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Abstract
Structural beam elements are computationally efficient in modelling slender structures. However, they require homogenised
material models and computational homogenisation for such elements is complex because it involves higher order kinematics.
A Direct FE2 homogenisation model for shear-flexible beam elements that is based on the more versatile Timoshenko-
Ehrenfest beam theory is presented. Beyond conventional Euler–Bernoulli beam kinematics, an independent shear angle
needs to be imposed onto the heterogeneous microscale RVE to govern the microscale shear deformation. It is shown that
this can be achieved using an integral constraint involving the moments of axial displacement. With the proposed model, the
multiscale analysis can be implemented on commercial FE codes completely as a pre-processing step. Examples presented
to demonstrate the performance of the proposed model include 2D and 3D models of fibre reinforced composite beams with
material nonlinearity and coupled stretch-twist response. When compared with direct numerical simulations, the proposed
model gave closely matching predictions while requiring only a fraction of the computational time. The examples also
highlighted the inadequacy of the Euler–Bernoulli beam theory in some cases to further motivate this work.

Keywords Direct FE2 · Multiscale analysis · Multi-point constraints · Shear-flexible beam elements · Timoshenko-Ehrenfest
beam theory · Heterogeneous beam structures

1 Introduction

Multiscale computational homogenisation is commonly
employed to predict the response of a multiphase macroscale
structure. Termed FE2 by Feyel [1], this strategy has seen
wide adoption in the past decade [2–11]. Beyond nonlin-
ear geometries and materials, it has also been adopted for
other engineering analyses, such as rate-dependent responses
[12, 13], material damage and failure [14, 15], composite
delamination [16], adhesive layers and cohesion [17, 18],
magnetism [19] and shape memory alloys [20], among many
others. Amore comprehensive list of the various applications
of the FE2 method can be found in the review by Raju et al.
[21]. Work has also been done to develop generalised tool-
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boxes for solving multiscale problems in commercial finite
element (FE) software, such as ABAQUS [22–24].

At its core, conventional FE2 methods involve two sepa-
rate FE analyses—one at the macroscale and another at the
microscale—with information exchange between them in a
staggered manner [5, 25]. The macroscale kinematic fields
are first downscaled to the microscale representative volume
element (RVE) at each integration point. The microscale
FE analyses on the RVEs are then carried out, following
which the responses are then upscaled back to themacroscale
FE analysis to complete the solution loop. This requires a
considerable level of user involvement to manage the infor-
mation exchange, even if it is done on a commercial FE
software, posing substantial difficulties for less experienced
users [26–28]. Furthermore, information exchange required
by this staggered scheme may result in a significant increase
in the wallclock time for some commercial FE software.

A much simpler alternative to the conventional FE2 is the
Direct FE2 method, which was first proposed in 2020 [29].
Using multi-point constraints (MPCs) that are readily avail-
able in many commercial FE software, such as ABAQUS, to
impose the scale transition kinematics, Direct FE2 combines
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the two FE analyses at different scales into one, transform-
ing it into a monolithic scheme. This eliminates the need
for a user-controlled information exchange while the tangent
stiffness calculations required for scale transition are han-
dled entirely by the software’s internal solver. Direct FE2

has seen successful implementation for problems involving
geometric and material nonlinearity [29], materials with rate
dependency and damage [30], transient analysis [31] and
even thermal–mechanical problems [32].

Beyond solid elements that it was originally developed
for, Direct FE2 as an approach is well-suited to address
problems that call for the use of structural elements with
heterogeneous material properties. Compared to solid ele-
ments, beam and plate elements are computationally more
efficient in modelling slender and flat structures. However,
the constitutive properties of heterogeneous structures cannot
be directly assigned to these elements. Instead, this can only
be done by either assigning effective homogenised proper-
ties, or through a computational homogenisation framework.

There have been several attempts to incorporate compu-
tational homogenisation into beam elements, which is the
focus of this paper. For example, Schrefler and Lefik [33]
obtained the homogenised material coefficients of heteroge-
neous structures and combined themwith a self-written beam
element code to solve problems involving uni-directional
composite beamsunder thermo-mechanical loads. Theywere
able to reduce the size of the problem while predicting stress
contours with local features similar to those obtained from
standard FE procedures. On the other hand, Cartraud and
Messager [34] used themethodof cells to solve for themacro-
scopic responseof beamswith periodic geometries, including
stranded cables with coupling between tension and torsion.

Recently, Xu et al. [35] developed the Direct FE2 model
for thin plate elements, and by order reduction, slender beam
elements. This was based on the Kirchoff-Love plate theory
and is applicable to many engineering problems that involve
heterogeneous thin plates. Even though its ability to accu-
rately capture the macroscale constitutive properties of thin
plates was demonstrated, the wider application of this model
as well as the aforementioned beam models is restricted by
the underlying assumptions of the Kirchoff-Love plate and
Euler–Bernoulli beam theories respectively. Primarily, the
theories assume that the cross section of the beam or plate
remains perpendicular to its axis and that transverse shear
deformations are negligible [36, 37].

A higher order computational homogenisation framework
is needed to capture transverse shear deformations for beam
and plate elements based on the Timoshenko-Ehrenfest beam
and Mindlin-Reissner plate theories respectively. They pre-
dict more accurately the constitutive response of thick beams
and plates as well as shear-dominant structures such as
laminated composites and foam core sandwich structures,

which have wide engineering applications [38, 39]. A com-
mon difficulty in the development of such higher-order beam
and plate homogenisation models is in imposing the shear
deformation onto the microscale RVE.

Geers et al. proposed using a second-order framework to
implement the computational homogenisation of structured
thin sheets with transverse shear [40]. They highlighted that
the key issue with such a homogenisation framework involv-
ing transverse shear lies in the mismatch of assumptions
at difference scales for plate structures. At the macroscale,
cross-sections are assumed to remain plane even after defor-
mation. However, the absence of global shear tractions due to
the plane-stress assumption at the microscale prevents these
cross-sections from remaining plane. To remedy this, they
imposed an additional weak constraint on the RVE cross-
sections such that the average shear at both scales are the
same.

