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Abstract
An isogeometric large-deformation continuum shell formulation incorporating finite strain elastoplasticity is presented in this
work. The proposed method is based on the multiplicative decomposition of the deformation gradient into the elastic and
plastic contributions in a total Lagrangian framework. The standard return mapping algorithm with the backward Euler time
integration technique is adopted to solve the 3D elastoplastic constitutive equations. The classical J2 von Mises plasticity
model with isotropic hardening is implemented to describe the nonlinear material behavior. The results of several benchmark
studies are illustrated to showcase the computational accuracy and solution robustness of the proposed formulation.

Keywords Isogeometric analysis · Finite strain multiplicative plasticity · Continuum shell · Large deformation · Elastoplastic
analysis

1 Introduction

Many real-world engineering structures can be categorized
as thin-walled applications, and engineers often rely on com-
putationally efficient shell elements to perform an initial
analysis and determine the load-carrying capacity of the
structure. While the linear elastic shell analysis is adopted
in many cases, it is often insufficient due to the large-
deformation nature of the problem or the nonlinear material
behavior as a result of locally concentrated loading. In the lat-
ter, a high-fidelity elastoplastic constitutive model is needed
to accurately capture the material degradation. An example
of such a scenario encountered in engineering is low-cycle
fatigue analysis, which deals with stresses beyond yielding
and sophisticated material behaviors such as hardening. In
such cases, a plasticity coupled shell analysis is required.

The incorporation of finite-to-large strain elastoplastic
constitutive models into shell formulations is very challeng-
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ing, and a variety of research efforts has been devoted to
the advancement in this subject. In the modeling of the
elastoplastic material response using thin shells (e.g., of the
Kirchhoff–Love (KL) shell type), two approaches are typi-
cally adopted, one being the deployment of integration points
in the through-thickness direction of the shell body and the
use of 3D stress-based elastoplastic material models [1–8],
and the other being the employment of stress resultant based
plasticity models in which the constitutive material relations
are directly formulated towards obtaining the stress resultants
[9–14].While the latter extends the 2D geometric description
into constitutive models and seems to be a more straightfor-
ward path to take, the derivation of the inelastic constitutive
models directly for stress resultants is rather complicated,
even for the simplest case of J2 plasticity. The level of com-
plexity arises when hardening is involved, leading to the
so-called Ilyushin–Shapiro constitutive relations [13]. Due
to the difficulties in the mathematical derivation and numer-
ical implementation, researchers are widely in favor of the
stress-based approach, where 3D plasticity models for solids
with standard return mapping algorithms are directly appli-
cable.

Although thin shell elements [15] are computationally
efficient, they sometimes do not suffice in the complex struc-
tural design and analysis workflow, mainly due to the need to
acquire 3D high-fidelity strains and stresses in order to com-
prehensively evaluate the structural integrity and multiaxial
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fatigue life [16,17]. This, in turn, gives rise to the develop-
ment of shell formulations of the continuum type [18–23]
and the blended type [24–28], which features accurate pre-
dictions of the full 3D strain and stress tensors, including
the components in the transverse directions and through the
thickness of the shell body. Worth mentioning is a recently
developedblended shell formulation [24–26] that couplesKL
shells and continuum shells in a non-matching and nonlin-
ear analysis setting so that it can compute accurate 3D strains
and stresseswithout compromising computational efficiency.
The primary advantage of using continuum shells over solids
to obtain high-fidelity 3D strains and stresses of thin-walled
structures arises from the efficiency in the geometric model-
ing process. The continuum shells are formulated based on
a reference surface, and therefore only the surface modeling
of a thin-walled structure is needed. This greatly simplifies
the modeling procedure compared to using solid elements,
where a full 3D description of the geometry is required. An
added benefit of the continuum shell approach is that it signif-
icantly eases the couplingmechanism betweenKL shells and
the solid-like counterpart, since both are formulated under
curvilinear coordinates with analogous definitions of surface
tangential and normal vectors. More details of the coupling
formulation can be found in Liu et al. [24].

