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Abstract
Due to uncertainties, deterministic analysis cannot sufficiently reflect the performance of structures. Stochastic analysis can
consider the influence of multiple uncertainties factors and improve the confidence of the analysis results. A new stochastic
computational scheme, which has the features of Karhunen–Loève (K–L) expansion and modified perturbation stochastic
finite element method (MPSFEM), is proposed for the structures with low-level uncertainties, called KL-MPSM for short.
The material parameters are regarded as random fields and discretized by K–L expansion. The random variables obtained are
substituted into MPSFEM to get the estimates of the first two order moments (mean and variance) of the structural responses.
JC method is introduced to compute the reliability indexes and structures failure probability by utilizing the second-order
estimates. A deep beam and a plane frame structure are presented as numerical examples to demonstrate the feasibility of
KL-MPSM, and some random filed properties are studied. The results show that KL-MPSM has good accuracy, efficiency,
and advantages in programming. Therefore, KL-MPSM is well suited for static stochastic analysis of structures with low-level
uncertainties.

Keywords Random field · Karhunen–Loève expansion · Modified perturbation stochastic finite element method · Structural
reliability · Stochastic analysis

1 Introduction

In order to analyze structures more accurately, the struc-
tural uncertainties should be considered [1]. At present,
stochastic analysis has been applied to various engineering
structures, such as damageof concrete [2,3], rail irregularities
in train-bridge coupled vibration system [4,5], lope reliability
analysis [6], and some others [7,8]; moreover, in some areas,
uncertainty modeling and stochastic approaches are neces-
sary [9]. Random field theory and stochastic finite element
method are practical tools for stochastic analysis; therefore,
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combining these two approaches to analyze various struc-
tures with uncertainties more accurately is meaningful.

Randomfield theory developed rapidly in the past decades
and was widely used. Many studies quantified the stochas-
tic mechanical properties of structures by applying random
fields to the material parameters: for instance, Zein [10]
quantified the uncertainty in the composite structures by
simulating a Gaussian random field over a 3D surface;
Rauter [11] proposed a computational modeling approach
for short fiber-reinforced composites based on random field
theory; Zakian [12] combined stochastic finite cell method
and random field theory to analyze the stochastic structures
with complex geometries and stochastic material property.
The key point of random field theory is how to discretize
random fields accurately and quickly. Researchers have pro-
posed many methods for random field discretization, e.g.,
midpointmethod [13], shape functionmethod [1], and spatial
average method [14], etc., classified as spatial discretization
approaches; expansion optional linear estimation method
[15], orthogonal series expansion method [16], Karhunen–
Loève series expansion method [17], etc., classified as series
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expansion approaches. In practical applications, researchers
found that the series expansion approaches do not contain
the flaws of spatial discretization approaches that there are
couplings between the random field discretization and the
finite element discretization. Karhunen–Loève expansion is
widely applied due to its high efficiency and good accuracy;
as shown inRef. [10–12], they all usedK–L expansion. How-
ever, it is worth noting that there are also some problems
[18]: it is complicated to discretize the random fields with
complex geometries and non-stationary non-Gaussian ran-
dom fields, and the procedures of solving Fredholm integral
equation of the second kind are tedious. In order to over-
come these problems, researchers have done various types
of research: for instance, Zheng [19] improved K–L expan-
sion to discretize randomfields with complex geometries and
raise the dimensionality to n-dimensions; Zhang [20] com-
bined wavelet-transform and Galerkin method to propose
wavelet-Galerkin method, which can solve Fredholm equa-
tion with various types and avoid solving the transcendental
equation; for the K–L expansion of non-stationary non-
Gaussian random field, Kim [21] and Tong [22] proposed
the K–L expansion based on iterative translation approxima-
tionmethod and Linear-moments-basedHermite polynomial
model, respectively, and the latter will be more efficient; and
there are some similar improvements [23,24]. Then the appli-
cability of K–L expansion is greatly improved. Therefore,
this paper introduces K–L expansion as the tool for discretiz-
ing random fields.

Various stochastic finite element methods have also been
proposed with the development of random field theory. At
first, scholars combined the statistic techniquewith finite ele-
ment method to propose Monte Carlo finite element method;
while the cost of sample computation is too high, it is usu-
ally used to verify the accuracy of other methods. Scholars
thus began to propose non-sampling approaches, such as
perturbation stochastic finite element method (PSFEM) and
spectral stochastic finite element method (SSFEM) [17].
PSFEM can obtain the estimates of the first two order
moments of the structural response through the low-order
Taylor expansion of the governing equation, which reduces
the computational cost, but PSFEM is challenging to solve
large-variation problems, and dynamic problems and the
partial derivatives of the system matrices are necessary.
SSFEM combines K–L expansion of random fields and poly-
nomial chaos expansion of structural response to conduct
stochastic analysis, and SSFEM does not have those short-
comings of PSFEM, while the introduction of polynomial
chaos obviously expands the dimensions of the matrices in
the governing equations, which reduces the computational
efficiency. The above two methods require modification of
the governing equations of FEM; hence they are classi-
fied as intrusive approaches. In recent years, non-invasive
approaches havebecome significantlymore favoredby schol-

ars. The parametric uncertainties processing of this kind
of approach is independent of the governing equations of
deterministic models, so these non-invasive techniques can
eliminate much of the hassle of modifying the deterministic
computational scheme. The non-intrusive polynomial chaos
expansion is one of the non-invasive approaches, but the exis-
tence of the curse of dimensionality [25] makes it somewhat
limited; some approaches can alleviate the curse of dimen-
sionality, such as the stochastic collection method [26]. Each
of the above methods has its advantages and disadvantages,
and scholars have made many improvements to address their
shortcomings.

Initially, we wanted to find a method that could effi-
ciently handle static stochastic problems in civil engineer-
ing, and this method needed to be easy to program and
compute, so PSFEM became the target. The original com-
putational scheme of PSFEM has some problems, and
scholars havemade some improvements: Kamińnski [27–34]
has done much research, including the development of n-
order stochastic perturbation technique, and the extension of
perturbed stochastic finite elementmethod to statics, thermo-
dynamics, frame structure analysis, metal material analysis,
and other fields; Wu [35] proposed a modified computation
scheme of PSFEM called modified perturbation stochastic
finite element method, which overcomes the flaw of PSFEM
that it is necessary to take partial derivatives of systemmatri-
ces with respect to random variables; meanwhile, MPSFEM
can provide results with significantly higher accuracy than
PSFEM. MPSFEM is an efficient stochastic analysis tool,
and researchers have applied it to stochastic hyperbolic heat
conduction problems [36] and running stability analysis of
trains [37]. Therefore, we want to promote MPSFEM to ran-
dom field problems in finite element models and make it
possible to calculate structural reliability.

