) ∈ X̃r
k := X̃u,r1

k ×
X̃v,r2

k × X̃ θ,r3
k × X̃ f ,r4

k . Then, the jump at time point tm is
defined by

[Uk]m := U+
k,m − U−

k,m ,U±
k,m := lim

s→0
Uk(tm ± s) .

We notice that Uk,m := Uk(tm) where tm is the time point
with index m.

With the help of the decomposition of I , the jump terms and
the semi-discrete spaces, we can now formulate (e.g., [87])
a semi-discrete system:

Proposition 12 Find Uk := (uk, vk, θk, fk) ∈ X̃r
k :=

X̃u,r1
k × X̃v,r2

k × X̃ θ,r3
k × X̃ f ,r4

k such that

A[Uk](δUk) + Aγ [ fk](δ fk) = L(δUk) ∀δU ∈ X̃r
0,k

where δUk := (δuk, δvk, δθk, δ fk), and X̃r
0,k := X̃u,r1

0,k ×
X̃v,r2

k × X̃ θ,r3
0,k × X̃ f ,r4

k . Therein, we have

A[Uk](δUk) + Aγ [ fk](δ fk) := A[uk, vk](δuk, δvk)

+A[θk](δθk) + A[ fk](δ fk) + Aγ [ fk](δ fk)

which are defined in detail as

A[Uk ](δUk ) :=
M∑

m=1

[∫

Im

∫

�
ρ v̇k · δuk dV dt

+
∫

Im

∫

�
ρ u̇k · δvk dV dt +

∫

Im

∫

�
κ θ̇k δθk dV dt

+
∫

Im

∫

�
	0,k ḟk δθk dV dt +

∫

Im

∫

�
γ 〈 ḟk 〉+δ fk dV dt

]

+
M∑

m=1

AS [Uk ](δUk )

+
M−1∑

m=0

[∫

�
ρ [vk ]m · δu+

k,m dV +
∫

�
ρ [uk ]m · δv+

k,m dV

+
∫

�
κ [θk ]m · δθ+

k,m dV

+
∫

�
	0,k [ fk ]m δθ+

k,m dV

+ 1

2

∫

�
[	0,k ]m f +

k,m δθ+
k,m dV +

∫

�(m)
γ [ fk ]m δ f +

k,m dV

]

−
∫

∂ I

∫

�
ρ v−

k · δu−
k dV ds −

∫

�
κ θ−

k,0 δθ−
k,0 dV

+
∫

�
μ f −

k,0 δ f −
k,0 dV

where �(m) is defined as the set �(m) := {x ∈
�| f −

m+1(x) > f −
m (x)}. Therein, the spatial parts (terms
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without time derivatives) are defined as

AS[Uk](δUk) :=
∫

Im

∫

�

σ k : ∇symδuk dV dt

−
∫

Im

∫

�

ρ vk · δvk dV dt

+
∫

Im

∫

�

ω ∇θk · ∇δθk dV dt

+
∫

Im

∫

�

f ′
k	0,kδ fk dV dt

+
∫

Im

∫

�

β ∇ fk · ∇( f ′
k(δ fk)) dV dt

+
∫

Im

∫

�

μ δ fk dV dt .

The right-hand sides are given by:

L(δUk) :=
∫

I

∫

�

b� · δuk dV dt

+
∫

I

∫

∂�N,u

t� · δuk dA dt −
∫

∂ I

∫

�

ρ v� · δu−
k dV ds

−
∫

�

κ θ�
0 δθ−

k,0 dV +
∫

�

μ f �
0 δ f −

k,0 dV .

The above semi-linear formA[Uk](δUk) needs some further
explanations. For linear time derivative terms, as it is the case
for the first three terms, jump terms can be associated in a
classical way [44, 79] and [87]. However, the term

∫

Im

∫

�

	0,k ḟk δθk dV dt

is nonlinear since 	0,k contains solution variables and ḟk

is a solution variable, too. Here, we follow [47] in which a
careful analysis yields two jump terms, namely

∫

�

	0,k [ fk]m δθ+
k,m dV + 1

2

∫

�

[	0,k]m f +
k,m δθ+

k,m dV .

The second unusual modification is concerned with the
penalization functional. Since it is also time-dependent, we
need to add jump terms here as well. Formally, we follow
[48][Section 2]. We recall the penalization functional

∫

Im

∫

�

γ 〈 ḟk〉+δ fk dV dt .

The corresponding jump terms are defined on �, but only on
the subset where the penalization is active, namely f −

m+1 >

f −
m , i.e., f −

m+1(x) > f −
m (x) for x ∈ �, which results into

the functional
∫

�(m)

γ [ fk]m δ f +
k,m dV .

9.3 Spatial discretization with continuous Galerkin

For the spatial discretization, we intend to work with a clas-
sical continuous Galerkin finite element scheme [15, 16,
20, 89]. To this end, the spatial discretization parameter is
denoted as usually by h. First, we introduce the fully discrete
function spaces at each time point tm associated to the spa-
tial mesh T m

h . Here, the m indicates that the spatial mesh can
change from time point tm−1 to tm when using mesh adaptiv-
ity.Consequently,weobtain forV u the discrete spaceV u,s1,m

h
in which the index u is as before, s1 denotes the finite ele-
ment polynomial degree for the spatial discretization, m the
current time point index at tm , and the subindex h indicates
that we work on the discrete level. The other function spaces
are defined accordingly. With this, we have:

X̃
u,r1,s1
k,h := {ukh ∈ Xu | ukh |Im ∈ Pr1 (Im , V

u,s1,m
h ), ukh(0) ∈ V

u,s1,0
h } ,

X̃
v,r2,s2
k,h := {vkh ∈ Xv | vkh |Im ∈ Pr2 (Im , V

v,s2,m
h ), vkh(0) ∈ V

v,s2,0
h } ,

X̃
θ,r3,s3
k,h := {θkh ∈ Xθ | θkh |Im ∈ Pr3 (Im , V

θ,s3,m
h ), θkh(0) ∈ V

θ,s3,0
h } ,

X̃
f ,r4,s4

k,h := { fkh ∈ X f
γ | fkh |Im ∈ Pr4 (Im , V

f ,s4,m
h ), fkh(0) ∈ V

f ,s4,0
h } .

