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Abstract
In this article, the Lippmann–Schwinger equation for nonlinear elasticity at small-strains is extended by mixed strain/stress
gradient loadings. Suchproblemsoccur frequently, for instancewhenvalidating computational resultswith three-point bending
tests, where the strain in the bending direction varies linearly over the thickness of the sample. To control all components of the
effective strain/stress gradient the periodic boundary conditions are combined with constraints that enforce the periodically
deformed boundary to approximate the kinematically fully prescribed boundary in an average sense. The resulting fixed
point and Fletcher–Reeves algorithms preserve the positive characteristics of existing FFT-algorithms, like low memory
consumption and extraordinary computational speed. The accuracy and power of the proposed methods is demonstrated with
a series of numerical examples, including continuous fiber reinforced laminate materials.
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1 Introduction

The digital design of thin walled lightweight components
made of carbon-fiber-reinforced plastics (CFRP) needs accu-
rately calibrated material models on so-called coupon tests
[2]. Due to the high in-plane stiffness of the CFRP, tensile
measurements turn out to be very difficult, especially the
clamping method plays a fundamental role [28]. Therefore,
the effective mechanical material parameters are typically
measured by three-point or four-point bending tests [3,4,38].
The same holds true for materials like concrete, which have
a low tensile strength [1,24].

The measured plate bending stiffness can be predicted for
laminate structures made of unidirectional fiber-reinforced
laminas, see Fig. 1, very well by using the classical laminate
theory [26] in a two-step approach.

1. Calculate the effective lamina stiffness basedon the elastic
parameters of the fibers and matrix material and the vol-
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ume fraction and orientation of the fibers (see [26, Section
2.2.2]). This leads to the homogenized laminate structure
shown in Fig. 2.

2. Based on the stacking of the homogenized laminas, the
effective plate bending stiffness is obtained by using the
plane stress assumption (see [26, Section 3.3.5]).

If the lamina exhibits a more complex geometry, e.g., due
to fiber waviness, the first step can be replaced by numeri-
cal approaches. Especially, the FFT-based homogenization
method of Moulinec–Suquet [20,21] has proven to be a
powerful tool for the computation of effective mechanical
properties of micro-heterogeneous materials. An overview
of the improvements of this method is given in [31].

When nonlinear effects enter the stage, a direct simula-
tion of the bending is unavoidable. In the early contribution
of Nguyen et al. [22], the authors obtained the force and
moment resultants for plates by adding a linear function (with
zeromean value) to the ansatz of the strain field and derived a
Green’s operator formixed periodic and stress-free boundary
conditions. Recently, Gélébart [7] extended the first idea to
torsional loadings of beams and applied stress-free boundary
conditions by symmetrically extending the plate resp. beam
by pore space instead of using the special Green’s operator.
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Fig. 1 Upper half of the laminate which will be used in Sect. 5.5

Fig. 2 Upper half of the homogenized laminate, see Fig. 1

In spite of the significant progress accomplished in his contri-
bution, the loading direction still has to be grid-aligned. For
practical applications, however, it is often useful to apply a
bending in an arbitrary directionwithout using defective geo-
metrical operations, i.e., rotation of the original unit cell and
cutting out a smaller unit cell for computations. From a com-
putational perspective, the extension by pore space typically
decreases the convergence speed and enforces the usage of
finite element [16,34,42] or finite difference discretizations
[33].Evenmore severe is the limitation that only the9 compo-
nents of the strain gradient which control bending and torsion
(see Fig. 3) can be prescribed, and thus direct integration of
stress gradient loadings is impossible.

FollowingKouznetsova et al.[15]we combine the periodic
boundary condition for the displacement fluctuations with
kinematic constraints to resolve this issue (see Sect. 2). These
constraints enforce the periodically deformed boundary to
approximate the kinematically fully prescribed boundary in
an average sense and can be automatically fulfilled if the unit
cell has certain symmetries with respect to the applied strain
gradient loading. E.g., for pure bending loadings it would be
sufficient to use PMUBC boundary conditions [10] to obtain
zero entries for the 9 additional components of the strain
gradient. In the absence of such symmetries, the additional
constraints can even strongly influence the solution of pure
tensile tests, as we will show with an analytical solution for
a two-phase laminate.

Inspired by the higher order homogenization [37,43–45]
and multiscale second-order computational homogeniza-
tion [6,15,40] the kinematic constraints are formulated in
terms of strain gradient measures. By transferring the previ-
ously developed framework for arbitrary mixed strain/stress
boundary conditions [12] to mixed strain/stress gradients in
Sect. 3, we derive a Lippmann–Schwinger equation for small
strain elasticity with mixed first order boundary conditions.