In this paper, MPSFEM and K–L expansion are combined
to propose a new computational scheme for static stochas-
tic analysis of engineering structures with random fields.
In Sect. 2, a summary of K–L expansion is introduced; In
Sect. 3, MPSFEM is described in detail and compared with
the original computational schemeof PSFEM, and the advan-
tages of MPSFEM are explained; in Sect. 4, introducing JC
method to calculate reliability index and failure probability;
in Sect. 5, KL-MPSM is promoted to the plane problem and
plane frame structure, and the computational equations are
derived in detail; in Sect. 6, four numerical examples are pre-
sented, and the results obtained by KL-MPSM are compared
with other methods; in Sect. 7, the main research conclusion
is summarized, and the subsequent work is envisioned.
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2 Karhunen–Loève expansion

Assuming that X(x, θ) is a one-dimensional (1D) random
field on the domain Ω (x ∈ Ω) and probability space D
(θ ∈ D) with mean X̄(x) and standard deviation σ . Consid-
ering the covariance function of the random field C (x1, x2)
is bounded, symmetric, and positive definite, according to
Mercer’s theorem [18], it can be expanded as

C (x1, x2) =
∞∑

i=1

λi fi (x1) fi (x2), (1)

where λi and fi (x) are the eigenvalue and eigenfunction,
respectively, and eigenfunctions are orthogonal and form a
complete set; they thus satisfy the following equation.

∫

Ω

fi (x) f j (x)dx = δi j , (2)

where δi j is the Kronecker-delta function.
From Eq. (1) and considering the orthogonality of eigen-

functions, we can get

∫

Ω

C (x1, x2) fi (x2)dx2 = λi fi (x1). (3)

Equation (3) is a homogenous Fredholm integral equation
of the second kind, and solving it can yield λi and fi (x). Its
solution methods include analytical methods [17], numerical
methods [20], and the utilizing of discrete sample data [38].
In this paper, a numerical method called wavelet-Galerkin
method [20] is introduced.

Then the 1D random field X(x, θ) can be expanded to the
following form.

X (x, θ) = X̄ (x) +
∞∑

i=1

ξi (θ)
√

λi fi (x), (4)

where ξi (θ) can be written as

ξi (θ) = 1√
λi

∫

Ω

[
X(x, θ) − X̄(x)

]
fi (x)dx; (5)

due to the existence of random field X(x, θ), ξi (θ) becomes
a random variable.

In Eq. (4), the second order properties of X(x, θ) are deter-
mined by λi and fi (x), and the higher order properties are
given by ξi (θ). If X(x, θ) is a Gaussian random field, ξ(θ)

is a set of standard Gaussian random variables with zero
mean and unit variance, and they are uncorrelated. If X(x, θ)

is a non-Gaussian random field, they may exhibit complex
dependencies or correlations that are difficult to determine
[39].

3 Perturbation stochastic finite element
method

3.1 The original computational scheme of PSFEM

In the original computational schemeof perturbation stochas-
tic finite element method, it is assumed that the material
parameters are random variables and the force is determinis-
tic, the static governing equation can be written as

K (α)U(α) = F, (6)

where α is a set of variables with zero mean and variance
σ 2, and they are relatively small; K (α), U(α), and F are
stochastic stiffness matrix, stochastic displacement vector,
and load vector, respectively.

Therefore, the second-order Taylor expansions of K (α)

and U(α) at their mean value are as follows.

K (α) = K 0 +
q∑

i=1

K I
iαi +

q∑

i=1

q∑

j=i

K II
i jαiα j

+ O(α3
i ), (7)

U(α) = U0 +
q∑

i=1

U I
iαi +

q∑

i=1

q∑

j=i

U II
i jαiα j

+ O(α3
i ), (8)

where O(α3
i ) denote the third order truncated remainder

which satisfies

lim
x→0

O
(
αn
i

)

αn−1
i

= 0; (9)

q is the number of the random variables; K 0, K I
i , and K II

i j
is the mean, first order partial derivative with respect to αi ,
and second order partial derivative with respect to αi , α j ,
respectively, which can be defined by Eq. (10).

K 0 = K (α)|α=0,

K I
i = ∂K (α)

∂αi

∣∣∣∣
α=0

,

K II
i j =

⎧
⎨

⎩

∂2K (α)
∂αi ∂α j

∣∣∣
α=0

, i �= j

1
2

∂2K (α)

∂α2
i

∣∣∣
α=0

, i = j,
(10)

and U0, U I
i , and U II

i j have the same form as Eq. (10).

Since U0, U I
i , and U II

i j cannot be directly calculated; we
need to substitute Eqs. (7–10) into Eq. (6) and corresponding
the terms in order, then we have:

K 0U0 = F, (11)
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U I
i = −K−1

0 K I
iU0, (12)

U II
i j = K−1

0

(
−K I

iU
I
j − K I

jU
I
i − K II

i jU0

)
, ( j < i),(13)

U II
i i = K−1

0

(
−K I

iU
I
i − K II

i iU0

)
, ( j = i), (14)

where, U0 is the deterministic displacement vector; U I
i and

U II
i j (when i = j , U II

i j = U II
i i ) denote the first order and

second order perturbation of the displacement vector, respec-
tively.

Through Eq. (8) and combined with Eqs. (11–14), we
can obtain the mean vector E(U(α)) and covariance matrix
Cov(U(α)) of the structural displacement by Eqs. (15)
and (16).

E (U(α)) = U0 +
q∑

i=1

q∑

j=i

U II
i jσiσ jρi j +

(
‖σ‖3∞

)
, (15)

Cov (U(α),U) =
q∑

i=1

q∑

j=1

U I
iU

I
j
T
ρi jσiσ j +

(
‖σ‖3∞

)
,(16)

where ‖σ‖∞ is the infinite norm of σ ; ρi j = Cov(αi ,α j )

σiσ j
. If the

random variables are uncorrelated, Eqs. (15) and (16) can be
rewritten as

E (U(α)) = U0 +
q∑

i=1

U II
i iσ

2
i +
(
‖σ‖3∞

)
, (17)

Cov (U(α),U(α)) =
q∑

i=1

U I
iU

I
i
T
σ 2
i +
(
‖σ‖3∞

)
. (18)

From the equations of the original computational scheme
of perturbation stochastic finite element method, we can
know that:

(1) PSFEM is mainly suitable for the case of low-level vari-
ation (the coefficient of variation is usually set around
10%∼15%).