Moreover, specifically for the test function spaces, namely
for the variations δu and δθ , we introduce

X̃
u,r1,s1
0,k,h := {δukh ∈ Xu | δukh |Im ∈ Pr1 (Im , V

u,s1,m
0,h ), δukh(0) ∈ V

u,s1,0
h } ,

X̃
v,r3,s3
0,k,h := {δθkh ∈ Xθ | δθkh |Im ∈ Pr3 (Im , V

θ,s3,m
0,h ), δθkh(0) ∈ V

θ,s3,0
h } .

Formally, we then arrive at the fully discrete system

Proposition 13 Find Ukh := (ukh, vkh, θkh, fkh) ∈ X̃r ,s
kh :=

X̃u,r1,s1
kh × X̃v,r2,s2

kh × X̃ θ,r3,s3
kh × X̃ f ,r4,s4

kh such that

A[Ukh](δUkh) + Aγ [ fkh](δ fkh) = L(δUkh)

∀δU ∈ X̃r ,s
0,k,h

where δUkh := (δukh, δvkh, δθkh, δ fkh), and X̃r ,s
0,k,h :=

X̃u,r1,s1
0,k,h × X̃v,r2,s2

kh × X̃ θ,r3,s3
0,k,h × X̃ f ,r4,s4

k,h . Therein, we have

A[Ukh](δUkh) + Aγ [ fkh](δ fkh) := A[ukh, vkh](δukh, δvkh)

+ A[θkh](δθkh) + A[ fkh](δ fkh) + Aγ [ fkh](δ fkh) .

The single terms are given by

A[Ukh](δUkh) :=
M∑

m=1

[ ∫

Im

∫

�

ρ v̇kh · δukh dV dt

+
∫

Im

∫

�

ρ u̇kh · δvkh dV dt

+
∫

Im

∫

�

κ θ̇kh δθkh dV dt
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+
∫

Im

∫

�

	0,kh ḟkh δθkh dV dt

+
∫

Im

∫

�

γ 〈 ḟkh〉+δ fkh dV dt

]

+
M∑

m=1

AS[Ukh](δUkh)

+
M−1∑

m=0

[ ∫

�

ρ [vkh]m · δu+
kh,m dV

+
∫

�

ρ [ukh]m · δv+
kh,m dV

+
∫

�

κ [θkh]m · δθ+
kh,m dV dt

+
∫

�

	0,kh [ fkh]m δθ+
kh,m dV

+ 1

2

∫

�

[	0,kh]m f +
kh,m δθ+

kh,m dV

+
∫

�(m)

γ [ fkh]m δ f +
kh,m dV

]

−
∫

∂ I

∫

�

ρ v−
kh · δu−

kh dV ds

−
∫

�

κ θ−
kh,0 δθ−

kh,0 dV +
∫

�

μ f −
kh,0 δ f −

kh,0 dV .

Therein, the spatial parts (terms without time derivatives)
are defined as

AS[Ukh](δUkh) :=
∫

Im

∫

�

σ kh : ∇symδukh dV dt

−
∫

Im

∫

�

ρ vkh · δvkh dV dt

+
∫

Im

∫

�

ω ∇θkh · ∇δθkh dV dt

+
∫

Im

∫

�

f ′
kh	0,khδ fkh dV dt

+
∫

Im

∫

�

β ∇ fkh · ∇( f ′
kh(δ fkh)) dV dt

+
∫

Im

∫

�

μ δ fkh dV dt .

The right-hand sides are given by:

L(δUkh) :=
∫

I

∫

�

b� · δukh dV dt

−
∫

I

∫

∂�N,u

t� · δukh dA dt −
∫

∂ I

∫

�

ρ v� · δu−
kh dV ds

−
∫

�

κ θ�
0 δθ−

kh,0 dV +
∫

�

μ f �
0 δ f −

kh,0 dV .

9.4 dG(0) realization in time and interpretation as
time-stepping scheme

Finally, starting from Proposition 13, we realize a dG(r), i.e.,
dG(0), discretization if we chose r1 = r2 = r3 = r4 = 0.
Due to the discontinous test functions in time, the global
scheme decouples into a sequential approach for each time
interval Im, m = 1, . . . , M which can be interpreted as time-
stepping scheme.

Total system on each Im On each time interval Im , we
have

∫

Im

∫

�

ρ v̇kh · δukh dV dt

+
∫

Im

∫

�

ρ u̇kh · δvkh dV dt

+
∫

Im

∫

�

κ θ̇kh δθkh dV dt

+
∫

Im

∫

�

	0,kh ḟkh δθkh dV dt

+
∫

Im

∫

�

γ 〈 ḟkh〉+δ fkh dV dt

+ AS[Ukh](δUkh) +
∫

�

ρ [vkh]m−1 · δu+
kh,m−1 dV

+
∫

�

ρ [ukh]m−1 · δv+
kh,m−1 dV

+
∫

�

κ [θkh]m−1 · δθ+
kh,m−1 dV dt

+
∫

�

	0,kh [ fkh]m−1 δθ+
kh,m−1 dV

+ 1

2

∫

�

[	0,kh]m−1 f +
kh,m−1 δθ+

kh,m−1 dV

+
∫

�(m)