The algorithms for solving the corresponding fixed point
iteration are discussed in Sect. 4. In Sect. 5 we first val-
idate our method with the analytical solution derived in
Sect. 2, and then compare it for linear elastic material behav-
ior with the classical laminate theory and numerical results of
Nguyen et al. [22] and Gélébart [7] for grid-aligned bending.
Afterwards, we extend this comparison to arbitrary loading
directions. Finally, we investigate the linear and nonlinear
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behavior of the 2mm thick (− 45◦/0◦/ + 45◦/0◦)s 1 lami-
nate shown in Fig. 1.

2 FFT-based homogenization with strain
gradient boundary conditions

Before introducing first order boundary conditions, we
will shortly repeat the definition of zero order boundary
conditions for FFT-based homogenization [20,21]. For pre-
scribed macroscopic symmetric strain E ∈ Sym3 and
given stress/strain relation σ(ε), where we suppress the
x-dependence for notational clarity, we seek a periodic dis-
placement fluctuation u : Y → R3 on the unit cell Y =
[−L1/2, L1/2] × [−L2/2, L2/2] × [−L3/2, L3/2] satisfy-
ing the equilibrium equation

divσ(ε) = 0, ε = E + ∇su, (1)

where ∇su = 1
2 (∇u + ∇uT ) denotes the strain due to the

displacement fluctuation.
The volumetric components of the macroscopic strain E

can be used to apply tensile loads, while the diagonal com-
ponents allow shear loads to be imposed. For linear elastic
material behavior, these load cases are used to compute the
effective linear elastic stiffness of the material.

2.1 Strain gradient boundary conditions

A naive extension of the equilibrium equation (1) with first
order boundary conditions may be obtained by modifying
the corresponding optimization problem

〈w(E + ∇su)〉Y → min
u∈H1

# (Y )3
(2)

for the stress potentialw, where the subscript # denotes func-
tion spaces with vanishing mean value [11].

By adding a linear function E∇ · x to the argument of the
stress potential resp. the definition of ε, the bending response
of the material can be computed by solving

〈w(E + E∇ · x + ∇su)〉Y → min
u∈H1

# (Y )3
(3)

1 The lamination scheme of a laminate is denoted following Reddy
[26] by (α/β/γ /δ/. . .), where α is the orientation of the first ply, β is the
orientation of the second ply, and so on. The plies are counted in the
positive thickness direction. This notation also implies that all layers
are of the same thickness and made of the same material.
For a symmetric laminate, the upper half through the laminate thickness
is a mirror image of the lower half. The laminate shown in Fig. 1 is
shortly denoted by (− 45◦/0◦/+ 45◦/0◦)s = (− 45◦/0◦/45◦/0◦/0◦/+
45◦/0◦/ − 45◦).

Its solution satisfies the equilibrium equation

divσ(ε) = 0, ε = E + E∇ · x + ∇su. (4)

With E∇ ∈ Sym3
3 we want to prescribes the macroscopic

gradient of ε. The relevant components of E∇ for bending
loadings are

E∇
112, E∇

113, E∇
221, E∇

223, E∇
331, E∇

332 (5)

and for torsional loadings

E∇
231, E∇

132, E∇
123. (6)

These loadings are visualized in Fig. 3.
Similar to zero order boundary conditions, where the

macroscopic strain E is determined by volume averaging of
ε, we want an easy to compute measure for the macroscopic
strain gradient E∇ . Inspired by the work of Kouznetsova et
al.[15, equation (A4)] we define the effective bending resp.
torsion of the unit cell Y as

〈ε ⊗ x〉∇Y =
∫

Y ε ⊗ x dx
∫

Y (1∇ · x) ⊗ x dx
(7)

with component wise division and 1∇ ∈ Sym3
3 denoting the

constant strain gradient tensor with only ones, i.e., 1∇
i jk = 1

for i, j, k = 1, 2, 3.
By using integration by parts we can show that the fol-

lowing relation holds

〈εi j⊗xk〉∇Y

=
∫

Y

[
Ei j + E∇

i jl xl + 1
2

(
∂ui
∂x j

+ ∂u j
∂xi

)]
xk dx

∫
Y (x1 + x2 + x3)xk dx

= E∇
i jk +

1
2

∫
Y

(
∂ui
∂x j

xk + ∂u j
∂xi

xk

)
dx

∫
Y x2k dx

= E∇
i jk + 6

L2
k

〈uiδ jk + u jδik〉Y +
k

,

(8)

where 〈·〉Y +
k
denotes the average value over Y +

k = x ∈ Y :
xk = Lk/2. Consequently, only the components of the
macroscopic strain gradient for bending (5) and for torsion
(6) directly coincide with the definition (7) for periodic dis-
placement fields u.