(2) The computational cost and accuracy of PSFEM increase
with the items in Eq. (8).

(3) The first and second order partial derivatives of the stiff-
ness matrix (K I

i and K II
i j ) are necessary.

These features are also the drawbacks of PSFEM.

3.2 Modified perturbation stochastic finite element
method

In engineering structures, uncertainties inmaterial properties
often manifest themselves as non-Gaussian [40,41], while
the Gaussian assumption is still applied due to its simplic-
ity and the lack of relevant experimental data [39,41–43].

Therefore, to facilitate the verification of the accuracy and
equation derivation of MPSFEM, the random fields men-
tioned in the following sections of this paper are all Gaussian
random fields.

Depending on the correlation between random variables,
Wu [35] classified MPSFEM into three cases, including
uncorrelated random variables, uncorrelated random vari-
ables with a symmetric joint probability density function
(PDF), and correlated random variables. As described in
Sect. 2, if the random field is Gaussian, ξ(θ) is a set of uncor-
related standard Gaussian random variables with zero mean
and unit variance, and it is clear that the joint PDF of ξ(θ)

is symmetric and Gaussian. Therefore, we only discuss the
first and second cases.

If the random variables are uncorrelated, U I
i and U II

i j
must be calculated through Eqs. (11)–(14), then substituting
U II

i jσiσ j and U I
iσi into Eqs. (15) and (16) to get the second-

order estimates of U(α). However, in MPSFEM, U II
i jσiσ j

and U I
iσi can be calculated directly by another technique.

The third-order Taylor expansion ofU(α) at the mean can
be written as

U(α) = U0 +
q∑

i=1

U I
iαi +

q∑

i=1

q∑

j=i

U II
i jαiα j

+
q∑

i=1

q∑

j=i

q∑

k= j

U III
i jkαiα jαk +

(
‖σ‖4∞

)
. (19)

Hence, for the case of uncorrelated random variables, the
third-order estimate of themeanvector and covariancematrix
of U(α), imitating Eqs. (17) and (18), can be expressed as

E (U(α)) = U0 +
q∑

i=1

U II
i iσ

2
i

+
q∑

i=1

q∑

j=i

q∑

k= j

U III
i jkσiσ jσkρi jk +

(
‖σ‖4∞

)
, (20)

Cov (U(α),U(α)) =
q∑

i=1

U I
iU

I
i
T

+
q∑

k=1

q∑

i=1

q∑

j=i

U I
kσkU

II
i j
T
σiσ jρi jk

+
q∑

i=1

q∑

j=i

q∑

k=1

U II
i jσiσ jU I

k
T
σkρi jk +

(
‖σ‖4∞

)
, (21)

where

ρi jk = E(αiα jαk)

σiσ jσk
. (22)
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Defining a deterministic vector as by

as =
⎛

⎝0, · · · , 0︸ ︷︷ ︸
s−1

, σs, 0, · · · , 0︸ ︷︷ ︸
q−s

⎞

⎠, (23)

where σs is the standard deviation of αs .
Replacing the random vector α in Eq. (20) with the deter-

ministic vectors ±as , we have

U(as) = U0 + U I
sσs + U II

ssσ
2
s + U III

sssσ
3
s

+
(
‖σ‖4∞

)
, (24)

U(−as) = U0 − U I
sσs + U II

ssσ
2
s − U III

sssσ
3
s

+
(
‖σ‖4∞

)
. (25)

By adding Eqs. (24) and (25), and subtracting Eq. (25)
from Eq. (24), we can obtain U II

ssσ
2
s and U I

sσs directly by
the following equations.

U II
ssσ

2
s = zs

2 + (‖σ‖4∞
)
, (26)

U I
sσs = ws

2 + (‖σ‖3∞
)
, (27)

where

zs = U(as) + U(−as) − 2U0, (28)

ws = U(as) − U(−as), (29)

and from Eqs. (24–25), and (28–29), we can know that

wi = O
(
‖σ‖1∞

)
, zi = O

(
‖σ‖2∞

)
. (30)

Therefore, through Eqs. (26), (27) and (30), we can get
several parts of Eqs. (20) and (21)

U I
sU

I
s
T
σ 2
s = 1

4wsws
T + O

(‖σ‖4∞
)
, (31)

U I
sU

II
ss
T
σ 3
s = 1

4ws zsT + O
(‖σ‖5∞

)
. (32)

Substituting Eqs. (27), (31) and (32) into Eqs. (20)
and (21), we have

E(U(α)) = U0 + 1

2

q∑

s=1

zi + O
(
‖σ‖3∞

)
, (33)

Cov (U(α),U(α)) =
q∑

s=1

1

4
wsws

T

+
q∑

s=1

1

4
ws zTs ρsss +

q∑

s=1

1

4
zswT

s ρsss

+
q∑

k=1(k �=i)

q∑

i=1

q∑

j=i

U I
kσkU

II
i j
T
σiσ jρi jk

+
q∑

i=1

q∑

j=i

q∑

k=1(k �=i)

U II
i jσiσ jU I

k
T
σkρi jk +

(
‖σ‖4∞

)
, (34)

and Eq. (34), due to zs zsT = O
(‖σ‖4∞

)
, can be rewritten as

Cov(U(α),U(α))

= 1

4

q∑

s=1

(ws + zsρsss)(ws + zsρsss)T + O
(
‖σ‖3∞

)
.

(35)

In this way, it is possible to obtain the mean vector and
covariance matrix of U(α) without taking the partial deriva-
tive of K (α)with respect toαi .Meanwhile, Eqs. (34) and (35)
incorporate some terms beyond the second order that do not
exist in Eqs. (17) and (18), which makes MPSFEM more
accurate than the original scheme of PSFEM. U(±as) are
the keys to solving the above equations, which can be calcu-
lated easily by

K (±as)U(±as) = F. (36)

Obviously, Eq. (36) does not change the governing equa-
tion of FEM; it just replaces the random vector α in the
stochastic stiffness matrix K (α) with the deterministic vec-
tor ±α. This approach allows direct use of the original finite
element program, significantly saving programming time.