γ [ fkh]m−1 δ f +
kh,m−1 dV

−
∫

∂ I

∫

�

ρ v−
kh · δu−

kh dV ds

−
∫

�

κ θ−
kh,0 δθ−

kh,0 dV

+
∫

�

μ f −
kh,0 δ f −

kh,0 dV

=
∫

Im

∫

�

b� · δukh dV dt

+
∫

Im

∫

∂�N,u

t� · δukh dA dt

−
∫

∂ I

∫

�

ρ v� · δu−
kh dV ds

−
∫

�

κ θ�
0 δθ−

kh,0 dV +
∫

�

μ f �
0 δ f −

kh,0 dV . (89)
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Carryingout time integrationNow,weemploy constant-
in-time test functions, integrate the time derivative terms, and
we employ the right-sided box rule. The term	0,kh is approx-
imated in an implicit fashion, namely 	0,kh := 	0,kh,m :=
	−

0,kh,m . Then, we arrive at

∫

�

ρ (v−
kh,m − v+

kh,m−1) · δuh dV

+
∫

�

ρ (u−
kh,m − u+

kh,m−1) · δvh dV

+
∫

�

κ (θ−
kh,m − θ+

kh,m−1) δθh dV

+
∫

�

	−
0,kh ( f −

kh,m − f +
kh,m−1) δθh dV

+
∫

�

γ 〈 f −
kh,m − f +

kh,m−1〉+δ fh dV

+ kmAS[U−
kh,m](δUh)

+
∫

�

ρ [vkh]m−1 · δu+
kh,m−1 dV

+
∫

�

ρ [ukh]m−1 · δv+
kh,m−1 dV

+
∫

�

κ [θkh]m−1 · δθ+
kh,m−1 dV

+
∫

�

	0,kh [ fkh]m−1 δθ+
kh,m−1 dV

+ 1

2

∫

�

[	0,kh]m−1 f +
kh,m−1 δθ+

kh,m−1 dV

+
∫

�(m−1)
γ [ fkh]m−1 δ f +

kh,m−1 dV

−
∫

∂ I

∫

�

ρ v−
kh · δu−

kh dV ds −
∫

�

κ θ−
kh,0 δθ−

kh,0 dV

+
∫

�

μ f −
kh,0 δ f −

kh,0 dV

= km

∫

�

b� · δuh dV + km

∫

∂�N,u

t� · δuh dA

−
∫

∂ I

∫

�

ρ v� · δu−
kh dV ds

−
∫

�

κ θ�
0 δθ−

kh,0 dV +
∫

�

μ f �
0 δ f −

kh,0 dV .

Remark 10 At this point, we emphasize another big advan-
tage of such Galerkin type formulations in comparison to
classical time-stepping schemes based on finite differences.
The integrals are resolved by using some quadrature for-
mula in the Galerkin finite element context. Here, we have
the liberty to easily use different quadrature formulas for
each integral. This is of interest in error-controlled adaptivity
(e.g., [9, 27, 67]) or in cases where singularities are detected

that require certain approximations properties in certain time
intervals Im for certain equations.

Combining time-integrated timederivativeswith jump
terms Next, we investigate the first three time-integrated
terms and the jump terms, while we neglect for a moment
the other terms. This enables us to perform the following
simplification:

∫

�

ρ (v−
kh,m − v+

kh,m−1) · δuh dV

+
∫

�

ρ (u−
kh,m − u+

kh,m−1) · δvh dV

+
∫

�

κ (θ−
kh,m − θ+

kh,m−1) δθh dV

+
∫

�

[ρ vkh]m−1 · δu+
kh,m−1 dV

+
∫

�

[ρ ukh]m−1 · δv+
kh,m−1 dV

+
∫

�

[κ θkh]m−1 · δθ+
kh,m−1 dV

=
∫

�

ρ (v−
kh,m − v+

kh,m−1) · δuh dV

+
∫

�

ρ (u−
kh,m − u+

kh,m−1) · δvh dV

+
∫

�

κ (θ−
kh,m − θ+

kh,m−1) δθh dV

+
∫

�

ρ (v+
kh,m−1 − v−

kh,m−1) · δu+
kh,m−1 dV

+
∫

�

ρ (u+
kh,m−1 − u−

kh,m−1) · δv+
kh,m−1 dV

+
∫

�

κ (θ+
kh,m−1 − θ−

kh,m−1) · δθ+
kh,m−1 dV

=
∫

�

ρ (v−
kh,m − v−

kh,m−1) · δuh dV

+
∫

�

ρ (u−
kh,m − u−

kh,m−1) · δvh dV

+
∫

�

κ (θ−
kh,m − θ−

kh,m−1) δθh dV .

Now, we consider the fourth time derivative term and its two
jump terms:

∫

�

	−
0,kh ( f −

kh,m − f +
kh,m−1) δθh dV

+
∫

�

	0,kh [ fkh]m−1 δθ+
kh,m−1 dV

+ 1

2

∫

�

[	0,kh]m−1 f +
kh,m−1 δθ+

kh,m−1 dV

=
∫

�

	−
0,kh ( f −

kh,m − f +
kh,m−1) δθh dV
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+
∫

�

	0,kh ( f +
kh,m−1 − f −

kh,m−1) δθ+
kh,m−1 dV

+ 1

2

∫

�

(	+
0,kh,m−1 − 	−

0,kh,m−1) f +
kh,m−1 δθ+

kh,m−1 dV .

Since the functions are constant in time, it holds 	−
0,kh =

	0,kh and δθh = δθ+
kh,m−1 = δθ−

kh,m , and we obtain for the
fourth time derivative term

∫

�

	−
0,kh ( f −

kh,m − f −
kh,m−1) δθh dV

+ 1

2

∫

�

(	+
0,kh,m−1 − 	−

0,kh,m−1) f +
kh,m−1 δθh dV .

The fifth term follows in the same fashion and we obtain

∫

�

γ 〈 f −
kh,m − f +

kh,m−1〉+δ fh dV

+
∫

�(m−1)
γ [ fkh]m−1 δ f +

kh,m−1 dV

=
∫

�

γ 〈 f −
kh,m − f −

kh,m−1〉+δ fh dV .