As is commonly an issue in the analysis group, the pro-
cess of geometry repair and the generation of an approximate
finite elementmesh from computer-aided design (CAD) con-
sume the majority of the analysis time. This primarily results
from the use of different technologies between the design
and analysis parties and constitutes a major bottleneck to
the interoperability between CAD and finite element analy-
sis (FEA) technologies. Driven by the need in design and
analysis alike, the advent of isogeometric analysis (IGA)
[29] bridges the gap in the sense that it uses the same high-
order spline basis functions to represent the original geometry
and the physics-based solution fields in analysis. Moreover,
the high-order continuities of splines offer other significant
benefits beyond the perspective of exact geometric repre-
sentations, such as the straightforward implementation of
high-order differential operators [30–34], as is the case of
Kirchhoff–Love thin shell formulations where C1 global
smoothness is required [35–42]. Additionally, it has been
shown that the use of spline-based IGA provides signif-
icantly improved per-degree-of-freedom solution accuracy
over standard FEA [27,31,43–52], and the IGA approach
has since been used to solve the most challenging science
and engineering problems [53–83]. Nevertheless, the devel-
opment with regards to IGA-based plastic shell formulations
has been rare. This includes a recently proposed isogeomet-
ric stress-based elastoplastic KL shell formulation with the
plane stress assumption imposed in an iterative fashion [1,2]
and later applied to multi-patch analysis [84]. In addition, an
isogeometric solid shell element formulated in an updated

Lagrangian framework has been presented with emphasis on
locking alleviation by resorting to the assumed natural strain
technique [85], where the applied plasticity model pertains
to the small strain regime.

The primary aim of this work is to extend the isogeometric
large-deformation continuum shell formulation presented in
Liu et al. [18] to the finite strain plasticity regime. The mul-
tiplicative decomposition of the deformation gradient into
the elastic and plastic parts, along with the classical J2 von
Mises plasticity with isotropic hardening [86], is adopted in
a total Lagrangian framework. The standard backward Euler
time integration scheme with return mapping is employed to
solve the 3D elastoplastic constitutive equations.

This paper is organized as follows. In Sect. 2, we briefly
review the isogeometric large-deformation continuum shell
formulation. In Sect. 3, the finite strain plasticity model,
along with details on the numerical implementation aspects,
is given. A discussion on the adopted J2 plasticitymodelwith
isotropic hardening is also included. The proposed formula-
tion is then applied in Sect. 4 to a variety of benchmark tests
to demonstrate its accuracy and robustness. Finally, Sect. 5
concludes the paper with some remarks.

2 Isogeometric continuum shell formulation

We start the derivation by briefly introducing the isogeomet-
ric large-deformation continuum shell formulation [18,24].
In the following, we use italic letters (e.g., a, A) to represent
scalars, lowercase bold letters (e.g., a) to represent vectors,
and uppercase bold letters (e.g.,A) to represent second-order
tensors.We refer the geometric variables denoted by ˚(·) to the
reference (i.e., undeformed) configuration. Compact nota-
tions are used only when convenient for the presentation of
general equations, while the detailed derivations are written
in index notation. The Latin indices such as i, j, k, and l take
on values of {1, 2, 3}, and the Greek indices such as α and β

take on values of {1, 2}; summation convention of repeated
indices is employed unless otherwise stated.

We describe a material point within the shell body
in the reference configuration Ω0 by its position vector
x̊ (ξ1, ξ2, ξ3), with ξ1 and ξ2 the convective curvilinear
coordinates in the in-plane directions, and ξ3 the through-
thickness coordinate of the parameter space P (cf. Fig. 1).
Taking the bottom surface of the continuum shell as the ref-
erence surface, the undeformed position vector can be further
described using the projected point at the bottom surface, r̊,
and the unit thickness director normal to the shell bottom
surface, å3,

x̊ (ξ1, ξ2, ξ3) = r̊ (ξ1, ξ2) + ξ3å3 (ξ1, ξ2) , (1)
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Fig. 1 A schematic view of the
mapping between the
parametric, reference (i.e.,
undeformed) and current (i.e.,
deformed) configurations F = 
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where ξ3 ∈ [0, t] and t denotes the total thickness of the
shell. We denote åα = r̊,α as the in-plane base vectors of the
bottom surface in the reference configuration, where (·),α =
∂(·)/∂ξα . The unit normal vector å3 can then be derived as