For the standard Gaussian random variables obtained by
K–L expansion, MPSFEM can provide higher accuracy. If
the random variables are uncorrelated and have a symmetric
joint PDF [35], there are some properties:

E(αiα jαk) = 0,

E(αiα jαkαl) =
{
E(α2

i α
2
k ) i = j, k = l

0 other
,

Cov(αi , α jαk) = Cov(αiα j , αk) = 0,

Cov(αiα jαk, αl) = E(αiα jαkαl),

Cov(αiα j , αkαl)

=
⎧
⎨

⎩

E(α2
i α

2
k ) − E(α2

i )E(α2
k ) i = j, k = l

E(α2
i α

2
j ) i = k, j = l, i �= j

0 other
. (37)

The fourth-order Taylor expansion of U(α) at the mean
can be written as

U(α) = U0 +
q∑

i=1

U I
iαi +

q∑

i=1

q∑

j=i

U II
i jαiα j

+
q∑

i=1

q∑

j=i

q∑

k= j

U III
i jkαiα jαk
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+
q∑

i=1

q∑

j=i

q∑

k= j

q∑

l=k

U IV
i jklαiα jαkαl

+
(
‖α‖5∞

)
. (38)

Therefore, for the case of uncorrelated random variables
with a symmetric joint PDF, the third-order estimate of the
mean vector and covariancematrix ofU(α) can be expressed
as

E(U) = U0 +
q∑

i=1

U II
i iσ

2
i +

q∑

i=1

UIV
i i i iσ

4
i ρi i i i

+
q∑

i=1

q∑

j=i+1

UIV
i i j jσ

2
i σ 2

j ρi i j j + O
(
‖σ‖5∞

)
, (39)

Cov(U(α),U(α)) =
q∑

i=1

(U I
iU

I
i
T
σ 2
i

+U III
i i iU

I
i
T
σ 4
i ρi i i i + U I

iU
III
i i i

T
σ 4
i ρi i i i )

+
q∑

i=1

q∑

j=1

U II
i iU

II
j j
T
σ 2
i σ 2

j (ρi i j j − 1)

+
q∑

i=1

q∑

j=i+1

(U I
iU

III
i j j

T
σ 2
i σ 2

j + U III
i j jU

I
i
T
σ 2
i σ 2

j )ρi i j j

+
q∑

i=1

q∑

j=i+1

(U I
jU

III
i i j

T
σ 2
i σ 2

j + U III
i i jU

I
j
T
σ 2
i σ 2

j

+ U II
i iU

II
i i
T
σ 2
i σ 2

j )ρi i j j + O
(
‖σ‖5∞

)
, (40)

where

ρi jkl = E(αiα jαkαl)

σiσ jσkσl
. (41)

Defining a deterministic vector bs by

bs =
⎛

⎝0, · · · , 0︸ ︷︷ ︸
s−1

,
√

ρssssσs, 0, · · · , 0︸ ︷︷ ︸
q−s

⎞

⎠. (42)

Replacing the random vector α in Eq. (38) with the deter-
ministic vectors ±bs , we have

U (bs) = U0 + U I
sσsρ

1
2
s + U II

ssσ
2
s ρssss

+ U III
sssσ

3
s ρ

3
2
ssss + U IV

ssssσ
4
s ρ2

ssss

+ O
(
‖σ‖5∞

)
, (43)

U (−bs) = U0 − U I
sσsρ

1
2
s + U II

ssσ
2
s ρssss

− U III
sssσ

3
s ρ

3
2
ssss + U IV

ssssσ
4
s ρ2

ssss

+ O
(
‖σ‖5∞

)
. (44)

By adding Eqs. (43) and (44), and subtracting Eq. (44)
from Eq. (43), the following equations can be obtained

zi
2ρssss

+ O
(
‖σ‖6∞

)
= U II

ssσ
2
s + U IV

ssssρssssσ
4
s , (45)

ws

2
√

ρssss
+ O

(
‖σ‖5∞

)
= U I

sσs + U III
sssρssssσ

3
s , (46)

noting that

zs = U (bs) + U (−bs) − 2U0, (47)

ws = U (bs) − U (−bs). (48)

Through Eqs. (45) and (46), we have

(
zs

2ρssss

)(
zs

2ρssss

)T
= U II

ssU
II
ss
T
σ 4
s + O

(
‖σ‖6∞

)
, (49)

(
ws

2
√

ρssss

)(
ws

2
√

ρssss

)T
= U I

sU
I
s
T
σ 2
s

+ U I
sU

III
sss

T
σ 4
s ρssss + U III

sssU
I
s
T
σ 4
s ρssss

+ O
(
‖σ‖4∞

)
. (50)

Substituting Eqs. (49) and (50) into Eqs. (39) and (40), we
have

E (U(α)) = U0 + 1

2

q∑

s=1

zs
ρssss

+O
(
‖σ‖4∞

)
, (51)

Cov (U(α),U(α))

= 1

4

q∑

s=1

[
wsw

T
s

ρssss
+ zs zTs

ρ2
ssss

(ρssss − 1)

]

+ O
(
‖σ‖4∞

)
. (52)

U (±bs) can be obtained easily by solving the governing
equation with ±bs

K (±bs)U (±bs) = F. (53)

Similarly, Eqs. (51) and (52) contain some higher-order
terms that do not exist in Eqs. (33) and (35), which leads to
a further improvement in accuracy.

For the coefficients ρsss and ρssss , the moment generating
function Mα(t) defined by Eq. (54) is introduced to calculate
the mean E(σsσsσs) and E(σsσsσsσs).

Mα(t) = E(etα). (54)
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If the random variable α is Gaussian,Mα(t) can bewritten
as

Mα(t) = etμ+ t2σ2
2 . (55)

Due to the random variables obtained by K–L expansion
being standard Gaussian with zero mean and unit variance,
Eq. (55) can be rewritten as

Mα(t) = e
t2
2 , (56)

there, E(σsσsσs) and E(σsσsσsσs) can be calculated by the
following equations.

E(σsσsσs) = d3Mα(t)

dt3

∣∣∣∣
t=0

=
(
3e

t2
2 t + e

t2
2 t3
) ∣∣∣∣

t=0
= 0, (57)

E(σsσsσsσs) = d4Mα(t)

dt4

∣∣∣∣
t=0

=
(
3e

t2
2 + 6e

t2
2 t2 + e

t2
2 t4
) ∣∣∣∣

t=0
= 3. (58)

Hence, for the Gaussian random field, ρsss = 0 and
ρssss = 3; Eqs. (23) and (42) can be rewritten as

as =
⎛

⎝0, · · · , 0︸ ︷︷ ︸
s−1

, 1, 0, · · · , 0︸ ︷︷ ︸
q−s

⎞

⎠, (59)

bs =
⎛

⎝0, · · · , 0︸ ︷︷ ︸
s−1

,
√
3, 0, · · · , 0︸ ︷︷ ︸

q−s

⎞

⎠. (60)

From the equations in this section, the procedures of cal-
culation of MPSFEM include 2q + 1 calculations, which is
the same as PSFEM, but does not require taking the partial
derivatives of the systemmatrix with respect to α and is more
accurate than PSFEM. Meanwhile, compared to polynomial
chaos expansion techniques, MPSFEM can directly utilize
the original computational scheme of finite element method;
and compared to non-invasive techniques, MPSFEM is rel-
atively less computationally intensive. Therefore, MPSFEM
is relatively suitable for static stochastic analysis.