2.2 Lippmann–Schwinger reformulation for strain
gradient boundary conditions

Defining ε̃ = E +∇su aswell as σ̃ = σ(ε̃+E∇ ·x) allows us
to interpret the problem (3) as zeroth-order homogenization
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Fig. 3 Bending and torsional loadings

with a fancy stress operator. The corresponding Lippmann–
Schwinger equation reads

ε̃ = E − Γ 0 : (σ̃ (ε̃) − C0 : ε̃), (9)

where Γ 0 = ∇s G0div : [L2(Y )]3×3 → [L2(Y )]3×3 denotes
the Lippmann–Schwinger operator and G0 : [H−1

# (Y )]3 →
[H1

# (Y )]3 the solution operator of the linear reference prob-
lem, which associates to a right-hand side f the solution of
the variational equation

∫

Y
∇sv : C0 : ∇su dx = −

∫

Y
f · v dx, (10)

for all v ∈ [H1
# (Y )]3. Using the definitions for ε̃ and σ̃ we

obtain

ε = E + E∇ · x − Γ 0 :
(
σ(ε) − C0 : ε

)

− Γ 0 : C0 : E∇ · x .

(11)

IfC0 is isotropic, i.e.,C0
i jkl = μ0(δikδ jl + δilδ jk)+λ0δikδ jl

with Lamé’s moduli λ0 and μ0, this equation can be sim-
plified. Let u0

E∇ ∈ H1
# (Y )3 be the periodic displacement

fluctuation defined by

u0
E∇ (x) = 1

2

⎛

⎝
E∇

⊥0111
x21 + E∇

122x22 + E∇
133x23

E∇
211x21 + E∇

⊥0222
x22 + E∇

233x23
E∇
311x21 + E∇

322x22 + E∇
⊥0333

x23

⎞

⎠ (12)

with

E∇
⊥0111 = E∇

111 + λ0

2μ0 + λ0
(E∇

221 + E∇
331), (13)

E∇
⊥0222 = E∇

222 + λ0

2μ0 + λ0
(E∇

112 + E∇
332), (14)

E∇
⊥0333 = E∇

333 + λ0

2μ0 + λ0
(E∇

113 + E∇
223) (15)
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and let f 0
E∇ = div(C0 : E∇ · x) ∈ H−1

# (Y )3 be the constant

function with components fi (x) ≡ C0
i jkl E∇

kl j , i = 1, 2, 3.

Using the definition of C0 we obtain

f 0E∇ = 2μ0

⎛

⎜
⎝

E∇
111 + E∇

122 + E∇
133

E∇
211 + E∇

222 + E∇
233

E∇
311 + E∇

322 + E∇
333

⎞

⎟
⎠

+ λ0

⎛

⎜
⎝

E∇
111 + E∇

221 + E∇
331

E∇
112 + E∇

222 + E∇
332

E∇
113 + E∇

223 + E∇
333

⎞

⎟
⎠

(16)

By simple calculus we can show for all interior points of Y

div
(
C0 : ∇su0

E∇
)

= f 0E∇ . (17)

In other words, u0
E∇ is the solution of the reference problem

(10) for f 0
E∇ , i.e. u0

E∇ = G0 f 0
E∇ = G0div(C0 : E∇ · x). For

the symmetric strain we obtain using Voigt notation

Γ 0 : C0 : E∇ · x =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

E∇
⊥0111

0 0
0 E∇

⊥0222
0

0 0 E∇
⊥0333

0 E∇
232 E∇

233
E∇
131 0 E∇

133
E∇
121 E∇

122 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
=:E∇

⊥0

·x (18)

Consequently, the extended Lippmann–Schwinger equation
(11) can be written as

ε = E + E∇
‖0 · x − Γ 0 :

(
σ(ε) − C0 : ε

)
, (19)

with

E∇
‖0 = E∇ − E∇

⊥0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

E∇
‖0111 E∇

112 E∇
113

E∇
221 E∇

‖0222 E∇
223

E∇
331 E∇

332 E∇
‖0333

E∇
231 0 0
0 E∇

132 0
0 0 E∇

123

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(20)

and

E∇
‖0111 = − λ0

2μ0 + λ0
(E∇

221 + E∇
331), (21)

E∇
‖0222 = − λ0

2μ0 + λ0
(E∇

112 + E∇
332), (22)

E∇
‖0333 = − λ0

2μ0 + λ0
(E∇

113 + E∇
223). (23)

Therefore, a fixed-point iteration based on this extended
Lippmann–Schwinger equation (19) allows to prescribe only
the components of E∇

‖0 visualized in Fig. 3. This confirms the
observation of Gélébart [7], that “...due to the use of periodic
boundary conditions, among the 18 strain gradient compo-
nents, only 9 can be really prescribed.”. The remaining 9
components are an outcome of the equilibrium equation (4).

In the following Sect. 2.3 we will heavily rely on
Eq. (8) to incorporate additional constraints into our extended
Lippmann–Schwinger equation (19) that will enforce the
equality of 〈ε ⊗ x〉∇Y and E∇ for all components.