å3 = å1 × å2
‖å1 × å2‖ . (2)

In order to describe the motion of an arbitrary material
point in the continuum shell body, it is convenient to define a
set of covariant base vectors. Specifically, the base vectors at
any point in the original shell configuration can be expressed
as g̊i = x̊,i , with (·),i = ∂(·)/∂ξi , and further expanded as

g̊α = åα + ξ3å3,α , (3)

g̊3 = å3. (4)

Having defined the covariant base vectors, their dual base
vectors (i.e., the contravariant base vectors) can be computed
according to the Kronecker delta relation, g̊i · g̊ j = δ

j
i . The

position vector x (ξ1, ξ2, ξ3) in the current configuration Ω

can be related to the reference position vector x̊ through the
displacement vector u, i.e., x = x̊+u. The deformed covari-
ant base vectors can then be written as

gi = x,i = g̊i + u,i . (5)

Finally, we arrive at the deformation gradient between the
reference and current configurations in a total Lagrangian

framework, F = gi ⊗ g̊i , from which the Green–Lagrange
strain tensor can be easily computed as

E = 1

2

(
FTF − I

)
, (6)

with I the second-order identity tensor. Let gi j = gi · g j
be the metric coefficients of the first fundamental form. The
Green–Lagrange strain tensor then becomes

E = 1

2

(
gi j − g̊i j

)
g̊i ⊗ g̊ j = Ei j g̊

i ⊗ g̊ j
. (7)

where the specific strain component Ei j can be computed
based on the reference local covariant vectors and the current
displacement derivatives as

Ei j = 1

2

(
g̊i · u, j + g̊ j · u,i + u,i · u, j

)
. (8)

Equation (7) essentially describes the variation of surface
metric tensors due to structural deformation.

With the Green–Lagrange strain tensor at hand, the ener-
getically conjugate second Piola–Kirchhoff stress tensor S
can be obtained based on the adopted hyperelastic-based
plasticity model, as elaborated in the next section. Note that,
since material models are typically formulated with respect
to the Cartesian coordinate system, the above strain tensor
needs to be transformed from the curvilinear system to the
element local system

Ee
i j = Ekl

(
g̊k · ei

) (
g̊l · e j

)
, (9)
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where Ee
i j are the coefficients of the Green–Lagrange strain

tensor with respect to the local Cartesian base vectors defined
as

e1 = g̊1
‖g̊1‖

, e2 = g̊2 − (
g̊2 · e1

)
e1

‖g̊2 − (
g̊2 · e1

)
e1‖ , e3 = e1 × e2.

(10)

Transformations of the stress tensor S and the deformation
gradient F follow in an analogous fashion.

It is now straightforward to arrive at the variational for-
mulation of the isogeometric continuum shell based on the
principle of virtual work, in which the contribution of the
body force is neglected for brevity:

δW =δW int − δW ext=
∫

Ω0

δE : S dΩ0−
∫

Γ h
0

δu ·h dΓ h
0 =0 ,

(11)

where W , W int and W ext represent the total, internal and
external work, respectively, δ denotes the variation with
respect to the virtual displacement variable δu, Ω0 is
the shell volume in the reference configuration, dΩ0 =√
det

(
g̊i j

)
dξ1dξ2dξ3, h is the surface traction, and Γ h

0 is the
reference boundary to which h is applied.

An incremental iterative solution scheme (e.g., cylindrical
arc-length control [87]) can be adopted to solve the above
nonlinear system, in which the derivation of the tangential
stiffness necessitates the linearization of the internal work

DδW int =
∫

Ω0

(δE : �DE + DδE : S) dΩ0. (12)

Additional details of the formulation and numerical imple-
mentation aspects can be found in Liu et al. [18,24].