4 JCmethod

JC method [44] that has been recommended by the Joint
Committee on Structural Safety (JCSS) is introduced in com-
bination with MPSFEM to calculate structural reliability.

The first step is to assume the checking points, i.e., to
assume a set of values of α∗, usually taking α∗

i = μαi , where

Fig. 1 Equivalent normalization for the non-normally distributed ran-
dom variable

α∗
i is a checking point and μαi is the mean of the random

variable αi .
Then the non-normally distributed random variables need

to be normalized; the conditions are as follows.

F
α

′
i
(α∗

i ) = Fαi (α
∗
i ) = Φ

(
α∗
i − μ

α
′
i

σ
α

′
i

)
, (61)

f
α

′
i
(α∗

i ) = fαi (α
∗
i ) = 1

σ
α

′
i

φ

(
α∗
i − μ

α
′
i

σ
α

′
i

)
, (62)

where Fαi (•) and F
α

′
i
(•) are the cumulative distribution

functions (CDF) of the random variable αi and equivalent
normalized random variable α

′
i , respectively; fαi (•) and

f
α

′
i
(•) are the probability density functions (PDF) of the ran-

dom variable αi and equivalent normalized random variable
α

′
i , respectively;μα

′
i
and σ

α
′
i
are the mean and standard devi-

ation of α
′
i , respectively; Φ(•) and φ(•) are the CDF and

PDF of the standard normally distributed random variable,
respectively.

As shown in Fig. 1, Eqs. (61) and (62)mean that the values
of the CDFs are equal and the values of the PDFs are equal
at the checking point.

The derivations of Eqs. (61) and (62) yields

μ
α

′
i
= α∗

i − Φ−1 (Fαi (α
∗
i )
)
σαi , (63)

σ
α

′
i
= φ

(
Φ−1

(
Fαi (α

∗
i )
))

fαi (α
∗
i )

, (64)

therefore, if the random variable is non-normally distributed,
μαi and σαi need to be replaced by μ

α
′
i
and σ

α
′
i
in the fol-

lowing equations in this section.
After normalizing the random variables, it is assumed that

the random variables are independent. If they are not, they
should be transformed into independent random variables by
orthogonal transformation. Then the first order Taylor expan-
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sion of the performance function of structure g(α) at the
checking points α∗ can be expressed as

Z = g(α∗) +
q∑

i=1

∂g

∂αi

∣∣∣∣
α∗

(αi − α∗
i ), (65)

hence the mean and standard deviation of Z can be written
as

μZ = g(α∗) +
q∑

i=1

∂g

∂αi

∣∣∣∣
α∗

(μαi − α∗
i ), (66)

σZ =
√√√√

q∑

i=1

(
∂g

∂αi

∣∣∣∣
α∗

σαi

)2
. (67)

By definition, the reliability index can be written as

β = μZ

σZ
= g(α∗) +∑q

i=1
∂g
∂αi

∣∣
α∗(μαi − α∗

i )√
∑q

i=1

(
∂g
∂αi

∣∣
α∗σαi

)2
. (68)

When the structure is in the limit state, the limit state
function is

Z = g(α∗) = 0, (69)

then Eq. (68) can be rewritten as

β = μZ

σZ
=
∑q

i=1
∂g
∂αi

∣∣
α∗(μαi − α∗

i )√
∑q

i=1

(
∂g
∂αi

∣∣
α∗σαi

)2
. (70)

The iterative equation for the checking point is as follows.

α∗
i = μαi + βφiσαi , (71)

where φi is the sensitivity coefficient, which is defined by

φi = − ∂g
∂αi

∣∣
α∗σαi√

∑q
i=1

(
∂g
∂αi

∣∣
α∗σαi

)2
. (72)

The calculation steps of JC method can be organized as
follows:

(1) Set the initial checking points α∗.
(2) Equivalent normalizing the non-normally distributed ran-

dom vector at α∗.
(3) Calculating the sensitivity coefficient φi by Eq. (72).
(4) Calculating the reliability index β by Eq. (70).
(5) Calculating the new checking points by Eq. (71).

(6) Substituting the new checking points into steps (2) to (5)
and the calculation is repeated until β obtained from the
two calculations is less than the specified value, then β

obtained from the last iteration is the reliability index.

The failure probability p f can be written as

p f = 1 − φ(β) = φ(−β). (73)

5 The promotions of KL-MPSM

Based on the theories in the above sections, we promote
MPSFEM to the static stochastic analysis for the plane
problem and plane frame structure, corresponding to two–
dimensional random fields and one–dimensional random
fields, respectively. In static stochastic computation, KL-
MPSM can obtain themean and variance of the displacement
of the critical node. In the reliability analysis, KL-MPSM
can provide failure probability for structural reliability eval-
uations by combining with JC method.

5.1 Static stochastic analysis for plane problems

Many engineering structures are reduced to plane problems
(plane stress problems and plane strain problems) in compu-
tation, such as deep beams, slabs, etc. In this subsection, the
computational scheme of KL-MPSM for the static stochastic
analysis of plane problems is described in detail by regarding
Poisson’s ratio as a Gaussian random field.

For plane problems, we adopt isoparametric element with
four nodes. The elastic matrix D can be expressed as

D = E

1 − v2

⎡

⎣
1 v 0
v 1 0
0 0 1−v

2

⎤

⎦, (74)

where E is Young’s modulus and v is Poisson’s ratio.
In PSFEM, the partial derivatives of the stiffness matrix

with respect to random variables are required. If Poisson’s
ratio v is regarded as a random field, the computation proce-
dures of taking the partial derivatives will involve complex
character operations, and the programming efficiency will be
significantly reduced; therefore, for the problems like this,
PSFEM is challenging to deal with; however, in KL-MPSM,
the elastic matrix D(±bi ), in which the random vector has
been replaced with the deterministic vector, can be written
as

D(±bi ) = E

1 − v∗2

⎡

⎣
1 v∗ 0
v∗ 1 0
0 0 1−v∗

2

⎤

⎦, (75)
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where v∗ = v̄ ± √
3λi fi (x, y).