2.3 Kinematically constrained extended
Lippmann–Schwinger equation

Without being able to to subject the unit cell to the full
gradient E∇ , it is impossible to incorporate stress gradient
loadings into the extended Lippmann–Schwinger equation
(19). In other words, more restrictive boundary condi-
tions are needed for mixed strain/stress gradient loadings.
Kouznetsova et al. introduced the concept of “generalized”
periodicity, which adds the missing 9 constraints [15, equa-
tion (25)]

〈ui 〉Y +
k

= 0, i, k = 1, 2, 3. (24)

Then the deformed boundary approximates the kinematically
fully prescribed boundary in an average sense. Therefore,
in the following we call the generalized periodic boundary
conditions of Kouznetsova et al. more expressively kinemat-
ically constrained periodic. According to (8) the kinematic
constraints (24) are equivalent to

〈∇su ⊗ x〉∇Y = 0 (25)

and therefore all components of the macroscopic strain gra-
dient can be obtained by volume averaging of the local strain
field

〈ε ⊗ x〉∇Y = E∇ . (26)

The (linear) constrained optimization problem for the bend-
ing response under kinematically constrained periodicity
condition reads

〈w(E + E∇ · x + ∇su)〉Y → min
u∈H1

# (Y )3,〈∇s u⊗x〉∇Y =0
(27)
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and has the Lagrangian saddle-point formulation

L(u,Λ∇) = 〈w(E + E∇ · x + ∇su)〉Y +
Λ∇ ... 〈∇su ⊗ x〉Y

(28)

L(u,Λ∇) → min
u∈H1

# (Y )3
max

Λ∇∈Sym3
3

(29)

By endowing the space H1
# (Y )3 with the Korn-type inner

product

〈u, v〉H1
#

= 〈∇su : C0 : ∇sv〉Y (30)

we can compute the KKT condition as

0 = G0div
[
σ(E + E∇ · x + ∇su) + Λ∇ · x

]
, (31)

0 = 〈∇su ⊗ x〉Y . (32)

Therefore, the alternating gradient descent ascent method
(Alt-GDA) [47] for the primal-dual pair (u,Λ∇) reads

un+1 = un − snG0div
[
σ(E + E∇ · x + ∇sun)

+Λ∇,n · x
]
, (33)

Λ∇,n+1 = Λ∇,n + tn〈∇sun+1 ⊗ x〉Y , (34)

for a sequence of positive step-sizes sn and tn . To turn Λ∇
into a stress gradient we endow additionally Sym3

3 with the
inner product

〈E∇ , F∇〉Sym3
3

= E∇ ... (Y∇ ... D0 : F∇) (35)

where Y∇ is the six-order tensor that scales every entry of
a third order tensor with the corresponding entry of 〈(1∇ ·
x)⊗ x〉Y . Then the gradient of L(u,Λ∇) with respect to Λ∇
is changed to C0 : 〈∇su ⊗ x〉∇Y and the Alt-GDA algorithm
reads

un+1 = un − snG0div
(
σ(E + E∇ · x + ∇sun)

+Λ∇,n · x
)

, (36)

Λ∇,n+1 = Λ∇,n + tnC0 : 〈∇sun+1 ⊗ x〉∇Y , (37)

For tn = 1 and sn = 1 we obtain using ∇sun = Γ 0 : C0 :
∇sun for the strain fields the following GDA algorithm

εn+1 = E + E∇ · x − Γ 0 :
(
σ(εn) − C0 : εn

+
[
Λ∇,n + C0 : E∇]

· x
)

, (38)

Λ∇,n+1 = Λ∇,n + C0 : 〈∇sun+1 ⊗ x〉∇Y . (39)

This can be further simplified to

εn+1 = E +
[

E∇
‖0 − Λ

∇,n
⊥0

]
· x

− Γ 0 :
(
σ(εn) − C0 : εn

)
, (40)

Λ∇,n+1 = Λ∇,n + 〈εn+1 ⊗ x〉∇Y − E∇ . (41)

or equivalently

εn+ 1
2 = E + E∇

‖0 · x − Γ 0 :
(
σ(εn) − C0 : εn

)
, (42)

Λ∇,n+1 = 〈εn+ 1
2 ⊗ x〉∇Y − E∇ , (43)

εn+1 = εn+ 1
2 − Λ

∇,n
⊥0 · x . (44)

This can be transformed into

εn+ 1
2 = E − Γ 0 :

(
σ(εn) − C0 : εn

)
, (45)

Λ∇,n+1 = E∇ − 〈εn+ 1
2 ⊗ x〉∇Y , (46)

εn+1 = εn+ 1
2 +

[
E∇

‖0 + Λ
∇,n
⊥0

]
· x . (47)