On the other hand, Klarmann et al. proposed using
additional kinetic constraints on top of a first-order beam
homogenisation framework to impose the shear deformation
on the RVE [41]. A detailed breakdown of the scale transi-
tion kinematics and kinetics of shear-flexible beam element
was provided. It was identified that the RVE would undergo
rigid body rotation in the absence of additional constraints.
They proposed matching the RVE normal stresses to those
predicted from beam theory to prevent this rotation. This was
enforced in aweak sense over theRVE face throughLagrange
parameters using additional nodes and subsequently imple-
mented as internal constraints. While comprehensive, their
homogenisation scheme is numerically more complex to
implement and requires a revised stiffnessmatrix for theRVE
finite elements which includes the Lagrange parameters.

We propose an alternative computational homogenisation
scheme for shear-flexible beam elements that is simpler to
implement based on the Direct FE2 framework. The shear
angle of the beam is imposed onto the RVE via a kine-
matic integral constraint that is applied directly onto the
RVE boundary nodes. This paper is outlined as follows.
In Sect. 2, the kinematic and kinetic relationships across
scales required for the proposed Timoshenko Beam Direct
FE2 model are presented. In Sect. 3, details on how the
model is implemented on commercial FE software are shown
along with the necessary MPCs and mesh volume scaling.
These are followed by the corresponding 3D extensions. In
Sect. 4, example problems that demonstrate the necessity of
such a model that considers shear deformation are presented,
with the results obtained from this proposed model validated
against those obtained from Direct Numerical Simulations
(DNS) where possible. Finally, we conclude in Sect. 5.
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Fig. 1 An illustration of a beam
element homogenisation
framework a homogenised
macroscale beam element,
b explicitly modelled RVE

2 Scale transition relations
for a shear-flexible beam

For macroscale beam structures, variations are considered
to occur along its axial direction only. Thus, homogenisa-
tion is carried out in that direction using through-height and
through-depth RVEs as illustrated in Fig. 1. The RVEs for
beams are typically located at the mesoscale and will be
referred to as such in subsequent sections.

2.1 Macroscale shear-flexible beam

The kinematics of a shear-flexible beam can be described
using variables along the beam centreline. Macroscale vari-
ables along the centrelinewill be denoted using (·)c, and their
gradients along the centreline will be denoted by ∇(·)c. For
brevity, a 2D beam on the conventional x1x3-plane will be
considered, as the kinematics and kinetics are identical along
the x1x2-plane. A 3D beam will be a superposition of both
with additional terms for twisting. The macroscale variables
in the respective directions will be denoted with subscripts
(·)1 and (·)3.

The macroscale beam continuum of interest is based on
the Timoshenko-Ehrenfest beam theory, which takes into
account transverse shear in the cross-section rotation, in addi-
tion to its centreline slope [42]. Details on the governing
equations and some theoretical solutions can be seen in [43].
The key difference compared to the Euler–Bernoulli beam
is that cross-sections of the beam are no longer restricted to
be perpendicular to the beam centreline. It is now described
using a kinematically independent angular term ϕ2 which
rotates about the x2-axis. The kinematics of any point along
the beam are described by the following equations.

u1 � uc1 − x3ϕ
c
2 (1)

u3 � uc3 (2)

ϕ2 � ϕc
2 (3)

The macroscale external virtual work density per unit
length of the beam in the reference configuration is then given
by

δWden � N11δ∇uc1 + Q13δ
(∇uc3 − ϕc

2

)
+ M12δ∇ϕc

2 (4)

where N11 is the axial force, Q13 the transverse shear force
and M12 the moment.

2.2 Mesoscale RVE

We consider the mesoscale RVE that will be used to derive
the effective constitutive behaviour of the macroscale beam.
The corresponding mesoscale kinematic and kinetic vari-
ables will be denoted as (̂·) while their gradients are denoted
as (̂·),i for i � 1, 3. Without any loss in generality, we
consider a rectangular through-height RVE with dimensions
hRV E × bRV E as shown in Fig. 1b. Since the deformation
of the RVE is driven by kinematic downscaling from the
macroscale, the average internal virtual work done per unit
length in the RVE arising from its constitutive response is
required for subsequent upscaling, and is obtained as

(5)

〈δŴint 〉 � Acs

V̂

∫
σ̂i jδûi, j d V̂

� Acs

V̂

∫
σ̂11δû1,1 + σ̂13δû1,3 + σ̂31δû3,1dV̂
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where Acs is the cross-sectional area of the beam, σ̂ is the
mesoscale RVE stress tensor, V̂ is the RVE volume and ûi, j
the displacement gradients.

2.3 Downscaling relations

Themacroscale tomesoscale kinematic downscaling is based
on the requirement that the macroscale deformation can be
obtained from the mesoscale average. This defines a set
of boundary conditions to be imposed on the mesoscale
RVE. Beyond a smoothly varying component defined by
themacroscale deformation, themesoscale deformation field
also needs to incorporate a locally fluctuating component to
account for the perturbations induced by the heterogeneity of
the mesoscale structure. Combining this with the macroscale
kinematics described byEqs. (1) and (2) yields themesoscale
kinematic decomposition.

û1 � uc1 − x̂3ϕ
c
2 + x̂1∇uc1 − x̂3 x̂1∇ϕc

2 + û∗
1 (6)

û3 � uc3 + x̂1∇uc3 + û∗
3 (7)

It is noted that since the RVE will be modelled using solid
elements, it will only have û1 and û3 displacement degrees
of freedom (DOF). The first-order gradient terms in Eqs. (6)
and (7) describe the smoothly varying component and (̂·)∗ are
the perturbation components for each mesoscale kinematic
variable. Here, x̂i is the position of a given mesoscale point
measured from the centroid of the RVE. This decomposition
is based on the assumption that there is a clear separation of
scale between the RVE length and the characteristic length
within which the applied load changes across the macroscale
[26, 44].

2.4 Upscaling relations

Homogenisation strategies enforce the Hill-Mandel condi-
tion to ensure that the external and internal work done across
scales are consistent [45]. The condition can be satisfied by
linear displacement, constant traction boundary conditions
or periodic boundary conditions (PBC). PBC is adopted here
because it is the most accurate and fastest converging among
the three [46–48].