3 Finite strain hyperelastic-based plasticity

The adopted finite strain hyperelastic plasticity model is
based on the framework of multiplicative decomposition
of the deformation gradient into the elastic and plastic
contributions and the concept of intermediate stress-free
configurations [88,89]. To describe the plastic flow and non-
linear material response, the classical 3D J2 von Mises
rate-independent plasticity model along with isotropic hard-
ening is employed.

According to the notion of an intermediate stress-free con-
figuration, the deformation gradient F is decomposed as

F = FeFp , (13)

where Fe and Fp denote the elastic and plastic contributions
of the deformation gradient, respectively. This decomposi-
tion can be regarded as a purely plastic deformation to an
intermediate stress-free configuration, based on which the
elastic response can be characterized.

Following the decomposition described in Eq. (13), the
elastic left and plastic right Cauchy–Green (CG) deformation
tensors are introduced respectively as

be = Fe (
Fe)T , Cp = (

Fp)T Fp . (14)

A crucial relationship can be found by rearranging Eqs. (13)
and (14), which yields an alternative expression of the elastic
left CGdeformation tensorbe as a function of the plastic right
CG deformation tensor Cp,

be = F
(
Cp)−1 FT . (15)

Equation (15) dictates that the elastic deformation can be
related to the plastic deformation through the deformation
gradient. The rate of the elastic left CG deformation tensor,
denoted as Ċ

p
, is then written in Lie derivative form as

Lvbe = F
(
Ċ
p
)−1

FT . (16)

Wedescribe the total free energy in the formof the summa-
tion of the elastic and plastic strain energies in the following
form

Φ
(
be, J e, α

) =Φe (
be, J e

) + Φp (α)

=
∫

Ω0

(
Ψ e (

be, J e
) + Ψ p (α)

)
dΩ0 , (17)

where the elastic strain energy densityΨ e is defined in terms
of the elastic left deformation tensor be and the determinant
of the elastic deformation gradient J e, J e = det[Fe], and the
plastic strain energy density Ψ p is expressed as a function
of the internal hardening variable α in the case of isotropic
hardening.

For the elastic description of the adopted elastoplastic
model, we employ a material model of the isotropic hyper-
elastic type to describe the material behavior, of which the
elastic strain energy density Ψ e can be further split into the
volumetric (i.e., shape preserving) and deviatoric (i.e., vol-
ume preserving) contributions as

Ψ e = Ψ e
vol + Ψ e

dev , (18)

where

Ψ e
vol = κ

2

(
(J e)2 − 1

2
− lnJ e

)
, (19)
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Ψ e
dev = μ

2

(
tr

[
b̂
e
]

− 3
)
, (20)

with tr[·] denoting the trace of a matrix, b̂
e = (J e)−2/3be,

κ and μ being the bulk and shear moduli of the material,
respectively. From the derived elastic strain energy density
function Ψ e, the Cauchy stress σ can be directly computed
[90] as

σ = 2J−1
(

∂Ψ e
vol

∂be
+ ∂Ψ e

dev

∂be

)
be

= J−1
(κ

2

(
J 2 − 1

)
I + μdev

[
b̂
e
])

= J−1 (τ vol + τ dev) , (21)

where dev [·] = [·] − 1
3 tr [·] I, τ vol and τ dev are the volu-

metric and deviatoric parts of the Kirchhoff stress tensor τ ,
respectively. We emphasize that plastic flow is isochoric in
vonMises plsticity, and thus J = J e. Accordingly, the super-
script ‘e’ is neglected for brevity. Subsequently, the second
Piola–Kirchhoff stress used in the isogeometric continuum
shell formulation can be computed according to the pull-back
operation

S = JF−1σF-T . (22)

In terms of the plastic deformation, we employ the clas-
sical Mises–Huber yield criterion, which is defined as a
function of the deviatoric Kirchhoff stress τ dev,

f (τ dev, α) = ‖τ dev‖ −
√
2

3
k (α) , (23)

where k (α) is the hardening function.
The associative flow rule emerging from the theory of

maximum plastic dissipation can be expressed as

(
Ċ
p
)−1 = −2

3
γ tr

[
be

]
F−1nF-T , (24)

where γ is the plasticmultiplier and n = τ dev/‖τ dev‖.More-
over, the evolution of the yield stress is characterized by the
rate of the hardening variable, which is defined as

α̇ =
√
2

3
γ . (25)

TheKarush–Kuhn–Tucker (KKT) conditions are employed
to govern the loading/unloading conditions

γ ≥ 0 , f (τ dev, α) ≤ 0 , γ f (τ dev, α) = 0 . (26)

In order to solve the above elastoplastic constitutive equa-
tions, we utilize a backward Euler time integration technique

alongwith a standard returnmapping algorithm. The detailed
implementation is summarized in Tables 1 and 2.