Therefore, the limit strain field ε satisfies the kinematically
constrained extended Lippmann–Schwinger equation

ε + Γ 0 :
(
σ(ε) − C0 : ε

)

= E +
[

E∇ +〈Γ 0 :
(
σ(ε) − C0 : ε

)
⊗ x〉∇Y ,⊥0

]
· x . (48)

and its corresponding Lagrange parameters can be computed
by

Λ∇ = E∇ + 〈Γ 0 :
(
σ(ε) − C0 : ε

)
⊗ x〉∇Y . (49)

2.4 Kinematically constrained periodic boundary
conditions

To better understand the effect of the kinematic constraints
let us consider the two-phase laminatewith thickness h = L3

shown in Fig. 4 under pure tensile loading in x1-direction,
i.e.

E = (
E11 0 0 0 0 0

)T
, E∇ = 0 (50)

The two phases of the laminate are isotropic linear elastic
withwith Lamé’smoduliλ± andμ±. According toAppendix
A of [13] the solution of the unconstrained problem (2), i.e.
for periodic boundary conditions, has the phasewise constant
strain

ε± = (
E11 0 ± a3

2 0 0 0
)T

. (51)
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h
2

−h
2

λ+, μ+

λ−, μ−

x1

x3

Fig. 4 Two-phase laminate

with the rank-one jump given by

a3 = 2E11
λ− − λ+

λ− + λ+ + 2(μ− + μ+)
. (52)

This solution has the in general non vanishing effective strain
gradient component

〈ε33 ⊗ x3〉∇Y =
∫ h/2
0 a3x3dx3
∫ h/2
−h/2 x23dx3

= 3a3
2h

(53)

To obtain the solution for kinematically constrained bound-
ary conditions (27) we need to start with a phase wise affine
liner ansatz

ε± = (
E11 0 a±

3 + b±
3 x3 0 0 0

)T
(54)

for the strain of the solution. By enforcing the effective strain
and strain gradient as well as the continuity of the normal
stress at the interface, i.e.

〈ε33〉Y =
∫ h/2
0 ε+

33dx3 + ∫ 0
−h/2 ε−

33dx3

h
= 0, (55)

〈ε33 ⊗ x3〉∇Y =
∫ h/2
−h/2 ε33x3dx3
∫ h/2
−h/2 x23dx3

= 0, (56)

σ+
33(x1, x2, 0) − σ−

33(x1, x2, 0) = 0 (57)

three of the four parameters of the ansatz can be elimi-
nated and we are left with an one dimensional minimization
problem for the elastic energy. Simple calculus leads to the
following solution

a±
3 = ±γ

(
λ± + 7λ∓ + 2(μ± + 7μ∓)

)
E11, (58)

b±
3 = −24γ

(
λ∓ + 2μ∓) E11

h
(59)

−0.5 0 0.5

0

10

x3[mm]

St
ra

in
[%

]

ε11 - Periodic ε11 - Kinematic. constr. periodic
ε33 - Periodic ε33 - Kinematic. constr. periodic

Fig. 5 Local strain field of the two-phase laminate shown in Fig. 4
under pure tensile loading

where

γ = λ− − λ+

λ̃ + 4λ+(7μ− + μ+) + 4λ−(μ− + 7μ+) + μ̃
(60)

with

λ̃ = (λ−)2 + 14λ−λ+ + (λ+)2, (61)

μ̃ = (μ−)2 + 14μ−μ+ + (μ+)2. (62)

Due to

divσ± = b±
3

⎛

⎝
λ±
λ±

(λ± + 2μ±)

⎞

⎠ (63)

= −24γ
E11

h

⎛

⎝
λ± (

λ∓ + 2μ∓)

λ± (
λ∓ + 2μ∓)

(λ± + 2μ±)
(
λ∓ + 2μ∓)

⎞

⎠ (64)

the corresponding stress does not satisfy the equilibrium
equation (1) for γ = 0, i.e. λ− = λ+.

In Figs. 5 and 6 the non vanishing components of the strain
resp. stress fields are visualized for E+ = 1 GPa, E− = 10
GPa, ν± = 0.3, h = 1mm and E11 = 10%. Clearly, even at
the chosen lowphase contrast, the local stress and strain fields
differ significantly due to the kinematic constraints. Also the
average stresses change notably. Additionally, the solution
for kinematically constrained periodic boundary conditions
depends on the choice of the center point of the RVE. When
choosing a point in the middle of one of the two layers as
the center point, the symmetries of the RVE automatically
enforce the kinematic constraints and both solutions - with
and without kinematic constraints - would coincide.