To satisfy the Hill-Mandel condition, the macroscale
external virtual work density given in Eq. (4) must be equal
to the mesoscale average internal virtual work done per unit
length in Eq. (5). The mesoscale kinematic decomposition
from Eqs. (6) and (7) are first substituted into Eq. (5) to give

〈δŴint 〉 � Acs

V̂

∫
σ̂11

(
δ∇uc1 − x̂3δ∇ϕc

2 + δû∗
1,1

)

+σ̂13
(−δϕc

2 − x̂1δ∇ϕc
2 + δû∗

1,3

)
+ σ̂31

(
δ∇uc3 + δû∗

3,1

)
dV̂

(8)

Grouping the perturbation terms together,

〈δŴint 〉 � Acs

V̂

∫
σ̂11∇δuc1 + σ̂31∇δuc3 − σ̂13δϕ

c
2

+ (−σ̂11 x̂3 − σ̂13 x̂1)∇δϕc
2dV̂

+
Acs

V̂

∫
σ̂11δû

∗
1,1 + σ̂13δû

∗
1,3 + σ̂31δû

∗
3,1dV̂

� Acs

V̂

∫
σ̂11∇δuc1 + σ̂31∇δuc3 − σ̂13δϕ

c
2

+ (−σ̂11 x̂3 − σ̂13 x̂1)∇δϕc
2dV̂

+
Acs

V̂

∫
t̂1δû

∗
1 + t̂3δû

∗
3d Ŝ (9)

The second integral of Eq. (9) vanishes for zero displace-
ment perturbations or constant tractions on Ŝ, as well as for
periodic boundary conditions. The elimination of this term
for the case where the top and bottom surfaces of the beam
are traction free, together with periodicity in the x̂1 direction
has been shown in [35]. The average internal virtual work
done per unit length is then simplified to

(10)

〈δŴint 〉 � Acs

V̂

∫
σ̂11δ∇uc1 + σ̂13δ

(∇uc3 − ϕc
2

)

+ (−σ̂11 x̂3 − σ̂13 x̂1)∇δϕc
2dV̂

A direct comparison between Eqs. (10) and (4) yields the
homogenised macroscale forces in terms of the mesoscale
kinetic terms.

N11 � Acs

V̂

∫
σ̂11dV̂ (11)

N13 � Acs

V̂

∫
σ̂13dV̂ (12)

M12 � Acs

V̂

∫
(−σ̂11 x̂3 − σ̂13 x̂1)dV̂ (13)

In conventional FE2 methods, these homogenised forces
need to be upscaled as the macroscale nodal forces. In Direct
FE2 however, themacroscale andmesoscaleDOFare directly
linked and solved within the same FE iteration loop, hence a
separate extraction is not needed.

3 Implementation of the Direct FE2 model

In this section, the implementation of the proposed Tim-
oshenko Beam Direct FE2 model on commercial FE soft-
ware is presented. A quadratic shear-flexible beam element
(ABAQUS B22) with two integration points is chosen as the
macroscale beam element. This 3-noded beam element with
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a selective reduced integration scheme avoids shear locking
and has been shown to give a good approximation to the theo-
retical solution [49]. Two explicitly modelled RVEs are then
superimposed onto each beam element, with their centroids
coinciding with the integration points of the beam element,
i.e., both macroscale and mesoscale FE meshes appear on
top of each other in the same FE model. Material proper-
ties are assigned only to the mesoscale elements while the
macroscale elements have null properties.

3.1 Scale transition kinematic constraints

The kinematic constraints linking the macroscale and
mesoscale DOF are implemented by imposing onto the RVE
boundary nodes the PBCs as described by the macroscale
DOF. Based on the mesoscale kinematic decomposition pre-
sented in Eqs. (6) and (7), the PBCs for û1 and û3 can be
written as

û1|R − û1|L � bRV E
(∇uc1 − x̂3∇ϕc

2

)
(14)

û3|R − û3|L � bRV E
(∇uc3

)
(15)

where (·)|R and (·)|L refer to the right and left boundaries of
the RVE respectively.

An additional set of constraints is required to prevent rigid
body translation of the RVE. This is done by prescribing the
RVE centroid to translate together with the beam integration
point where it is located, i.e.,

ûi |centroid � uci |intpt f ori � 1, 3 (16)

With that, the complete set of PBCs and rigid body con-
straints can then be imposed onto the mesoscale RVE. Based
on the discretisation of the RVE, the PBCs and rigid body
constraints in Eqs. (14)–(16) can be respectively rewritten as

ûi R1 � ûi L1 + bRV E

3∑

j�1

N j,1u
j
1 + bRV E x̂3

3∑

j�1

N j,1ϕ
j
2 (17)

ûi R3 � ûi L3 + bRV E

3∑

j�1

N j,1u
j
3 (18)

ûcentroidi �
3∑

j�1

N ju
j
i (19)

where (·)i L and (·)i R in Eqs. (17) and (18) refer to the
nodes in the i th corresponding pair between the left and
right boundaries respectively, (·) j refers to the j th node on
the macroscale beam element and N j refers to the quadratic
shape function attributed to that particular node. Equa-
tions (17)–(19) link the macroscale and mesoscale DOF and

can be directly implemented asMPCs inABAQUS [50]. This
is done completely at the pre-processing stage.

The above equations are similar to those derived in [35]
and further details can be seen therein,with the key difference
being the shape functions used. In this proposed framework,
interpolation is done using quadratic shape functions arising
from the 3-node macroscale beam element chosen instead
of the Hermite interpolation functions commonly used for
non-shear-flexible beam and plate elements.

The constraint equations can be similarly obtained for a
3D macroscale beam and will be presented in brief here.
In 3D models, the beam element has six DOF, namely
u1, u2, u3, ϕ1, ϕ2 and ϕ3, with the last three corresponding
to rotations about the 1, 2 and 3 axes respectively. Using a
first-order decomposition similar to the 2D beam and taking
into account perturbations introduced by the mesoscale het-
erogeneities, the PBC equations for the mesoscale RVE can
be written as

û1|R − û1|L � bRV E
(∇uc1 − x̂2∇ϕc

3 + x̂3∇ϕc
2

)
(20)

û2|R − û2|L � bRV E
(∇uc2 − x̂3∇ϕc

1

)
(21)

û3|R − û3|L � bRV E
(∇uc3 + x̂2∇ϕc

1

)
(22)

In Eqs. (21) and (22), the second term on the RHS are
deformations due to twisting in the macroscale beam ele-
ment, quantified by the gradient of the axial rotation of the
beam,∇ϕc

1. These terms do not appear in the 2Dbeammodel.
Equations (20)–(22) can then be rewritten in terms of the
nodal DOFs as before.