Inserting the results into the original system The terms
after the last equal sign are now employed in the previous
relation yielding

∫

�

ρ (v−
kh,m − v−

kh,m−1) · δuh dV

+
∫

�

ρ (u−
kh,m − u−

kh,m−1) · δvh dV

+
∫

�

κ (θ−
kh,m − θ−

kh,m−1) δθh dV

+
∫

�

	−
0,kh ( f −

kh,m − f −
kh,m−1) δθh dV

+ 1

2

∫

�

(	+
0,kh,m−1 − 	−

0,kh,m−1) f +
kh,m−1 δθh dV

+
∫

�

γ 〈 f −
kh,m − f −

kh,m−1〉+δ fh dV

+ kmAS[U−
kh,m](δUh)

−
∫

∂ I

∫

�

ρ v−
kh · δu−

kh dV ds −
∫

�

κ θ−
kh,0 δθ−

kh,0 dV

+
∫

�

μ f −
kh,0 δ f −

kh,0 dV

= km

∫

�

b� · δuh dV + km

∫

∂�N,u

t� · δuh dA

−
∫

∂ I

∫

�

ρ v� · δu−
kh dV ds

−
∫

�

κ θ�
0 δθ−

kh,0 dV +
∫

�

μ f �
0 δ f −

kh,0 dV .

Resolving space-timeboundaryconditionsNext,we explic-
itly rewrite the temporal boundary term as

−
∫

∂ I

∫

�

ρ v−
kh · δu−

kh dV ds

= −
∫

�

ρ v−
kh,T · δu−

kh,T dV

+
∫

�

ρ v−
kh,0 · δu−

kh,0 dV .

Notational setups and final time-discrete system Since on
each time interval Im the functions are constant in time, we
can set Ukh,m := U−

kh,m for the trial functions and their
corresponding test functions. Thus, we obtain

∫

�

ρ (vkh,m − vkh,m−1) · δuh dV

+
∫

�

ρ (ukh,m − ukh,m−1) · δvh dV

+
∫

�

κ (θkh,m − θkh,m−1) δθh dV

+
∫

�

	0,kh ( fkh,m − fkh,m−1) δθh dV

+ 1

2

∫

�

(	0,kh,m − 	0,kh,m−1) fkh,m δθh dV

+
∫

�

γ 〈 fkh,m − fkh,m−1〉+δ fh dV

+ kmAS[Ukh,m](δUh)

−
∫

�

ρ vkh,T · δukh,T dV +
∫

�

ρ vkh,0 · δukh,0 dV −
∫

�

κ θkh,0 δθkh,0 dV

+
∫

�

μ fkh,0 δ fkh,0 dV

= km

∫

�

b� · δuh dV

+ km

∫

∂�N,u

t� · δuh dA −
∫

�

ρ v�
T · δukh,T dV

+
∫

�

ρ v�
0 · δukh,0 dV

−
∫

�

κ θ�
0 δθkh,0 dV +

∫

�

μ f �
0 δ fkh,0 dV .

Finally, this yields:

Proposition 14 (dG(0) timestepping) Let the initial con-
ditions v�

0, θ
�
0 , f �

0 at t0 and the end time condition v�
T at

tM = T be given. For the time point indices m = 1, . . . , M,
the current time step size is km = tm − tm−1, and let the
previous time step solution Ukh,m−1 be given. Then, find
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Ukh,m ∈ V u,s1,m
h × V v,s2,m

h × V θ,s3,m
h × V f ,s4,m

h such that

∫

�

ρ (vkh,m − vkh,m−1) · δuh dV

+
∫

�

ρ (ukh,m − ukh,m−1) · δvh dV

+
∫

�

κ (θkh,m − θkh,m−1) δθh dV

+
∫

�

	0,kh ( fkh,m − fkh,m−1) δθh dV

+ 1

2

∫

�

(	0,kh,m − 	0,kh,m−1) fkh,m δθh dV

+
∫

�

γ 〈 fkh,m − fkh,m−1〉+δ fh dV

+ kmAS[Ukh,m](δUh)

= km

∫

�

b� · δuh dV

+ km

∫

∂�N,u

t� · δuh dA

for all test functions δUkh,m ∈ V u,s1,m
0,h ×V v,s2,m

h ×V θ,s3,m
0,h ×

V f ,s4,m
h . Therein, the spatial parts are given by

AS[Ukh](δUh) :=
∫

�

σ kh : ∇symδuh dV

−
∫

�

ρ vkh · δvh dV +
∫

�

ω ∇θkh · ∇δθh dV

+
∫

�

f ′
kh	0,khδ fh dV +

∫

�

β ∇ fkh · ∇( f ′
khδ fh) dV

+
∫

�

μ δ fh dV .

Remark 11 The discretization of the other problem state-
ments from the Sects. 7, 6, and 5 are obtained with the same
formal procedure, with the only change in the definition of
the semi-linear forms and solution sets. In Sect. 7, a regular-
ization of the inequality constraint still must be undertaken
which is not necessary for the former Sects. 6 and 5.

Remark 12 The previous dG(0) discretization is a variant of
the well-known implicit, strongly A-stable backward Euler
scheme.This correspondance for simpler equations, e.g., heat
conduction or wave equation only, is well-known in the lit-
erature; see e.g. [6].