For the situation at hand, the displacements for kinemat-
ically constrained periodic boundary conditions also satisfy
zero Dirichlet boundary conditions, compare Fig. 7. Never-
theless, the displacements are completely different inside the
RVE, because the kinematically constrained solution does
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Fig. 7 Local displacement field of the two-phase laminate shown in
Fig. 4 under pure tensile loading

not fulfill the equilibrium equation (1). Put differently, in
general it is impossible to satisfy the equilibrium equation
(1), periodic boundary conditions and the kinematic con-
straints all at once. The solution for kinemtically constrained
periodic boundary conditions is the energetic optimal defor-
mation that satisfies the periodic boundary conditions and
at the same time the kinematic boundary conditions in an
average sense.

In Sect. 5 we will use this solution to validate our numer-
ical algorithms and to investigate the local solution quality
for different discretizations. Since from an engineering point
of view non-symmetric plates that lead to effective bending
under tensile loading are not desirable, all other considered
examples are symmetric with respect to the center plane.
Consequently, the additional constraintswould have no effect
on the results of (in-plane) tensile simulations andwe can use
the standard FFT-based algorithms for computing the tensile
stiffness then.

Before proceeding with mixed first order boundary con-
ditions, some remarks are in order.

1. Due to the identity

E∇ · x : ∇su = E∇ ... ∇su ⊗ x (65)

the constraints (25) are equivalent to

〈E∇ · x : ∇su〉∇Y = 0 ∀E∇ ∈ Sym3
3 (66)

which makes the decomposition

ε = E + E∇ · x + ∇su (67)

unique.
2. The solution of the kinematically constrained extended

Lippmann–Schwinger equation (48) will in general no
longer satisfy the equilibrium equation (4).

3. The additional constraints (24) makes it possible to use
periodic boundary conditions for the micro scale of a
gradient-enhanced FE2 scheme. Kouznetsova et al. [15]
implemented these constraints for the displacements.

4. For displacement based FFT-based schemes [16,18] the
constraints can be enforced by using the surface inte-
grals (24) and a kinematically constrained extended
Lippmann–Schwinger equation for the displacements
similar to (48) can be derived.

5. When theNyquist frequencies are set to zero [41], the rela-
tion (18) is only approximately correct but the resulting
linear difference is removed due to the additional con-
straints (25).

6. The above formulas for E∇
‖0 and E∇

⊥0 simplify when the
reference material is chosen as a scalar multiple of the
identity [11, Section 3.1]. Nevertheless, the derivation
continues to hold for general isotropic C0.

3 FFT-based homogenization withmixed
first order boundary conditions

Thanks to the developments of the previous section, i.e. the
kinematically constrained extended Lippmann–Schwinger
equation (48), the full gradient E∇ can be prescribed. We
now have the tools in hand to integrate stress gradient bound-
ary conditions, which we will present below, and thus derive
a kinematically constrained extended Lippmann–Schwinger
equation for mixed first-order boundary conditions.

3.1 Stress gradient boundary conditions

Similar to the strain gradient boundary conditions, we must
first introduce a measure of the effective stress gradient that
is easy to compute.
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Using the following extension of the Hill–Mandel energy
condition

〈σ : ε〉Y

= 〈σ : E〉Y + 〈σ : E∇ · x〉Y + 〈σ : ∇su〉Y

(31)= 〈σ 〉Y : E + 〈σ ⊗ x
... E∇〉Y − 〈Λ∇ · x : ∇su〉Y

= 〈σ 〉Y : E + 〈σ ⊗ x〉Y
... E∇ − Λ∇ ... 〈∇su ⊗ x〉Y

(32)= 〈σ 〉Y : E + 〈σ ⊗ x〉Y
... E∇ (68)

Kouznetsova et al.[15, equation (38)] and Schmidt et al. [29]
introduced the effective higher-order stress measure

〈σ ⊗ x〉Y = 1

|Y |
∫

Y
σ ⊗ x dx . (69)

Therefore, we can introduce as an alternative higher order
boundary condition the effective stress gradient S∇ ∈ Sym3

3
defined by

S∇ = 〈σ ⊗ x〉∇Y =
∫

Y σ ⊗ x dx
∫

Y (1∇ · x) ⊗ x dx
. (70)

In contrast to the effective strain gradient studied so far, all
components of the effective stress gradient can be computed
from the local stress field σ for any periodic displacement
field u.

Before extending the Lippmann–Schwinger equation to
mixed first order boundary conditions in the next section,
we note that the same extension (68) of the Hill–Mandel
lemma is used for higher order homogenization of first strain
gradient theories. Themacroscopic energy density for elastic
material behavior is of the form [37]

〈σ : ε〉Y = E : C0,0 : E + 2L E : C0,1 : E∇

+ L2E∇ : C1,1 : E∇ ,
(71)

with L = L1 = L2 = L3. Consequently, by solving (27) for
a suitable sequence of loads E, E∇ , one can obtain the effec-
tive stiffnessmatricesC0,0,C1,1 andC0,1. Keep inmind, that
e.g. for the two-phase laminate shown in Fig. 4, the effec-
tive stiffness matrix C0,0 in general does not coincide with
the effective stiffness obtained by standard homogenization
methods.