(23)

ûi R1 � ûi L1 + bRV E

3∑

j�1

N j,1u
j
1

− bRV E x̂2

3∑

j�1

N j,1ϕ
j
3 + bRV E x̂3

3∑

j�1

N j,1ϕ
j
2

ûi R2 � ûi L2 + bRV E

3∑

j�1

N j,1u
j
2 − bRV E x̂3

3∑

j�1

N j,1ϕ
j
1 (24)

ûi R3 � ûi L3 + bRV E

3∑

j�1

N j,1u
j
3 + bRV E x̂2

3∑

j�1

N j,1ϕ
j
1 (25)

The rigid body constraints can also be similarly expressed,

ûcentroidi �
3∑

j�1

N ju
j
i (26)

û A
3 � ûcentroid3 + x̂ A

2

3∑

j�1

N jϕ
j
1 (27)
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where Eq. (27) constrains the RVE against rigid body rota-
tion along the beam axis. It is imposed on a point, A, in the
RVE that is x̂ A

2 offset from the centroid along the x2 direc-
tion. Equations (23)–(27) can then be similarly written as
MPCs and implemented in ABAQUS to tie the macroscale
and mesoscale DOF.

3.2 Satisfaction of the Hill-Mandel condition

The other step in implementation of the Direct FE2 homoge-
nization is the scaling of the RVEs to satisfy the Hill-Mandel
condition. Consider the total internal virtual work done for
each beam element,

δWint �
∫

δWden
int dL �

∑

α

ωα Jα
(
δWden

int

)

α
(28)

where (·)α denotes quantities at an integration point, and
ω and J are the weights and Jacobian at the integration
points respectively. The Hill-Mandel condition requires that
the internal virtual work done at each macroscale integration
point to be equal to the average internal virtual work done in
the RVE located there. Substituting Eqs. (5) into (28) yields

δWint �
∑

α

ωα JαAcs

V̂α

∫

(RV E)α

σ̂i jδûi, j d V̂ (29)

In Direct FE2, the commonly used strategy is to scale the

volume of the RVE, V̂α , such that the coefficient
(

ωα Jα Acs

V̂α

)

is unity. The macroscale work done is then the total inter-
nal strain energies at of all the mesoscale RVEs, as shown
in Eq. (29). As suggested by Tan et al. [29], this can be
achieved at the pre-processing stage by changing the RVE
section thickness for 2D analyses or by scaling the mesh
volume of the entire RVE for 3D analyses, i.e.,

V̂α � ωα JαA
cs (30)

It should be noted that volume scaling does not increase
computational cost. As shown in Fig. 2, if all dimensions of
the RVE is to be scaled by n to satisfy Eq. (30), all elements
are also scaled accordingly. The number of nodes and ele-
ments in the RVE mesh as well as their connectivity remain
unchanged. As such, the total degrees of freedom in the prob-
lem remain unchanged as well.

Note that in conventional FE2, Eqs. (11)–(13) are needed
to identify the stresses to upscale in order to satisfy the
Hill-Mandel condition. In Direct FE2, energy consistency
is enforced simply by scaling the RVE energy through
scaling the RVE volume according to Eq. (30). Equa-
tions (11)–(13) are not required, but are presented never-
theless to demonstrate the consistency with conventional
upscaling approaches.

Fig. 2 Illustration of uniform volume scaling of the RVE mesh by a
factor of n in all directions

3.3 Higher-order shear angle constraint

As reported by Klarmann et al. [41], imposing shear defor-
mations onto the RVE under simple PBCs would result in
spurious rotations. In other words, the set of constraints
in Eqs. (17)–(19) obtained from first-order homogenisation
alone are insufficient to completely describe the RVE bound-
ary value problem. This is because the shear angle does not
appear in any of the constraint equations in Sect. 3.1 and is
hence not imposed at the mesoscale.

To resolve this, we propose to match the moments of û1
and u1 about the centroidal axis in an average sense, i.e.,
∫

x̂3û1dx̂3 �
∫

x̂3u1dx̂3 (31)

Using Eq. (1) for the macroscale axial displacement and
performing the integration on the RHS, we obtain the con-
straint

∫
x̂3û1dx̂3 � − (hRV E )3

12
ϕc
2 (32)

Details on the thought process that led to this choice of
constraint are presented in “Appendix A”. It should be noted
that a similar constraint was also mentioned in Geers et al.
[40]. In the proposed Direct FE2 model, Eq. (32) is imposed
onto the left boundary of the RVE. For implementation into
ABAQUS as an MPC, it is rewritten in the discretised form
as

N∑

i�1

ai ûi1 � − (hRV E )3

12

3∑

j�1

[
N j +

(
−bRV E

2

)
N j,1

]
ϕ
j
2

(33)

where

ai �
∫

x̂3Nidx̂3 (34)

and Ni is the shape function of node i on the mesoscale RVE
boundary.
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This constraint is similarly extended to the 3D beam
model. Here, one constraint is required for each shear angle.
They take the form
∫ ∫

Le f t
x̂3û1d Ŝ �

[
(
ϕc
2

)
intpt +

(
−bRV E

2

)
∇ϕc

2

] [
(hRV E )3 (tRV E )

12

]

(35)

∫ ∫

Le f t
x̂2û1d Ŝ � −

[(
ϕc
3

)
intpt

+

(
−bRV E

2

)
∇ϕc

3

] [
(tRV E )3 (hRV E )

12

]

(36)

where tRV E refers to the dimension of the RVE in the x2-
direction that was previously not considered in the 2Dmodel.
It should be noted that the integrals are now surface integrals
about the left boundary surface of the RVE, instead of line
integrals used in the 2D model. Similarly, Eqs. (35) and (36)
can then bewritten in their respective discretised forms below
to be imposed as MPCs.

(37)
N∑

i �1

bi ûi1 � (hRV E )3 (tRV E )

12

∑3

j�1

[
N j +

(
−bRV E

2

)
N j,1

]
ϕ
j
2

∑N

i �1
ci ûi1 � − (tRV E )3 (hRV E )

12

∑3

j�1

[
N j +

(
−bRV E

2

)
N j,1

]
ϕ
j
3

(38)

where,

bi �
∫ ∫

Le f t
x̂3Nid Ŝ (39)

ci �
∫ ∫

Le f t
x̂2Nid Ŝ (40)

With that, the proposed Timoshenko Beam Direct FE2

model is complete. The model is described by Eqs. (17)–(19)
and (33) for 2D, and Eqs. (23)–(27), (37) and (38) for 3D,
and they are directly imposed as MPCs in ABAQUS to link
the macroscale and mesoscale DOF.