9.5 Idea of higher-order schemes such as dG(1)

The starting point for higher order schemes is (89). For
instance, for a dG(1) realization with r1 = r2 = r3 = r4 = 1
follows the classical idea of the finite element method. For
dG(1), linear polynomials, we need two basis functions per

time interval, rather than only one (constant function) as for
the dG(0)method. Let us recall the temporal part of the dG(0)
basis function:

δUk,m =
{
1 for Im

0 for Im �= In, m �= n

In the dG(1) method, the two basis functions can be obtained
with theNewton representation (e.g., [75]) of Lagrange inter-
polation

δUk,m,0 =
{
1 for Im

0 for Im �= In, m �= n
,

δUk,m,1 =
{

k−1
m (t − tm−1) for Im

0 for Im �= In, m �= n

These temporal parts need to be multiplied with their spa-
tial parts, i.e., δUkh = δUhδUk , which is omitted here, but
can be found for instance in [87] for the heat equation. These
twobasis functions are subsequently inserted into (89),which
yields per time interval Im now two coupled (spatial) solu-
tions, namely U+

kh,m−1 and U−
kh,m . The overall solution on

Im is then given by the linear combination

Ukh(t) = t − tm−1

km
U−

kh,m − t − tm
km

U+
kh,m−1.

Consequently, we now must solve spatial systems of dou-
ble size per Im which can be computationally expensive.
However, superconvergence effects can be proven for simple
model problems in the time points tm , yielding a tempo-
ral convergence order of 3 for the dG(1) scheme; see e.g.,
[72][Section 7.3].

9.6 Well-posedness of the time-discrete dG(0) elastic
wave system

One key innovation of this work is the prescription of veloc-
ity initial and time conditions as demonstrated in Sect. 5,
and specifically summarized in Remark 6. Based on the pre-
vious derivations in the current section with the final result
presented in Proposition 14, we now show explicitly that the
space-time system is well-posed for M = 2 and dG(0) time-
discretization. Considering the elastic wave equation only,
from Proposition 14, we have

∫

�

ρ (vkh,m − vkh,m−1) · δuh dV

+
∫

�

ρ (ukh,m − ukh,m−1) · δvh dV

+ kmAS[Ukh,m](δUh)
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= km

∫

�

b� · δuh dV + km

∫

∂�N,u

t� · δuh dA

with

AS[Ukh](δUh) :=
∫

�

σ kh : ∇symδuh dV

−
∫

�

ρ vkh · δvh dV .

Without loss of generality, let us assume t� = 0, and let us
re-order and collect:
∫

�

ρ (vkh,m − vkh,m−1) · δuh dV

+ km

∫

�

σ kh,m : ∇symδuh dV

+
∫

�

ρ (ukh,m − ukh,m−1) · δvh dV

− km

∫

�

ρ vkh,m · δvh dV

= km

∫

�

b� · δuh dV . (90)

As a reminder, in the classical sense, wewould now prescribe
the initial conditions u�

0 and v�
0 such that for m = 1, we set

ukh,0 := u�
0, vkh,0 := v�

0,

and from this, we obtain from (90) for m = 1, . . . , M
sequences (uk h,m)m∈N, (vkh,m)m∈N of discrete solutions. In
our new philosophy, we rather prescribe

vk h,0 := v�
0, vk h,M := v�

T .

Wenotice that still displacements are prescribedon the spatial
boundaries and for this reason, there is justified hope that our
change in the initial conditions still yields a solvable system.
In the following, we study the case M = 2 which could be
generalized with induction. We assume same time-step sizes
such that k := k1 = k2 and the corresponding time points

t0, t1, t2 = tM = T .

For M = 2, we have from (90)

∫

�

ρ (vkh,1 − vkh,0) · δuh dV

+ k
∫

�

σ kh,1 : ∇symδuh dV

+
∫

�

ρ (ukh,1 − ukh,0) · δvh dV

− k
∫

�

ρ vkh,1 · δvh dV = k
∫

�

b� · δuh dV ,

and
∫

�

ρ (vkh,2 − vkh,1) · δuh dV + k
∫

�

σ kh,2 : ∇symδuh dV

+
∫

�

ρ (ukh,2 − ukh,1) · δvh dV

− k
∫

�

ρ vkh,2 · δvh dV = k
∫

�

b� · δuh dV (91)

with the initial time and end time conditions

vkh,0 := v�
0, vkh,M = vkh,2 := v�

T .

Let us briefly count the unknowns in this scheme:

ukh,0, ukh,1, ukh,2, vkh,1. (92)

We have four equations in (91) and four unknowns, which
yields a quadratic linear system.

Remark 13 As a reminder, in the classical setting, we have

ukh,0 := u�
0, vkh,0 := v�

0,

and we also solve for four unknowns, namely

ukh,1, vkh,1, ukh,2, vkh,2.

Here, it is well-known that this procedure works and the
scheme is well-posed.

In our new setting, the actual solution becomes more dif-
ficult since the unknowns in (92) cannot be computed in a
sequential manner, i.e., given (ukh,m−1, vkh,m−1) compute
(ukh,m, vkh,m). Rather, we have to put a global view since
we need to compute from the beginning and the end all in
one. For this reason, let us explicitly derive the linear system.
To this end, we first order into unknowns on the left-hand side
and known values on the right-hand side. Here, (91) yields

∫

�

ρ vkh,1 · δuh dV

+ k
∫

�

σ kh,1 : ∇symδuh dV

+
∫

�

ρ (ukh,1 − ukh,0) · δvh dV

− k
∫

�

ρ vkh,1 · δvh dV (93)

=
∫

�

ρ vkh,0 · δuh dV + k
∫

�

b� · δuh dV (94)

and

−
∫

�

ρ vkh,1 · δuh dV + k
∫

�

σ kh,2 : ∇symδuh dV (95)
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+
∫

�

ρ (ukh,2 − ukh,1) · δvh dV

= k
∫

�

ρ vkh,2 · δvh dV −
∫

�

ρ vkh,2 · δuh dV

+ k
∫

�

b� · δuh dV . (96)

As previously introduced in Sect. 9.3, we have

ukh,0 ∈ V u,s1,0
h , ukh,1 ∈ V u,s1,1

h ,

ukh,2 ∈ V u,s1,2
h , vkh,1 ∈ V v,s2,1

h ,

with the finite element representations

ukh,0 =
dimV

u,s1,0
h∑

n=1

u0,nδuh,n,

ukh,1 =
dimV

u,s1,1
h∑

n=1

u0,nδuh,n,

ukh,2 =
dimV

u,s1,2
h∑

n=1

u0,nδuh,n,

vkh,1 =
dimV

v,s2,1
h∑

n=1

u0,nδvh,n,

with the nodal representations

u0 = (u0,n)
dimV

u,s1,0
h

n=1 ,

u1 = (u1,n)
dimV

u,s1,1
h

n=1 ,

u2 = (u2,n)
dimV

u,s1,2
h

n=1 ,

v1 = (v1,n)
dimV

v,s2,1
h

n=1 .