4 Numerical examples

In this section, we select a number of challenging bench-
mark examples in the realm of finite-to-large strain plasticity
to demonstrate the accuracy and robustness of the present iso-
geometric elastoplastic continuumshell formulation.Bicubic
NURBS are utilized to represent the in-plane geometries, and
quadratic B-splines with a single element discretization are
used to describe the through-thickness kinematics of the con-
tinuum shell. A total of p + 1 Gaussian points are used in
each direction for the integration of the governing equations,
with p the polynomial order of the employed spline basis. A
displacement-controlled algorithm is employed to iteratively
solve the first two problems, while a cylindrical arc-length
control algorithm [87] is adopted for the solution of the third
problem. All the numerical examples were simulated on a
hierarchical set of meshes, whereas only the meshes for the
converged solutions were demonstrated.

4.1 Rectangular plate under uniaxial tension

The first benchmark example investigated here is concerned
with the classical rectangular plate model subjected to uni-
axial tension [1,2,91], which is used to test the formulation
under plane stress necking. As illustrated in Fig. 2, the
total length and width of the plate are L = 50 mm and
W = 10 mm, respectively, and the thickness is t = 1
mm. The plate is fixed at one end and subjected to uniax-
ial tension at the other end. The material model employed is:
Young’s modulus of E = 1.89 × 105 MPa, Poisson’s ratio
of ν = 0.29, and a nonlinear isotropic hardening model of
k(α) = 343 + (680 − 343)(1 − e−16.93α) + 300α. Due to
symmetry, only a quarter of the plate is modeled. A mesh of
250 elements (i.e., 25 in the length direction and 10 in the
width direction) is used to obtain the final solution.

The norm of the displacement vector divided by the total

number of control points, Unorm =
√

UTU
ncp

, is recorded to

quantitatively assess the accuracy of the present formula-
tion. The obtained load-displacement curve is comparedwith
the reference data [1,2] and plotted in Fig. 3, where a very
good agreement is reached. Figure 4 displays the evolution
of the hardening variable α on the deformed plate at sev-
eral stages of the loading process. It can be seen that, once
the material enters the yielding zone and before the ultimate
strength is reached, plasticity initiates at the corners and the
plate deforms uniformly as the plastic strain accumulates.
At a certain stage after the ultimate strength is reached, the
plastic strain starts to concentrate at the plate center where
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Table 1 The solution scheme of
the J2 plasticity constitutive
equations based on return
mapping and backward Euler
time integration

(1) Elastic predictor stage: given
(
Cp
n
)−1

, αn and Fn+1

F̃n+1 = J−1/3
n+1 Fn+1 Jn+1 = det [Fn+1]

b̃
e,trial
n+1 = F̃n+1

(
Cp
n
)−1

F̃
T
n+1

τ trial
dev,n+1 = μdev

[
b̃
e,trial
n+1

]
τ trial
vol,n+1 = κ

2

(
J 2n+1 − 1

)
I

(2) Check yielding conditions:

if f trn+1 = ‖τ tr ial
dev,n+1‖ −

√
2
3 k (αn) ≤ 0 then

set (·)n+1 = (·)trialn+1 and exit

else go to the plastic corrector stage (3)

(3) Plastic corrector:

Solve for �γ ≥ 0 from the equation below

f trialn+1 = ‖τ tr ial
dev,n+1‖ −

√
2
3 k

(
αn +

√
2
3�γ

)
− 2

3�γμtr
[
b̃
e,trial
n+1

]
= 0

Update state variables

τ vol,n+1 = τ trial
vol,n+1

τ dev,n+1 = τ trial
dev,n+1 − 2

3�γμtr
[
b̃
e,trial
n+1

]
ntrialn+1

σ n+1 = 1
J

(
τ vol,n+1 + τ dev,n+1

)

b̃
e
n+1 = b̃

e,trial
n+1 − 2

3�γ tr
[
b̃
e,trial
n+1

]
ntrialn+1

(
Cp
n+1

)−1 = (
Cp
n
)−1 − 2

3�γ tr
[
b̃
e,trial
n+1

]
F−1
n+1n

trial
n+1F

-T
n+1

αn+1 = αn +
√

2
3�γ

Calculate the fourth-order consistent elastoplastic tangent moduli � (see Table 2)

Table 2 The solution algorithm
for the fourth-order consistent
elastoplastic tangent moduli �

(1) Scaling factors:

μ̃ = 1
3μtr

[
b̃
e
]

β0 = 1 + k′
3μ̃ β1 =

(
1 − 1

β0

)
2
3

‖τ trial
dev,n+1‖
μ̃

�γ

β2 = 2μ̃�γ

‖τ trial
dev,n+1‖

β3 = 1
β0

− β2 + β1 β4 =
(

1
β0

− β3

) ‖τ trial
dev,n+1‖
μ̃

(2) Spatial hyperelasticity tensor Ce,trial
n+1 :

II := fourth-order symmetric identity tensor

IId = II − 1
3 I ⊗ I

C
e,trial
vol,n+1 = κ

(
J 2I ⊗ I − (

J 2 − 1
)
II

)

C
e,trial
dev,n+1 = 2μ̃IId − 2

3

(
τ trial
dev,n+1 ⊗ I + I ⊗ τ trial

dev,n+1

)

C
e,trial
n+1 = J−1

(
C
e,trial
vol,n+1 + C

e,trial
dev,n+1

)

(3) Spatial consistent elastoplastic tangent moduli Cn+1:

n = ntrialn+1

Cn+1 = J−1
(
C
e,trial
vol,n+1 + (1 − β2)C

e,trial
dev,n+1 − 2μ̃β3n ⊗ n − 2μ̃β4

(
n ⊗ dev

[
n2

])sym)

(4) Material consistent elastoplastic tangent moduli �n+1:

�n+1 = JF−1
n+1F

−1
n+1Cn+1F

−1
n+1F

−1
n+1

necking forms and branches out to the free edges until ulti-
mate failure. Note that the proposed formulation is based on
the theory of local plasticity, and therefore the results at the
necking zone may be sensitive to the mesh density due to the

significant softening in that region. In cases where solution
singularity is expected, nonlocal gradient plasticity models
are recommended [92] to alleviate this issue.
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Fig. 2 The geometry and problem setup of the rectangular plate under
uniaxial tension. Due to symmetry, only a quarter of the plate ismodeled

4.2 Tensile hollow cylinder

The second numerical example considered here is a hollow
cylinder model that is fixed at one end and subjected to uni-

Fig. 3 The load–displacement curve of the tensile plate problem

axial displacement increment at the other end. The same
material properties are used as in the first numerical exam-
ple. Only one octant of the cylinder is modeled leveraging on
symmetry and discretized with a total of 500 elements (i.e.,
20 elements in the circumferential direction and 25 elements
in the length direction). The geometric details and problem
setup can be found in Fig. 5.

The effective stress, defined as the applied force divided
by the cross-sectional area of the cylinder, is plotted against
the displacement norm Unorm in Fig. 6, where the obtained
results agree very well with the reference solutions [1,2]. The
evolution of the internal hardening variable at different load-
ing stages is demonstrated in Fig. 7. Similar to the findings in
the rectangular plate example, necking occurs at the central

Fig. 5 The geometry and problem setup of the hollow cylinder. Due to
symmetry, only one octant of the cylinder is modeled

Fig. 4 The contour plots of the
hardening variable α at various
stages of the loading process in
the tensile plate benchmark
problem. The hardening variable
α is evaluated at the midsurface
for visualization
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region of the cylinder when the ultimate strength is reached
and accounts for the final failure of the model.