Then the element stiffness matrix K e(±bi ) of KL-MPSM
in plane problem can be obtained by the integral of the
isoparametric element, which can be expressed as

K e(±bi ) =
∫ 1

−1

∫ 1

−1
BTD(±bi )Bt |J |dαdβ, (76)

where B is strain transformation matrix; t denotes thickness;
J expresses Jacobian matrix.

When Young’s modulus E is regarded as a random field,
the element stiffness matrix can be obtained similarly. Then
K e(±bi ) is assembled to obtain the global stiffness matrix
K (±bi ), and MPSFEM can get the second-order estimates
of the structural response.

For reliability analysis, considering the random variables
input by K–L expansion, the performance function of the
structure can be written as

Z = g (ξ(θ)). (77)

From Eqs. (70) and (72), we can see that the most crit-
ical parameter is the partial derivative of the performance
function with respect to the random variables at the checking
points, which can be written as ∂g

∂ξi (θ)

∣∣
ξ∗(θ)

. Equation (77)
is usually implicit, which means that ξi (θ) does not usu-
ally appear in Eq. (77), and the distribution of the structural
response random variable is often unknown. These make it
difficult to conduct equivalent normalization and solve Eqs.
(70) and (72). Therefore, an intermediate structural response
U , since performance functions are generally related to struc-
tural responses, is introduced. The equation of calculating the
partial derivative can be expanded as

∂g

∂ξi (θ)
= ∂g

∂U

∂U

∂ξi (θ)
. (78)

In this subsection, we use the displacement of the key
node to control the structural failure mode; hence, U is the
displacement of the control node. Then we assume the fol-
lowing equation.

∂U

∂ξi (θ)
= U I

i , (79)

where U I
i is the element corresponding to the control node

in the vector U I
i , and its value is independent of the value

of ξi (θ) [45]. In fact, U I
i can also be interpreted as the first-

order sensitivity of the intermediate response to the random
variable ξi (θ).

In PSFEM, U I
i can be calculated by Eq. (12) with the

partial derivative of stiffness matrix with respect to random
variable ξi (θ). The difficulties have already been discussed
in the previous sections. Whereas in MPSFEM, U I

i can be

obtained by adding and subtracting the Eqs. (24) and (25)
easily, i.e., Eqs. (27) and (29). Since the mean of ξi (θ) is 0
and standard deviation is 1, Eq. (27) can be rewritten as

U I
i = wi

2
+
(
‖σ‖3∞

)
. (80)

After that, U I
i can be determined according to the control

node from U I
i . Hence, we have

∂g

∂ξi (θ)

∣∣∣∣
ξ∗(θ)

= ∂g

∂U

∣∣∣∣
ξ∗(θ)

U I
i . (81)

The Eqs. (72), (70), and (71) can be rewritten as

φi =
− ∂g

∂U

∣∣
ξ∗(θ)

U I
i√

∑n
i=1

(
∂g
∂U

∣∣
ξ∗(θ)

U I
i

)2
, (82)

β =
g
(
ξ∗(θ)

)−∑n
i=1

∂g
∂U

∣∣
ξ∗(θ)

U I
i ξ

∗
i (θ)

√
∑n

i=1

(
∂g
∂U

∣∣
ξ∗(θ)

U I
i

)2
, (83)

ξ∗
i (θ) = βφi . (84)

Then we can get the reliability index and failure probabil-
ity of the structure by the iterative computations of Eqs. (82),
(83), and (84).

5.2 Static stochastic analysis for plane frame
structures

In the static stochastic computation for plane frame struc-
tures, beams and columns are uniformly regarded as one-
dimensional beamelements. The computation procedures are
the same as plane problems, so theywill not be repeated here.

In the reliability analysis for plane frame structures, the
simplest performance function can be written as

Z = R − S, (85)

where R denotes structural resistance, and S denotes action
effect. When the external load does not change with time, the
ultimate load Pu is the structural resistance.

In Ref. [35], Wu argued that MPSFEM could solve other
problems with the same computation scheme, and the prob-
lems hold the same governing equations form. The form of
the governing equations can be expressed as

L (Pu (ξ(θ)) , ξ(θ)) = 0. (86)
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The stochastic ultimate load Pu(ξ(θ)) can be expanded
as

Pu(ξ(θ)) = Pu0 +
q∑

i=1

P I
uiξi (θ)

+
q∑

i=1

q∑

j=i

P II
ui jξi (θ)ξ j (θ)

+
q∑

i=1

q∑

j=i

q∑

k= j

P III
ui jkξi (θ)ξ j (θ)ξk(θ)

+
q∑

i=1

q∑

j=i

q∑

k= j

q∑

l=k

P IV
ui jklξi (θ)ξ j (θ)ξk(θ)ξl(θ)

+
(
‖ξ‖5∞

)
. (87)

Using the same method referred in the Sect. 3.2, we have

E (Pu(ξ(θ))) = Pu0 + 1

2

q∑

i=1

zi
ρi i i i

+O
(
‖σ‖4∞

)
, (88)

Cov (Pu(ξ(θ)), Pu(ξ(θ)))

= 1

4

q∑

i=1

[
wiw

T
i

ρi i i i
+ zi zTi

ρ2
i i i i

(ρi i i i − 1)

]
+ O

(
‖σ‖4∞

)
.

(89)

where

zi = Pu (bi ) + Pu (−bi ) − 2Pu (b0). (90)

wi = Pu (bi ) − Pu (−bi ). (91)

In Sect. 5.1, we have discussed how to apply JC method
for reliability analysis when the distribution of the structural
response random variable is unknown. In this subsection, we
use the ultimate load to control the failure mode. In engi-
neering, in terms of the central limit theorem, no matter what
distribution the random variables obey, the ultimate load can
be approximately considered to obey lognormal distribution.
After obtaining the second-order estimates, PDF, andCDF of
Pu(ξ(θ)), the equivalent normalization is conducted to trans-
form Pu(ξ(θ)) into normal distribution, and then iterative
calculations of Eqs. (72), (70), and (71) can be performed to
obtain the reliability index. Pu(±bi ) in the above equations
can be obtained by the elastic-plastic incremental method
(step-by-step method) [46].

In the computations of elastic-plastic incremental method,
the following basic assumptions should be followed:

(1) When a plastic hinge appears in the structure, the plas-
tic zone degenerates into a section, and the rest are still
elastic zones.

Fig. 2 The geometry of the cantilever deep beam

(2) The external loads need to be converted into node loads
and act on the structure step by step in proportion; plastic
hinges only appear at the nodes.

(3) The ultimate moments of each bar are constants, and ulti-
mate moments of different bars can be different.

(4) Axial and shear forces donot affect the ultimatemoments.
(5) The material of all bars is ideal elastic-plastic.