3.4 Comparison with the conventional FE2 method

Among the various computational homogenisation frame-
works, Direct FE2 stands out for its ease of implementation.
As shown previously, Direct FE2 can be implemented on
commercial FE codes through only 2 key steps, namely,
specifying the MPCs and RVE volume scaling, and both
are executed during the pre-processing stage. In contrast,
conventional FE2 methods entail greater level of user inter-
vention. They often require a separate control script to
manage the information transfer between scales for each
problem. The tangent stiffness matrix calculations, which

can be complex depending on the nature of the problem, will
also need to be determined by the users whereas this is han-
dled entirely by the commercial FE code’s internal solver in
Direct FE2.

Since Direct FE2 can be easily implemented on commer-
cial FE codes, another advantage is that it canmake full use of
the readily available material models as well as other analy-
sis capabilities such as nonlinear large deformation, contact,
implicit dynamics [31] and even multi-physics [32].

The difference between conventional and Direct FE2 goes
beyond how they are implemented. As shown in Fig. 3a, the
former comprises two iterative analysis loops—a mesoscale
FEA nested inside a macroscale FEA, i.e., the multiscale
analysis staggers between macroscale and mesoscale. When
implemented on solvers that are not reentrant, such as
ABAQUS, staggered schemes suffer significant downtime.
The non-reentrant nature means that each iterative loop must
be carried out as a separate FE analysis. As such, stag-
gered solution schemes require information to be exchanged
between the FE analyses of different scales through constant
reading and writing of computational data. Moreover, the
lag time associated with the starting of a FE analysis for
each iteration can add up considerably. On the other hand,
Direct FE2 is a monolithic scheme that is performed in a sin-
gle iterative analysis loop as shown in Fig. 3b. It does not
require data exchange between scales and is carried out as
a single FE analysis, thus avoiding all the downtime men-
tioned. However, it is noted that the pre-processing time in
Direct FE2 would be slightly longer for the MPC equations
between scales to be set up.

A comprehensive comparison of computational perfor-
mance between staggered and monolithic schemes was
conducted by Lange et al. [51], who proposed another mono-
lithic FE2 scheme. By using an in-house FORTRAN code as
the microscale solver and integrating it with the macroscale
solver in ABAQUS through its UMAT interface, the down-
time associated with non-reentrant solvers for the staggered
scheme was circumvented. The examples they presented still
showed that the monolithic scheme consistently outperforms
the staggered scheme, with savings in computational costs
ranging from 40 to 60%. It should be pointed out that their
solver included steps to reduce the size and bandwidth of
the system of equations through static condensation and
renumbering of equations. The implementation of Direct
FE2 presented here simply leverages on ABAQUS’ solver
without incorporating such optimization. Another compari-
son between conventional and Direct FE2 can be found in
Raju et al. [21]. Both macroscale and microscale FEA of the
conventional FE2 were solved on ABAQUS with informa-
tion between scales communicated through files. To discount
the downtime due to data exchange and starting ABAQUS
repeatedly, only the numbers of floating point operations for
computation were used for the evaluation. Direct FE2 needed
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Fig. 3 Schematic of iteration loop a conventional FE2, b direct FE2

about only 40% the number of operations in conventional
FE2.

Next, the accuracy and necessity of this proposed Direct
FE2 model is demonstrated using several example problems.

4 Modelling composite beams using direct
FE2

4.1 Single ply composite beam under shear

In the first example, we consider a single ply composite
beam subjected to significant transverse shear to demon-
strate that under circumstances when the assumptions of the
Euler–Bernoulli beam theory no longer hold, homogenisa-
tion models based on the Euler beam will be insufficient.
For such cases, the proposed Timoshenko Beam Direct FE2

model is required to capture the constitutive responses accu-
rately.

The beam is fixed at both ends and subjected to a down-
ward displacement at the midpoint as shown in Fig. 4. Based
on the symmetry of the problem, only the left-half of the
beam is modelled. The beam is modelled with both an Euler
Beam Direct FE2 (EBeam) model as well as the proposed
Timoshenko Beam Direct FE2 (TBeam) model. The results

frombothDirect FE2 models are benchmarked against aDNS
model using solid elements (Fig. 5).

The beam consists of an elasto-plastic epoxy matrix with
properties taken from [30] and carbon fibres that are assumed
to be elastic (Table 1). An RVE of the beam can be seen in
Fig. 4b. EachRVE has 160 fibreswith a diameter of 0.04mm,
resulting in a fibre volume fraction of 0.402. The fibres
are randomly distributed, subjected to a minimum distance
between them and periodicity is enforced at the boundaries
along the axial direction of the beam. The RVE is modelled
with solid plane-stress elements (ABAQUSCPS4). TheDNS
model is obtained by tessellating the RVE, while the two
Direct FE2 models are identical, except for the choice of
macroscale beam element used and consequently the MPCs
that are imposed (Table 2). The TBeam model is constructed
using two, three and five macroscale beam elements.

The midpoints of the beam models are then subjected to
a downward displacement of 1 mm. Since the two Direct
FE2 models follow the conventional beam assumption of
transverse incompressibility, all nodes on the mid-beam
cross-section of the DNS model are displaced uniformly to
prevent any discrepancies that may arise from stress concen-
trations due to point loads.

From the force–displacement plot in Fig. 6, it can be
seen that only the constitutive response obtained from the
TBeammodelsmatches that from theDNSmodel. This is the
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Fig. 4 Single ply composite
beam under shear a schematic
showing problem geomtry and
loading conditions, b explicitly
modelled RVE of the beam

Fig. 5 DNS and Direct FE2

models with loads and boundary
conditions for single ply
composite beam

Table 1 Material properties for single ply composite beam under shear

Material Young’s modulus Poisson’s ratio Remarks

Epoxy 3.5 GPa 0.34 Plasticity based on
experimental
data [30]

Carbon 230 GPa 0.2 Elastic

case even for the TBeam model using only two macroscale
beam elements. The EBeam model is seen to be excessively
stiff compared to the DNS model. Since this is a problem
where significant shear is expected, the key difference in the
response of both Direct FE2 models can be attributed to the
difference in shear deformation.