4.3 Pinched hemisphere

The pinched hemisphere problem at large elastoplastic defor-
mations is one of the most challenging benchmark examples
in both material and geometrically nonlinear shell analy-
sis and has been investigated by a variety of research work
[1,9,13,85,93,94], to name a few. The radius and thickness of
the hemisphere are R = 100mmand t = 5mm, respectively.
The applied material model is: Young’s modulus of E = 100
N/mm2, Poisson’s ratio of ν = 0.2, and a linear isotropic
hardening model of k(α) = 2 + 30α. The hemisphere is
subjected to two sets of inward and outward opposing point
forces of P = 35 N at the bottom, respectively. Leveraging

Fig. 6 The load–displacement curve of the hollow cylinder problem

on symmetry, only a quarter of the hemisphere is modeled.
The detailed geometry and problem setup, aswell as themesh
corresponding to a total of 256 NURBS elements used for
analysis, can be found in Fig. 8.

The loading/unloading response of the hemisphere is stud-
ied. The load–displacement relationship at points A and B in
Fig. 8 is plotted in Fig. 9 along with comparisons to the refer-

Fig. 8 Pinched hemisphere problem setup and the corresponding mesh
used in analysis. The radial displacements at pointsA andBare recorded

Fig. 7 The contour plots of the hardening variable α at various stages of the loading process in the hollow cylinder problem. The hardening variable
α is evaluated at the midsurface for visualization
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Fig. 9 The load–displacement curves of the pinched hemisphere prob-
lem

ence results obtained from Başar and Itskov [93], Ambati et
al. [1], and Alaydin et al. [2], where a satisfactory agreement

is observed. The evolution of the internal hardening variable
α is also illustrated in Fig. 10 at various loading/unloading
stages for demonstration purposes. As expected, the plastic
strain is localized in the vicinity of the points where exter-
nal forces are applied and retains itself permanently during
unloading.

5 Conclusion

In this work, a large-deformation isogeometric continuum
shell formulation that incorporates the theory of finite strain
plasticity is developed in a total Lagrangian framework. The
key characteristic of the method is the multiplicative decom-
position of the deformation gradient into the elastic and
plastic parts to properly model plasticity at the finite strain
regime. The standard return mapping algorithm and the clas-
sical J2 von Mises plasticity model with nonlinear isotropic
hardening are implemented for demonstration. A number of
numerical benchmarks are used for testing and the obtained
results are compared with published data in literature, which
proves the solution accuracy of the present formulation. The

Fig. 10 The contour plots of the hardening variable α at various stages of the loading/unloading process in the pinched hemisphere benchmark.
Contours (a)–(c) are from the loading stage and contours (d)–(f) are from the unloading stage. The hardening variableα is evaluated at themidsurface
for visualization
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proposed formulation enables us to obtain high-fidelity 3D
strains and stresses in the finite strain plasticity regime while
requiring only the surfacemodeling of thin-walled structures,
which greatly reduces the complexity of the geometric mod-
eling process.

The main limitations of the present formulation are that
it is rather computationally expensive to solve problems
with severe localized plasticity, as compared to computation-
ally efficient KL shell formulations. The reasons are mainly
twofold. For one thing, the present isogeometric continuum
shell is essentially a solid formulated under curvilinear coor-
dinates, whose solution requires significant computational
resource. While not pursued in the current study, reduced
quadrature schemes can be used for computational sav-
ing. For another, these solid-like formulations are prone to
locking issues, especially in the modeling of thin-walled
structures. While it is out of the scope of the current study,
locking mitigation strategies are recommended to be used
together with the present formulation. We plan to address
these limitations in future work.

To summarize, although continuum shells are compu-
tationally costly compared to KL shells, the ability to
accurately compute 3D stresses is clearly a significant advan-
tage in structural failure analysis. It is envisioned that the
developed large-deformation elastoplastic continuum shell
formulation can be used in a blended shell [24–26] setting
where critical structural components with yielding can be
modeled using the developed continuum shells for accurate
3D stress prediction and other less critical structural com-
ponents can be modeled using KL shells for computational
efficiency.
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