3.2 Mixed boundary conditions and projectors

To conveniently describe mixed zero order boundary condi-
tions Kabel et al. [12] made use of projectors, i.e., 4-tensors
P with minor symmetries which are idempotent

P : P : T = P : T for all T ∈ Sym3 (72)

and have major symmetry

〈P : S, T 〉 = 〈S,P : T 〉 for all S, T ∈ Sym3 . (73)

The first property (72) has the important consequence that
every T ∈ Sym3 can be (uniquely) decomposed in the form

T = T1 + T2 with P : T1 = T1 and P : T2 = 0. (74)

Furthermore, T1 and T2 can be computed via

T1 = P : T and T2 = T − T1 = Q : T (75)

with the complementary projector Q = I − P, where I is
the identity 4−tensor, i.e., I : T = T for all T ∈ R3×3.
Furthermore, the operators P and Q annihilate each other,
i.e.,

P : Q = 0 and Q : P = 0. (76)

For higher order mixed boundary conditions we addition-
ally need projectors for 3-tensors. For the applications we
have in mind it is sufficient to consider only 6-tensors P∇
that can be represented by three projectors P1,P2 and P3

for 2-tensors in the following way

P∇
i jklmn = δknP

k
i jlm . (77)

Using the identity 6−tensor I∇ , i.e., I∇ ... T ∇ = T ∇ for
all T ∇ ∈ R3×3×3, we obtain the complementary projector
Q∇ = I∇ − P∇ .

With these preparations in hand, we can neatly formulate
mixed boundary conditions for the kinematically constrained
extendedLippmann–Schwinger equation (48). Given projec-
tors P,P∇ and some E, S ∈ Sym3 as well as E∇ , S∇ ∈
Sym3

3 we seek periodic u : Y → R3 satisfying the optimiza-
tion problem (27) and the boundary conditions

P : 〈ε〉Y = E, Q : 〈σ(ε)〉Y = S, (78)

P∇ ... 〈ε ⊗ x〉∇Y = E∇ , Q∇ ... 〈σ(ε) ⊗ x〉∇Y = S∇ , (79)

where 〈ε〉Y and 〈σ(ε)〉Y are denoting the average of the strain
resp. stress field over Y . Similarly 〈ε ⊗ x〉∇Y is the effective
bending resp. torsion and 〈σ(ε) ⊗ x〉∇Y is the effective stress
gradient defined in Eq. (7) resp. (70).

Dimension counting shows that (78) and (79) are overde-
termined if E and S or E∇ and S∇ are unconstrained. Due to
the mutual annihilation property (76), a necessary condition
for (78) and (79) to be reasonable are the four constraints

Q : E = 0 P : S = 0, (80)

Q∇ ... E∇ = 0 P∇ ... S∇ = 0, (81)
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rendering the optimization problem (27) with boundary con-
ditions (78) and (79) sensible. To illustrate the concept, we
give some examples for the choice of the projectors.

1. If P = I and P∇ = I∇ , the boundary conditions are
equivalent to the constraints 〈ε〉Y = E and 〈ε ⊗ x〉∇Y =
E∇ . Using for example the loading (in Voigt notation)

E =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, E∇ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 E∇
113

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(82)

allows to prescribe the bending visualized in the top left
of Fig. 3.

2. By rotating these loadings E and E∇ by 45◦ in the x1-x2
plane, the bending shown in Fig. 8 can be applied.

3. For the projectors P = 0 and P∇ = 0 the stresses
〈σ(ε)〉Y = S and 〈σ(ε) ⊗ x〉∇Y = S∇ are prescribed. By
multiplying the stress gradient with the half of the thick-
ness of a plate resp. the length of a bar, one can easily
estimate the maximal occurring tensile stress in the outer
layers of a bended plate resp. the maximal shear stress at
the end of a twisted bar.

4. Bending of a plate in the x1-x2 plane under plane stress
conditions can be performed forP = I−e3⊗e3⊗e3⊗e3
andPi = I−ei ⊗ei ⊗ei ⊗ei , i = 1, 2, 3, with the loading

E = (
0 0 ∗ 0 0 0

)T
, S = (∗ ∗ 0 ∗ ∗ ∗ )T

(83)

and

E∇ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ 0 E∇
113

0 ∗ 0
0 0 ∗
0 0 0
0 0 0
0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, S∇ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 ∗ ∗
∗ 0 ∗
∗ ∗ 0
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (84)

In contrast to example 1, the plate can become thinner
with this type of boundary conditions due to the Poisson
effect.