Let us define now the discrete matrices (see themathematical
finite element literature, e.g., [15, 16], for similar notations
of finite element matrices)

Amass
uv := (Amass

uv )i, j

:=
(∫

�

ρ δvkh, j · δuh,i dV

)

i, j

Alaplace
uu := (Alaplace

uu )i, j

:=
(∫

�

σ kh(δukh, j ) : ∇symδuh,i dV

)

i, j

Amass
vu := (Amass

vu )i, j

:=
(∫

�

ρ δukh, j · δvh,i dV

)

i, j

Amass
vv := (Amass

vv )i, j :=
(∫

�

ρ δvkh, j · δvh,i dV

)

i, j

and discrete right-hand sides, corresponding to (94),(96),
(95),(93), respectively

b1 := (b1,i )
dimV

v,s2,1
h

i=1 := (0)
dimV

v,s2,1
h

i=1

b2 := (b2,i )
dimV

v,s2,2
h

i=1 :=
(

k
∫

�
ρ vkh,2 · δvh,i dV

)dimV
v,s2,2
h

i=1

b3 := (b3,i )
dimV

u,s1,2
h

i=1

:=
(

−
∫

�
ρ vkh,2 · δuh,i dV + k

∫

�
b� · δuh,i dV

)dimV
u,s1,2
h

i=1

b4 := (b4,i )
dimV

u,s1,1
h

i=1

:=
(∫

�
ρ vkh,2 · δuh,i dV + k

∫

�
b� · δuh,i dV

)dimV
u,s1,1
h

i=1
,

where we recall that vkh,0 := v�
0 and vkh,2 := v�

T . Then,

⎛

⎜
⎜
⎜
⎝

−Amass
vu Amass

vu 0 −kAmass
vv

0 −Amass
vu Amass

vu 0
0 0 kAlaplace

uu −Amass
uv

0 kAlaplace
uu 0 Amass

uv

⎞

⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎝

u0
u1
u2
v1

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

b1
b2
b3
b4

⎞

⎟
⎟
⎠ .

(97)

Therein, the rows correspond to (94),(96),(95),(93), respec-
tively. The determinant of this block system is

det(2kAmass
vu Amass

vu Alaplace
uu Amass

uv ).

Here, all terms (matrices) are non-zero, because they consist
of usual mass matrices and stiffness matrices, and conse-
quently the determinant is non-zero and therefore this system
has a unique solution. Thus, the solutions

u0, u1, u2, v1, (98)

and consequently their finite element representations

ukh,0, ukh,1, ukh,2, vkh,1, (99)

exist andour newlyproposeddiscrete space-time formulation
of the elastic wave part for M = 2 in the dG(0) setting is
well-posed. Thus, we have shown:

Proposition 15 Given the data b�, v�
0 and v�

T , the fully dis-
cretized elastic wave equation in mixed form (90), with dG(0)
in time for M = 2 and continuous Galerkin finite elements in
space, is well-posed and admits unique finite element solu-
tions ukh,1, vkh,1, ukh,2, vkh,2.
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Corollary 1 The previous result can be extended via induction
to cases M ≥ 3.

9.7 Practical realization

The well-posedness analysis yields immediately a practi-
cal realization for the implementation of the elastic wave
part. Moreover, the solutions can be explicitly computed
by standard procedures, e.g., Gaussian elimination or LU
decomposition for such a small 4 × 4 block system. This
should not be confused being a simple, fast, solution process
since each block therein consists of a classical finite element
matrix, which can be (very) large for (very) fine spatial dis-
cretizationswith (very) smallmesh parameters h. To this end,
we obtain from (97) the triangular system

⎛

⎜
⎜
⎝

−Amass
vu Amass

vu 0 −kAmass
vv

0 −Amass
vu Amass

vu 0
0 0 kAlaplace

uu −Amass
uv

0 0 0 2Amass
uv

⎞

⎟
⎟
⎠ ·

⎛

⎜
⎜
⎝

u0
u1
u2
v1

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎜
⎝

b̃1
b̃2
b̃3
b̃4

⎞

⎟
⎟
⎟
⎠

.

(100)

Here, the reader should recall that the right-hand side is mod-
ified due to the rowmodifications as well. For this reason, we
denote the right hand side with tilde. Now, we can explicitly
compute via solving linear equation systems of the form

v1 = (2Amass
uv )−1 b̃4,

u2 = (kAlaplace
uu )−1(b̃3 + Amass

uv v1),

u1 = −(Amass
vu )−1(b̃2 − Amass

vu u2),

u0 = −(Amass
vu )−1(b̃1 − Amass

vu u1 + kAmass
vv v1),

and finally have the corresponding displacements and veloc-
ity

ukh,0, ukh,1, ukh,2, vkh,1. (101)

We notice that these steps are (very) typical matrix-vector or
matrix-matrix multiplications as they arise often in similar
block systems such as for instance Schur complement com-
putations; e.g., [91]. Moreover, the principal computational
cost by solving backwards four systems is the same as we
would have for the classical procedure with initial conditions
in u and v. The only difference is that in the classical sense,
we can go from time point, say tm−1, to time point tm and
solve the equations, while in our newly proposed system, we
first have to derive the fully-coupled linear equation system,
here (97) (for M = 2), and resolve this first, before solv-
ing the actual finite element systems. This approach remains
reasonable for moderate M ∼ 100 or M ∼ 1000 by using
symbolic computations from Maple or Wolfram Mathemat-
ica. For large M (many time steps), iterative solvers, e.g.,

[77], or multigrid methods [35] should be employed, where
we specifically mention in the space-time context the overall
space-time multigrid solution [30].