6 Numerical examples

In this section, we compare theKL-MPSMwithMonte Carlo
finite element method and perturbation stochastic finite ele-
ment method (in the following figures, we use MCM and
PSM to represent them). The computation procedures of
MCM and PSM can be deduced based on the same idea of
KL-MPSM, and the progress will not be repeated here. The
results obtained by MCM are treated as the standard value.

6.1 The deep beamwith a two-dimensional random
field

In engineering, deep beams are often simplified as plane
problems for analysis. Figure 2 shows a cantilever deep beam
with a two-dimensional (2D) random field, and its structural
parameters are as follows.

The horizontal length is 40 cm, the vertical length is 10
cm, the left end is fixed, and the other three ends are free. The
vertical concentrated force P acts on point A, and P =1000
N. Young’s modulus of the material E = 3 × 107 N/cm2.
Set the thickness t to 1 cm. Poisson’s ratio v is assumed
to be a two-dimensional stationary Gaussian random field,
and its mean value v̄ = 0.3. The horizontal relative length
cx = 40 cm, the vertical relative length cy = 5 cm. The type
of covariance function is Gaussian, and it can be written as

C (x1, x2; y1, y2) = σ 2e−(x1−x2)2/cx 2−(y1−y2)2/cy2 .

The two-dimensional random field shown in Fig. 2 can be
discretized in two directions, and the results are combined to
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Fig. 3 Superposition of the first five order eigenvalues and eigenfunctions
√

λi fi (x) with different coefficients of variation cv

obtain the global discretization consequence. Please refer to
Ref. [23] for the exact procedures.

Firstly, the random field is discretized by K–L method,
and the first five terms of eigenvalues and eigenfunctions are
truncated. The Simulation results under different coefficients
of variation (cv) are shown in Fig. 3. In Fig. 3, we assume that
the random variable vector ξ(θ) is a unit vector and plot the
function graphs of

√
λi fi (x) by Matlab. It can be observed

that the variation degree of the random field increases sig-
nificantly with the increase of coefficient of variation cv. In
terms of the previous research, the accuracy of PSFEM will
rapidly decrease after cv reaches 0.15. Therefore, this paper
chooses to compare KL-MPSM with other methods within
the range of cv 0.05 to 0.25. The deep beam is discretized
into four elements uniformly in the horizontal direction,
and the element adopts isoparametric element with four
nodes.

In order to obtain accurate data, Latin hypercube sampling
method [47] is used in MCM to draw 20000 samples, and
the simulation results obtained by different methods with
different cv are shown in Fig. 4. Figure 4 shows that the
results of KL-MPSM and MCM are very close in the range
of cv 0 to 0.15, and KL-MPSM also maintains good accuracy
in the range of cv 0.15 to 0.25. In this numerical example,
PSM is not used for the reason that the Poisson’s ratio is
regarded as a random field, and the calculations of taking
partial derivatives involve many character operations, which
will significantly increase the difficulty of programming; at
the same time, the efficiency advantages of KL-MPSM will
not be reflected intuitively, so there is of little significance
to use PSM. Compared with PSM, KL-MPSM only needs

to replace the random vector with deterministic vectors, and
there is no need to take the partial derivatives of the stiffness
matrix. Hence the steps of KL-MPSM are straightforward
and save a lot of programming time.

In the same structure, regarding Young’s modulus as a
Gaussian random field, its mean E = 3 × 107 N/cm2,
and Poisson’s ratio v = 0.3. The other parameters remain
unchanged. The vertical displacement of point A controls
the failure mode, and the performance function is nonlinear,
which can be written as

Z = 0.0072 − (uA − ūA)2,

where uA is the vertical displacement at point A, and ūA is
the mean of uA.

In this numerical example, we use the approach for
reliability analysis proposed in 5.1. Therefore, uA is the inter-
mediate structural response. The value ofU I

1,U
I
2, andU

I
3 are

listed in Tab. 1. It can be seen that when cv is in the range of
0∼0.15, the difference in accuracy between the two meth-
ods is not large; when cv is larger than 0.15, the difference
is gradually obvious. This is because Eq. (80) contains some
higher-order terms that Eq. (12) does not, with higher accu-
racy.

Table 2 shows that the results of the three methods are
close in the range of cv 0–0.15; when cv is greater than 0.15,
the accuracy of KL-MPSM and PSM begins to decrease, and
the accuracy of KL-MPSM is slightly greater than that of
PSM. These results are consistent with the discussion for
Table 1.
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Fig. 4 Mean and standard deviation of the vertical displacement at
point A calculated by MCM and KL-MPSM with different coefficients
of variation cv

In summary, KL-MPSM is an effective tool for static
stochastic analysis of plane problems in the case of low-
level uncertainties (cv less than 0.15). When the requirement
of accuracy is not strict, it is also suitable in the case of cv
greater than 0.15.

Fig. 5 The geometry of the plane multilayer frame

6.2 The plane framewith one-dimensional random
fields

Figure 5 showsaplanemultilayer framewithone-dimensional
random fields, and its structural parameters are as follows.

The span is 4 m; the story height is 3 m; the section
area of columns Ac = 0.35 × 0.35 m2, and the moment
of inertia Ic = 1.25 × 10−3 m4; the section area of beams
Ab = 0.35 × 0.6 m2, and the moment of inertia Ib =
6.3 × 10−3 m4; concentrated forces P = 20 KN act on
vertexes of left columns. The uniform load q acts on each
beam, and q = 100 KN/m. Young’s modulus of the material
is regarded as a Gaussian random field on each component.

Table 1 The first-order sensitivity of the intermediate response U to the random variable ξ1(θ), ξ2(θ), and ξ3(θ) calculated by KL-MPSM and
PSM with different coefficients of variation cv

cv KL-MPSM PSM

U I
1(×10−4) U I

2(×10−6) U I
3(×10−4) U I

1(×10−4) U I
2(×10−6) U I

3(×10−4)

0.05 − 1.982 0.865 0.625 − 1.983 0.864 0.625

0.10 − 3.978 1.733 1.252 − 3.961 1.728 1.250

0.15 − 6.000 − 2.607 − 1.880 − 5.941 − 2.593 − 1.875

0.20 − 8.062 3.490 2.511 − 7.921 3.457 2.500

0.25 − 10.179 − 4.387 3.146 − 9.901 − 4.321 3.126
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Table 3 The parameters of the column and beam random fields in the
static stochastic computation

Parameters Column Beam

Covariance function Exponential Gaussian

Mean value(N/m2) 2.1 × 1011 2.1 × 1011

Relative length (m) 1 2

K–L terms 13 3

Wavelet coefficient 9 9

The beams and columns work in different conditions, and
various external factors influence them; therefore, the random
fields are independent. The parameters of the random fields
are shown in Table 3.