Table 2 Differences between EBeam and TBeam models

Models Macroscale beam element MPC equations

EBeam Linear with Cubic
Formulation

(ABAQUS B23)

Hermite Interpolation

TBeam Quadratic Shear-flexible
(ABAQUS B22)

Quadratic Interpolation
Integral Constraint for ϕ

This is supported from the shear stress contours obtained
from all three models as shown in Fig. 7. The shear stress
contour obtained from the TBeam model is almost identical
to that obtained from theDNSmodel,whereas there is a stress
band located around the mid-height of the beam missing in
the EBeam model. This would be the expected transverse

123



900 Computational Mechanics (2022) 70:891–910

Fig. 6 Force–displacement plot of the single ply composite beam

Fig. 7 Shear stress contour (Pa) of the single ply composite beam for
all three models

shear stress frombeam theory that peaks at the beam’s neutral
axis, and is not accounted for in the EBeam model.

In terms of computational efficiency, it is evident from
Table 3 that all the Direct FE2 models are much more effi-
cient than the DNS model due to the reduced number of
DOF arising from homogenisation. Unsurprisingly, a larger
extent of homogenisation attained by using fewermacroscale
beam elements would result in shorter computation times.
For this problem, the CPU time for the TBeam model with
two macroscale beam elements is only about 13.2% that for
the DNS model.

The study is then extended to investigate the effect of RVE
size on the analysis results. The TBeam model with 3 beam
elements is repeated using RVEs with widths of 0.125 mm,
0.25 mm and 0.5 mm, as shown in Fig. 8. The number of

Table 3 Comparison of CPU
time of the single ply composite
beam

Models CPU time (s)

DNS 863.8

EBeam (3
Ele)

153.4

TBeam (2
Ele)

113.9

TBeam (3
Ele)

222.8

TBeam (5
Ele)

332.8

Fig. 8 RVEs with similar fibre volume fraction but different widths
a 0.125 mm, b 0.25 mm, c 0.5 mm

fibres within each RVE is scaled accordingly such that the
fibre volume fraction is maintained at 0.402. Similar to the
original RVE, the fibres are randomly distributed, subjected
to same minimum distance between them and periodicity
is enforced at the boundaries along the axial direction of
the beam. As the areas of the RVEs now differ, the in-plane
thickness of the RVEs in each model need to be adjusted
accordingly.

From the force–displacement plots shown in Fig. 9, the
constitutive responses from all three TBeammodels with dif-
ferent RVE widths match closely to that of the DNS model.
As such, the accuracy of the proposed Direct FE2 model is
shown to be mostly unaffected by the size of the RVE, sug-
gesting that even the smallest RVE presented is large enough
to represent the mesostructure of the heterogeneous material.
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Fig. 9 Force–displacement plot of the TBeam models with different
RVE widths

4.2 Angle-ply composite beams with single fibre
layer lamina

In this second example, we consider two different compos-
ite beams constructed from stacking plies with different fibre
orientations. The results for these cases will be benchmarked
against DNS analyses to investigate the ability of the pro-
posed model in handling more complicated structures and
load effects.

Fig. 11 Axial stress–strain plot of the antisymmetric angle-ply beam
under axial loading

4.2.1 Antisymmetric beamwith stretch-twist coupling

For Example 2.1, we first consider a beam with an antisym-
metric [+ 45/− 45]2 ply layup subjected to a tensile load.
Due to the heterogeneity of the plies, this beam will result in
an out-of-plane coupled twisting effect when an axial load
is applied. Within the elastic regime, this can be predicted
using the Classical Laminate Theory (CLT) [52].

The model is shown in Fig. 10. The RVE of the beam
is formed by stacking four plies with their fibres oriented
in the respective directions. When viewed along the fibre
direction, each ply has a row of eight fibres with a diameter of

Fig. 10 Antisymmetric beam
under axial load a DNS model,
b TBeam model, c RVE
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Fig. 12 Mises stress contour (Pa) of the antisymmetric angle-ply beam under axial loading. Displacements perpendicular to the beam axial direction
are amplified to show twisting effects more clearly

Fig. 13 Plot of angle of twist per unit length against strain for the anti-
symmetric angle-ply beam under axial loading

0.08mmand a periodic spacing of 0.1mm, resulting in a fibre
volume fraction of 0.502. Thematrix andfibres have the same
properties as the previous example, as shown in Table 1. The
RVE ismodelledwith solid brick elements (ABAQUSC3D8)
and the DNS model is obtained by tessellating the RVE. For
the TBeammodel, only onemacroscale beam element is used
here since this is a homogeneous load. The axial load is then
applied by displacing both ends of the beam equally but in
opposite directions.

As seen from the axial stress–strain plot in Fig. 11, the
TBeam model is able to capture the constitutive response of
the composite beam very closely, demonstrating its ability to
model more complicated structures and loading effects using
fewer DOF than a full DNS analysis. The DNS model has
a slightly stiffer response when the relative displacements
of the ends are used to determine the strain (solid line) due

Fig. 14 Symmetric beam under
cantilever load a DNS model,
b TBeam model, c RVE
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Fig. 15 Moment-displacement plot of cantilever symmetric angle-ply
beam

to differences in the boundary conditions of the DNS model
and the mesoscale RVEs. In the DNS model, cross-sections
at both ends of the beam are displaced uniformly, therefore
preventing anyperturbations along the axial direction. In con-
trast, the response of the beam elements in the TBeammodel
are determined by the homogenizedRVEswhich permit peri-
odic perturbations and are hence less constrained compared
to the DNS model. If the strain in the DNS model is deter-
mine from the relative displacements of two points on the
centreline 0.565 mm (one RVE length) away from the ends
(dashed line), the results from both models match exactly.

This is also observed in the Mises stress contours of both
models as seen in Fig. 12. Under the homogeneous axial
load with a coupled twisting effect, the stress contours of
both models match closely. At both ends of the beam, the
DNS model is seen to have higher stress values, due to
the uniform displacement loads imposed. Furthermore, the
deformed configurations of both models also show similar
twisting deformations as seen in Fig. 12.

The angle of twist per unit length in both models are also
compared to determine how well the coupled twisting effect
is captured by the TBeam model. In the TBeam model, the
angle of twist per unit length is simply obtained as the change
in ϕc

1 across the length of the beam. For the DNS model, the
in-plane rotations at both end cross-sections are first obtained
by considering the in-plane displacements of the nodes. The
angle of twist per unit length is then obtained as the differ-
ence between them across the length of the beam. As seen
in the plot in Fig. 13, there is a clear difference in the values
obtained by both models when nodal values at the ends of
the beam are used. This is once again due to differences at
the loaded ends between solid elements and beam elements.
It becomes negligible when the end effects are reduced by
using nodal displacements away from the ends of the DNS
beam for comparison.