10 Conclusions

In this work, we proposed a new paradigm for variational
material modeling within a mathematically consistent space-
time framework. On the one hand, stationary problems in
mechanics are known since the year 1696 and space-time
descriptions have been mathematically discussed for par-
tial differential equations and variational inequalities since
the year 1968 in [26, 52, 56, 88]. On the other hand, only
recent advances for thermo-mechanically coupled modeling
via extended Hamilton principles allowed us to embed the
resultant models into common space-time frameworks. Of
special importance is the description of the space-time cylin-
der and specifically its surface on which boundary and initial
conditions are defined. Having the extended Hamilton prin-
ciple and the space-time cylinder at hand, we demonstrated
in terms of four models the power of our approach, i.e.,
the elastic wave problem, visco-elasticity, elasto-plasticity
with hardening and gradient-enhanced damage modeling.
For the latter two examples, inequality constraints yield com-
plementarity systems which require mathematically to work
in convex sets, rather than linear function spaces. Finally,
we performed the numerical discretization with a focus on
the temporal parts employing discontinuous Galerkin finite
elements. Therein, the regularization of the inequality con-
straints was based on on simple penalization. Since the
penalization acts in time, corresponding dG jump terms had
to be derived. Moreover, a nonlinear time-derivative term
required a careful investigation in terms of their jumps terms,
too. These details were worked out in great detail and finally,
a dG(0) realization with constant basis functions in time was
conducted in order to arrive at a practical scheme. The idea of
higher-order temporal discretizations was outlined as well.
Finally, we studied the well-posedness of the elastic wave
part for M = 2 (three time points) in the dG(0) since the
prescription of velocity conditions only is unusual and at the
same time one of the key innovations of this paper. The prac-
tical realization in terms of an algorithmic scheme is also
shown for this system and can be adopted as starting point
for an implementation of the full elastic wave equation. A
reduced, prototype realization, implementation, and numeri-
cal simulation of a scalar-valuedwave equation is undertaken
in Sect. 5.3.
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A Strong forms

We collect in this appendix the strong form formulations
for all models discussed. This is obtained from applying the
fundamental lemma of calculus of variations to the respective
weak formulations given above.

A.1 Strong form of the elastic wave propagation
(Sec. 5)

Problem 1 Let b� : �× I → R
d be given volume forces, t� :

∂�N,u× I → R
d given surface tractions, u� : ∂�D,u× I →

R
d spatial Dirichlet boundary data, and v� : � × ∂ I → R

d

temporal boundary data. Furthermore, let θ� : ∂�D,θ × I →
R be Dirichlet boundary conditions for the temperature and
θ�
0 : � → R be temperature initial condition. The Euler-

Lagrange equation for the displacements u : �̄ × Ī → R
d

and velocities v : �̄ × Ī → R
d read

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∇ · σ + b� = ρ v̇ ∀(x, t) ∈ � × I
u̇ − v = 0 ∀(x, t) ∈ � × I
σ · n = t� ∀(x, t) ∈ ∂�N,u × I

u = u� ∀(x, t) ∈ ∂�D,u × I
v = v�

0 ∀(x, t) ∈ � × {0}
v = v�

T ∀(x, t) ∈ � × {T }

(102)

with the stress

σ = ∂	e

∂ε
= C : (ε − αtθ I)

and the governing equation for the temperature θ : �̄× Ī →
R constitutes as

⎧
⎪⎪⎨

⎪⎪⎩

κθ̇ + ∇ · q� + αtθ I : C : ε̇ = 0 ∀(x, t) ∈ � × I
n · q� = 0 ∀(x, t) ∈ ∂�N,θ × I

θ = θ� ∀(x, t) ∈ ∂�D,θ × I
θ = θ0 ∀(x, t) ∈ � × {0}

(103)

where I : C : ε̇ = Ci iop ε̇op and where the heat flux vec-
tor can be modeled using Fourier’s law, i.e., q� = −ω ∇θ ,
see (12). Accounting for non-adiabatic processes, i.e., n ·
q� �= 0 ∀(x, t) ∈ ∂�N,θ × I can be easily performed by
reasonably expanding the extended Hamilton functional H
in (31). More details are given in [46].

A.2 Strong form of visco-elasticity (Sec. 6)

Problem 2 Let b� : � × I → R
d be given volume forces,

t� : ∂�N,u × I → R
d given surface tractions, u� :

∂�D,u × I → R
d spatial Dirichlet boundary data, and

v� : � × ∂ I → R
d temporal boundary data. Furthermore,

let θ� : ∂�D,θ × I → R be Dirichlet boundary conditions
for the temperature, θ�

0 : � → R be the initial condition
for temperature, and ε

v,�
0 : � → R

d×d the matrix-valued
initial condition for the viscous strain. The Euler-Lagrange
equations for the displacements u : �̄ × Ī → R

d and the
velocities v : �̄ × Ī → R

d read

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∇ · σ + b� = ρ v̇ ∀(x, t) ∈ � × I
u̇ − v = 0 ∀(x, t) ∈ � × I
σ · n = t� ∀(x, t) ∈ ∂�N,u × I

u = u� ∀(x, t) ∈ ∂�D,u × I
v = v�

0 ∀(x, t) ∈ � × {0}
v = v�

T ∀(x, t) ∈ � × {T }

(104)

with the stress

σ = ∂	p

∂ε
= C : (ε − εv)

and the governing equation for the temperature θ : �̄× Ī →
R constitutes as

⎧
⎪⎪⎨

⎪⎪⎩

κθ̇ + ∇ · q� − σ : ε̇v = 0 ∀(x, t) ∈ � × I
n · q� = 0 ∀(x, t) ∈ ∂�N,θ × I

θ = θ� ∀(x, t) ∈ ∂�D,θ × I
θ = θ�

0 ∀(x, t) ∈ � × {0}
(105)

where again the heat flux vector q� is modeled using Fourier’s
law in (12), i.e., q� = −ω ∇θ . These equations are comple-
mented by the evolution equation for the viscous strain: find
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εv : �̄ × Ī → R
d×d such that