In this kind of problemwith multiple independent random
fields, the randomfields should be discretized independently;
after that, the random variables obtained are combined
into a random vector, then substituting the random vector
into MPSFEM and JC method. The plane multilayer frame
contains 20 independent randomfields, and 180 randomvari-
ables are obtained according to the K–L terms. The random
variables can be divided into

ξC1 (θ) = {ξ1(θ), · · · , ξ13(θ)
}
,

· · · ,

ξC12(θ) = {ξ144(θ), · · · , ξ156(θ)
}
,

ξB1 (θ) = {ξ157(θ), ξ158(θ), ξ159(θ)
}
,

· · · ,

ξB8 (θ) = {ξ178(θ), ξ179(θ), ξ180(θ)
}
,

where ξCi (θ) and ξBi (θ) denote the random vectors of column
and beam random fields, respectively.

Combining these random vectors together to obtain

ξ(θ) = {ξC1 (θ), · · · , ξC12(θ), ξB1 (θ), · · · , ξB8 (θ)
}

= {ξ1(θ), ξ2(θ), · · · , ξ180(θ)
}
, (92)

and then substituting ξ(θ) into MPSFEM and JC method.
Since the random fields are independent, cv can also be

different. However, in this example, in order to compare the
results conveniently, cv of each random field is the same.
Latin hypercube sampling method is used in MCM to draw
20,000 samples. The mean and standard deviation of the hor-
izontal displacement at point A are shown in Fig. 6.

Figure 6 shows that the application range and accuracy
superiority of KL-MPSM is consistent with the example of
the deep beam, and the feasibility of KL-MPSM is further
verified. From the results, KL-MPSM still maintains good
accuracy in the case that random fields hold different types of
covariance functions,while the accuracy of PSMshows a sig-
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Fig. 6 Mean and standard deviation of the horizontal displacement
at point A calculated by MCM, KL-MPSM, and PSM with different
coefficients of variation cv

nificant decrease. Therefore, this numerical example proves
that KL-MPSM has good accuracy and applicability in the
static stochastic computation for plane frame structures.

Next, introduce the yield strength of the material to
compute the ultimate load Pu of the structure, and then
the reliability analysis is conducted. The yield strength is
treated as Gaussian random fields; the parameters of the ran-
dom fields are shown in Table 4. Young’s modulus E =
2 × 1011 N/m2, the other structural parameters remain
unchanged. In order to demonstrate the feasibility of KL-
MPSM for reliability analyses of plane frames, the reliability
index and failure probability are computed byMCMandKL-
MPSM, respectively. For KL-MPSM, since the distribution
of the responses is known, we use the method proposed in
Sect. 5.2. The performance function can be written as

Z = R − 1550000.

Table 4 The parameters of the column and beam random fields in the
reliability analysis

Parameters Column Beam

Covariance function Gaussian Gaussian

Mean value (Pa) 3 × 108 3 × 108

Relative length (m) 1 2

K–L terms 3 3

Wavelet coefficient 9 9

Fig. 7 Mean and standard deviation of the structural resistance calcu-
lated by MCM and KL-MPSM with different coefficients of variation
cv

According to the basic assumptions, plastic hinges only
appear at nodes. Therefore, it is necessary to re-discretize
the structure and add nodes at the midpoint of beams. In
this example, it is assumed that the vertical uniform loads
are permanent loads and do not change, and the horizontal
load is applied step by step until the structure is destroyed.
The ultimate horizontal load obtained finally is the ultimate
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Table 5 The reliability index and failure probability of the plane multilayer frame calculated by MCM and KL-MPSM with different coefficients
of variation cv

cv MCM KL-MPSM

Reliability index Failure probability (%) Reliability index Failure probability (%)

0.05 1.886 2.964 1.888 2.951

0.10 0.946 17.216 0.930 17.617

0.15 0.635 26.256 0.605 27.274

0.20 0.475 31.736 0.437 33.099

0.25 0.371 35.538 0.333 36.954

load, that is, the structural resistance. The mean and standard
deviation of R are shown in Fig. 7; the reliability index and
failure probability are listed in Table 5.

In this example, PSM cannot compute the second-order
estimates of the ultimate load, but KL-MPSM, due to its
versatility, can handle this type of problem easily. The results
further validate the previous viewpoint that KL-MPSM is an
effective tool for static stochastic analysis in the case of low-
level uncertainties.

7 Conclusion

In this paper, KL-MPSM is proposed, which combines the
features of K–L expansion and MPSFEM for static stochas-
tic analysis of structures with low-level uncertainties. Static
stochastic analysis involves static stochastic computation and
reliability analysis. In the reliability analysis, JC method is
introduced to calculate the reliability index and failure prob-
ability by utilizing the second-order estimates obtained by
KL-MPSM. The presented computational scheme is pro-
moted to two directions, i.e., plane problems and plane frame
structures, corresponding to two-dimensional random field
and one-dimensional random field problems, respectively.
In the numerical examples, the results obtained by MCM
are treated as standard values to compare with KL-MPSM,
and PSM is also introduced to verify the accuracy and effi-
ciency superiorities of KL-MPSM. Therefore, conclusions
are obtained as follows:

(1) In the static stochastic analysis of structures with low-
level uncertainties, KL-MPSM has an advantage over
PSM in accuracy.

(2) The programs of KL-MPSM can be done without char-
acter operations easily, and KL-MPSM can save a lot of
CPU computation time compared to MCM.

(3) KL-MPSM has a much broader scope of application than
PSM and can be promoted to the stochastic analysis of a
wide range of problems.

(4) KL-MPSM is an effective tool for static stochastic anal-
ysis.

However, this paper also has shortcomings, such as the
Gaussian assumption is not rigorous for the material elas-
tic field [48–52]. Therefore, the main research direction in
the subsequent work of KL-MPSM should be to promote it
to deal with non-Gaussian random fields. For some simple
non-Gaussian random fields, Refs. [21] and [22] can pro-
vide some basis; and for the case that the variables obtained
by K–L expansion are generally dependent and defined by a
probability measure that is unknown a priori, Wu provides
a scheme for transforming correlated random variables into
uncorrelated random variables [35]. The above ideas should
be tried in the subsequent work.
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28. Kamiński M (2010) Potential problems with random parameters
by the generalized perturbation-based stochastic finite element
method. Comput Struct 88(7–8):437–445
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