4.2.2 Symmetric cantilever beam

For Example 2.2, we consider a beam with a symmetric [+
45/− 45]s ply layup subjected to a cantilever load as shown
in Fig. 14.

Fig. 16 Mises stress contour
(Pa) of the cantilever symmetric
angle-ply beam
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Fig. 17 Dimensions for one ply
in the RVE of beam with
multi-layer fibre lamina

Fig. 18 RVE layup configuration and loading conditions for beamswith
multi-layer fibre lamina a antisymmetric beam under axial load, b sym-
metric beam under cantilever load

Except for the RVE ply layup configuration, the TBeam
and DNS models are largely identical to that in the previ-
ous case. Compared to Example 2.1, the plies in this RVE
are rearranged according to the symmetric layup as seen in
Fig. 14c. Two macroscale beam elements are now used for
the TBeam model instead of one, as the beam deformation
varies along its length. Another set of simulations were per-
formed on a beam of length twice that shown in Fig. 14 to
investigate end effects. The results from both sets of simula-
tions are plotted on the same diagram in Fig. 15. The bending
moment per unit area at the fixed end of the beam is chosen
for the ordinate of the plot because nonlinearity due to plastic
deformation is caused mainly by bending stresses. To facil-
itate comparison, the vertical displacement of the free end

Fig. 19 Axial stress–strain plot of the antisymmetric beam with single-
and multi-layer fibre lamina under axial loading

shown on the abscissa is scaled by the square of the beam
length, i.e., u3/L2, to bring all the plots together.

Similar to Example 2.1, the plots show that the TBeam
model is able to capture the constitutive response of this com-
posite beam with a symmetric layup using fewer DOF than
a full DNS analysis. The results for Example 2.2 (blue plots)
also shows that theDNSmodel has a slightly stiffer response,
due to the boundary conditions applied to the two ends of the
beam.When the lengths of the beams are doubled, these ends
effects are reduced and the moment-displacement plots pre-
dicted by both models match more closely, as seen in the red
plots.

This is further evidenced by the Mises stress contours of
bothmodels with the original length as seen in Fig. 16. At the
fixed end of the beam, the DNS model shows slightly higher
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Fig. 20 Normal stress contour (Pa) for the antisymmetric beam with multi-layer fibre lamina under axial load a TBeam model, b magnified view
of the left RVE, c corresponding RVE from Example 2.1

stresses due to the end conditions. Away from the fixed end,
both models predict stress contours that are highly similar. A
sectioned view of the DNS model at approximately the same
location as the leftmost RVE of the TBeammodel also shows
a highly similar internal stress distribution in the fibres and
matrix.

4.3 Composite beams withmulti-layer fibre lamina

In the previous example, eachply in theRVEhadonly a single
layer of fibres across its height tomaintain a practical compu-
tational time for the DNS models. Having demonstrated that
the proposed TBeammodel is able to predict the constitutive
response of a given heterogeneous beam with much fewer
DOF compared to a full DNS analysis, we reconsider the
same angle-ply composite beam but with more fibres per ply
that aremore representative of actual composites. Thismakes
the model too computationally intensive for a full DNS anal-
ysis but the analysis is still manageable with the Direct FE2

TBeam model.
When viewed along the fibre direction, each ply now con-

sists of five by ten fibres with a diameter of 0.016 mm as
shown in Fig. 17, maintaining the same fibre volume frac-
tion as in previous examples. For each of the beams, four
plies are then rotated and stacked to form the respective anti-

Fig. 21 Moment-displacement plot of the symmetric beam with multi-
layer fibre lamina under cantilever load

symmetric [+ 45/− 45]2 and symmetric [+ 45/− 45]s ply
layups.

The beams still have an overall length of 5.65 mm, now
corresponding to a length of 40 RVEs, and are subjected to
the same loading conditions used in the previous examples
(Fig. 18).
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Fig. 22 Mises stress contour
(Pa) for the symmetric beam
with multi-layer fibre lamina
under cantilever load a TBeam
model, b magnified view of the
leftmost RVE, c corresponding
RVE from Example 2.2

4.3.1 Antisymmetric beamwith axial-twist coupling

The axial stress vs strain plot of the antisymmetric beam is
shown in Fig. 19. Compared to the axial stress–strain plot of
the beam inExample 2.1, it canbe seen that the corresponding
stiffness of the beam with smaller fibre sizes is only slightly
higher. The plots also show a similar degree of plasticity.

On the other hand, a comparison between the normal stress
contours with the RVEs in Examples 2.1 and 3.1 shows clear
differences as seen in Fig. 20. The stress contour in the RVE
with the smaller fibre sizes (RVE 3.1) shows that the fibres
bear larger stresses than that predicted with the RVE with
larger fibres (RVE 2.1). While RVE 3.1 shows inter-ply fibre
interface stresses that are largely similar to those seen in RVE
2.1, the intra-ply fibre interfaces inRVE3.1 are shown to have
areas with significant compressive stresses, which cannot be
observed in RVE 2.1 that has only a single fibre along the
height in each ply.

4.3.2 Symmetric cantilever beam

From the moment-displacement plot in Fig. 21, it can be
seen that this cantilever beam with smaller fibres is signifi-

cantly more flexible than the beam in Example 2.2. Unlike
the stretch-twist coupling example in Fig. 20 where axial
strains are uniform over the beam cross section, there is now
a strain gradient along the height of the beam. Consequently,
the spatial distribution of the heterogeneities strongly affects
the beam stiffness. This can be observed from the RVEMises
stress contours in Fig. 22b and c. TheRVEwith smaller fibres
(RVE 3.2) shows significant changes in the fibre stresses
along the height of the RVE, even within the same ply. This
cannot be captured by theRVEwith single large fibres in each
ply (RVE 2.2). Moreover, although both RVEs show similar
inter-ply fibre interface stresses, once again only RVE 3.2
is able to capture the intra-ply fibre interface stress distribu-
tions. Both RVEs also show changes in the stress levels along
the direction of the beam axis, with the changes being more
obvious in RVE 3.2.