⎧
⎨

⎩

ε̇v = 1

η
devσ ∀(x, t) ∈ � × I

εv = ε
v,�
0 ∀(x, t) ∈ � × {0}

(106)

which all result from the stationarity of the Hamilton func-
tional. Usually, we chose ε

v,�
0 = 0.

A.3 Strong form of elasto-plasticity with hardening
(Sec. 7)

Problem 3 Let b� : �× I → R
d be given volume forces, t� :

∂�N,u× I → R
d given surface tractions, u� : ∂�D,u× I →

R
d spatial Dirichlet boundary data, and v� : � × ∂ I → R

d

temporal boundary data. Furthermore, let θ� : ∂�D,θ × I →
R be Dirichlet boundary conditions for the temperature, θ�

0 :
� → Rbe the initial condition for the temperature, and ε

p,�
0 :

� → R
d×d the matrix-valued initial condition for the plastic

strain. The Euler-Lagrange equations for the displacements
u : �̄ × Ī → R

d and the velocities v : �̄ × Ī → R
d read

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∇ · σ + b� = ρ v̇ ∀(x, t) ∈ � × I
u̇ − v = 0 ∀(x, t) ∈ � × I
σ · n = t� ∀(x, t) ∈ ∂�N,u × I

u = u� ∀(x, t) ∈ ∂�D,u × I
v = v�

0 ∀(x, t) ∈ � × {0}
v = v�

T ∀(x, t) ∈ � × {T }

(107)

with the stress

σ = ∂	d

∂ε
= C : (ε − εp)

and for the temperature θ : �̄ × Ī → R

⎧
⎪⎪⎨

⎪⎪⎩

κθ̇ + ∇ · q� − σ : ε̇p = 0 ∀(x, t) ∈ � × I
n · q� = 0 ∀(x, t) ∈ ∂�N,θ × I

θ = θ� ∀(x, t) ∈ ∂�D,θ × I
θ = θ�

0 ∀(x, t) ∈ � × {0}
(108)

where the heat flux vector q� can be modeled by Fourier’s
law (12), i.e., q� = −ω ∇θ . The system of equations is closed
by the differential algebraic equations for the plastic strains:
find εp : �̄ × Ī → R

d×d such that

⎧
⎪⎪⎨

⎪⎪⎩

ε̇p = ρp devσ , α̇h = ρp
(
σY + ∂	h

∂αh

)
,

ρp ≥ 0 , ρp �p = 0 , �p ≤ 0 ∀(x, t) ∈ � × I
εp = ε

p,�
0 ∀(x, t) ∈ � × {0} .

(109)

Similarly to visco-elasticity, we usually chose ε
p,�
0 = 0.

A.4 Strong form of gradient-enhanced damage
modeling (Sec. 8)

Problem 4 Let b� : �× I → R
d be given volume forces, t� :

∂�N,u× I → R
d given surface tractions, u� : ∂�D,u× I →

R
d spatial Dirichlet boundary data, and v� : � × ∂ I → R

d

temporal boundary data. Furthermore, let θ� : ∂�D,θ × I →
R be Dirichlet boundary conditions for the temperature, θ�

0 :
� → R be the initial condition for the temperature, and f �

0
the scalar-valued initial condition for the damage. The Euler-
Lagrange equations for the displacements u : �̄ × Ī → R

d

and the velocities v : �̄ × Ī → R
d read

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∇ · σ + b� = ρ v̇ ∀(x, t) ∈ � × I
u̇ − v = 0 ∀(x, t) ∈ � × I
σ · n = t� ∀(x, t) ∈ ∂�N,u × I

u = u� ∀(x, t) ∈ ∂�D,u × I
v = v�

0 ∀(x, t) ∈ � × {0}
v = v�

T ∀(x, t) ∈ � × {T }

(110)

with the stress

σ = f C : ε

the temperature θ : �̄ × Ī → R such that

⎧
⎪⎪⎨

⎪⎪⎩

κθ̇ + ∇ · q� + 	0 ḟ = 0 ∀(x, t) ∈ � × I
n · q� = 0 ∀(x, t) ∈ ∂�N,θ × I

θ = θ� ∀(x, t) ∈ ∂�D,θ × I
θ = θ�

0 ∀(x, t) ∈ � × {0}
(111)

with Fourier’s law in (12) for modeling the heat flux vector q�,
i.e., q� = −ω ∇θ and the damage function f : �̄× Ī → R

+
such that the following complementarity system holds true

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ḋ = − ḟ

f
≥ 0 , �d := f 	0 − β f � f − μ ≤ 0 ,

�d ḋ ≡ −�d ḟ / f = 0 ∀(x, t) ∈ � × I
n · ∇ f = 0 ∀(x, t) ∈ ∂�N,α × I
f = f �

0 ∀(x, t) ∈ � × {0}

(112)

From the definition f (d) = exp(−d) it follows from ḋ ≥ 0
that ḟ ≤ 0.Moreover, the complementarity system (112) and
the constraint ḟ ≤ 0 are closely related to regularized phase-
field fracture (e.g., [86]). Therein, the constraint is rather
formulated in terms of the damage function f , and �d is
slightly differently defined [86, Section 4.5.3].
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