Both these examples underscore the importance of mod-
elling heterogeneous structures with sufficient details to
obtain more accurate predictions from FE analyses. Hence,
the proposed TBeam model may prove useful in circum-
stances whereby detailed predictions are required but a full
DNS analysis remains unfeasible due to computational lim-
its, and the problem cannot be simply reduced to an RVE

123



Computational Mechanics (2022) 70:891–910 907

Fig. 23 RVE deformations with different shear angle constraints

analysis as in the case for homogeneous loads. Beyond com-
posites, the model can also be similarly applied to beam
problems involving other types of heterogeneous structures,
as long as the base material properties are known and an
appropriate RVE can be constructed.

5 Conclusions

ADirect FE2 homogenisation model for a beam element that
takes into account transverse shear deformations based on
the Timoshenko-Ehrenfest beam theory has been presented.
It is shown that the multiscale analysis can be carried out
as a single FE analysis on commercial codes and is eas-
ily implemented through two pre-processing steps—setting

up multipoint constraint equations to link macroscale and
mesoscale degrees of freedom and scaling the volume of the
mesoscale RVE mesh for energy consistency. The kinematic
downscaling of the shear angle is key to the development of
such a framework and is achieved by equating the moments
of axial displacement about the centroid of the beam cross
section at both macro- andmeso- scales. Examples in 2D and
3D demonstrate the proposed model accurately reproduces
predictions from DNS. Plots of beam displacements vs load
agree to within 2%. The coupling of axial stretching and
twisting in antisymmetric fibre reinforced composite beams
was also captured correctly. Besides similarity in structural
response, stress contours within the DNS model and the
RVEs of the FE2 model also matched closely. Because of
the reduction in degrees of freedom, large savings in com-
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Fig. 24 Shear strain contour plot for RVE with displacement moment
constraint

putational cost over DNS are achieved. For the 2D example
shown, the proposed FE2 model gave results similar to the
DNS model but took only 13% of the computational time.
Direct FE2 homogenization was also implemented based on
the kinematics of Euler beam theory. With no provision
for shear deformation, the model was significantly stiffer
compared to the DNSmodel and homogenized Timoshenko-
Ehrenfest beam for shear dominant loads. This further shows
that the proposed model is an important addition to the reper-
toire of homogenisation models developed.
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Appendix A: Imposition of an integral
constraint for shear

In this appendix, the thought process leading up to the inte-
gral constraint Eq. (32) will be presented. As previously
discussed in Sect. 3.3, the constraints arising from first-order
homogenisation alone are insufficient to constrain the RVE
and would result in spurious rotations. To illustrate this, we
consider a RVE located at an integration point of a homoge-
neous beam subjected to simple shear, i.e.,

ϕc
2 � ∇ϕc

2 � ∇uc1 � 0,∇uc3 > 0 (41)

For a homogeneous beam, the RVE is expected to deform
as shown in Fig. 23a to match the macroscale kinemat-
ics described above. However, the constraints presented in
Sect. 3.1 would result in the RVE undergoing a rotation about
the 2-axis as shown in Fig. 23b. It is pointed out that this is
not strictly a rigid body rotation as the RVE is stretched in
the beam’s axial direction to satisfy themacroscale constraint

∇uc1 � 0. A comparison with Fig. 23a shows that the shear
angle, ϕc

2, is not being imposed onto the RVE in Fig. 23b.
This is because the shear angle does not appear in any of the
constraint equations in Sect. 3.1.We present several attempts
to address this.

A natural first consideration would be to constrain û1 such
that it matches u1 in an average sense over the height of the
beam, i.e.,

∫
û1dx̂3 �

∫
u1dx̂3 (42)

For the simple shear described by Eq. (41), this is simply,

∫
û1dx̂3 � 0 (43)

Due to the periodicity of û1 from Eq. (14), such a con-
straint needs to be imposed on only one boundary of the
RVE, either left or right. However, imposing this constraint
still resulted in the rotation as seen in Fig. 23b.

Next, we attempt to impose ϕ̂2 to match ϕ2 in an average
sense over the height of the beam instead, i.e.,

1

hRV E

∫
ϕ̂2dx̂3 � ϕc

2 (44)

Note thatϕ2 is aDOFonly in themacroscale beamelement
but not theC0 solid elements used tomodel theRVE.As such,
a proxy is used for ϕ̂2 instead.

ϕ̂2 � −∂ û1
∂ x̂3

(45)

Substituting the Eq. (45) into Eq. (44) and performing the
integration yields the constraint

û B
1 − ûT1 � hRV Eϕc

2 (46)

where (·)B and (·)T refer to the bottom and top node of the
RVE boundary respectively. Imposing this constraint would
result in the deformed RVE as shown in Fig. 23c. The RVE
is seen to undergo a rotation that is constrained at the four
vertices, which is clearly incorrect.

The constraint in Eq. (43) is then revisited to understand
why it fails to enforce the correct shear angle ϕc

2 onto the
RVE and prevent the spurious rotations. From Fig. 23b, it
can be seen that the spurious rotation causes û1 of the RVE
boundary to deviate from u1 by a similar magnitude but in
opposite directions above and below the neutral axis, x̂3 � 0.
As a result, û1 and u1 still match in an average sense despite
significant local deviations.
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Fig. 25 Shear stress (Pa)
contours of beams under shear
a solid elements model, b direct
FE2 model with the shear angle
kinematic integral constraint

Instead of imposing û1 to match u1, we then attempt to
match the moments of û1 and u1 about the centroidal axis in
an average sense, i.e.,
∫

x̂3û1dx̂3 �
∫

x̂3u1dx̂3 (47)

Using Eq. (1) for the macroscale axial displacement and
performing the integration on the RHS, we then obtain the
constraint

∫
x̂3û1dx̂3 � − (hRV E )3

12
ϕc
2 (48)

Imposing the constraint in Eq. (32) onto the RVE results
in the deformation as seen in Fig. 23d—a close match to the
expected deformation.

Furthermore, the shear strain contour of theRVE in Fig. 24
shows that the transverse shear is low at the top and bottom
surfaces of the RVE and peaks towards the mid-height, con-
sistent with the theoretical description of transverse shear in
beams.

Although the transverse shear is not exactly zero at the
top and bottom surfaces, this is an expected effect from the
finite element discretisation. This can be seen from a sim-
ple comparison between solid elements and the proposed
Timoshenko Beam Direct FE2 model using a homogeneous
beam subjected to a transverse shear load. As seen in Fig. 25,
the beam modelled using solid elements also shows low but
nonzero transverse shear stresses at the top and bottom sur-
faces, and the shear stress contour from the Direct FE2 model
matches closely to that from the former.
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