5. By also rotating the projectors by 45◦ in addition to the
loads in example 2, the bending shown in Fig. 8 can also
be performed under plane stress conditions. A detailed
comparison of the results of this simulation setup with
laminate theory is presented in Sect. 5.

Similar to the work at hand, Schneider [32] extended the
usage of projectors. In his work, he uses projectors to apply
mixed zero order boundary conditions in polarization meth-
ods.

x

y
z

E∇
113

Fig. 8 Rotated bending loading

3.3 The kinmatically constrained
Lippmann–Schwinger equation for mixed
boundary conditions

Given projectors P,P∇ and prescribed loads E, S ∈ Sym3
as well as E∇ , S∇ ∈ Sym3

3 satisfying the constraints (80)
and (81) the mixed boundary conditions (78) and (79) are
incorporated into the optimization problem (27)

〈w(ε̄+ε̄∇ ·x+∇su)〉Y −ε̄ : S−ε̄∇ ... S∇ → min
u∈H1

# (Y )3

P:ε̄=E
P∇ ...ε̄∇=E∇

〈∇s u⊗x〉∇Y =0

(85)

Following the ideas of Sect. 2.3 we use this constrained
optimization problem to derive an extended Lippmann–
Schwinger equation that generalizes (48) bymixed boundary
conditions.

The constrained optimization problem (85) has the
Lagrangian saddle-point formulation

L(u, ε̄, ε̄∇ ,Λ∇) → min
u∈H1

# (Y )3

P:ε̄=E
P∇ ...ε̄∇=E∇

max
Λ∇∈Sym3

3

(86)

with

L(u, ε̄, ε̄∇ ,Λ∇) = 〈w(ε̄ + ε̄∇ · x + ∇su)〉Y

−ε̄ : S − ε̄∇ ... S∇ + Λ∇ ... 〈∇su ⊗ x〉Y . (87)

By endowing the affine linear subspaces P : ε̄ = E of Sym3
and P∇ ... ε̄∇ = E∇ of Sym3

3 with the inner products

〈ε̄1, ε̄2〉P:ε̄=E = ε̄1 : Q : C0 : Q : ε̄2, (88)

〈ε̄∇
1 , ε̄∇

2 〉P∇:ε̄∇=E∇ = ε̄∇
1
... Y∇ ... Q∇ ... C0 : Q∇ ... ε̄∇

2 (89)

andkeeping the inner product for the spaceSym3
3 ofLagrange

parameters

〈Λ∇ , M∇〉Sym3
3

= Λ∇ ... (Y∇ ... D0 : M∇). (90)
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Using the Moore–Penrose pseudoinverse [19,25] M =
(
Q : C0 : Q)†

as well as M∇ = (
Q∇ ... C0 : Q∇)†

whose
components are given by

M∇
i jklmn = δkn

(
Qk : C0 : Qk

)†

i jlm
, (91)

we can compute the KKT condition as

0 = G0div
[
σ(ε̄ + ε̄∇ · x + ∇su) + Λ∇ · x

]
, (92)

0 = M : (Q : 〈σ(ε)〉Y − S), (93)

0 = M∇ ... (Q∇ ... 〈σ(ε) ⊗ x〉∇Y − S∇), (94)

0 = C0 : 〈∇su ⊗ x〉∇Y . (95)

Therefore, the alternating gradient descent ascent (Alt-GDA)
[47] reads

un+1 = un − snG0div
[
σ(ε̄n + ε̄∇,n · x + ∇sun)

+Λ∇,n · x
]
, (96)

ε̄n+1 = ε̄n − snM : (Q : 〈σ(ε)〉Y − S), (97)

ε̄∇,n+1 = ε̄∇,n − snM∇ ... (Q∇ ... 〈σ(ε) ⊗ x〉∇Y − S∇), (98)

Λ∇,n+1 = Λ∇,n + tnC0 : 〈∇sun+1 ⊗ x〉∇Y , (99)

for a sequence of positive step-sizes sn and tn . For tn = 1
and sn = 1 we obtain using ∇sun = Γ 0 : C0 : ∇sun for the
strain fields the following GDA algorithm

εn+1 = ε̄n+1 + ε̄∇,n+1 · x − Γ 0 :
(
σ(εn) − C0 : εn

+
[
Λ∇,n + C0 : ε̄∇,n

]
· x

)
, (100)

ε̄n+1 = ε̄n − M : (Q : 〈σ(εn)〉Y − S), (101)

ε̄∇,n+1 = ε̄∇,n − M∇ ... (Q∇ ... 〈σ(εn) ⊗ x〉∇Y − S∇), (102)

Λ∇,n+1 = Λ∇,n + C0 : 〈∇sun+1 ⊗ x〉∇Y . (103)

Due to

ε̄n − Q : ε̄n = P : ε̄n = E, (104)

ε̄∇,n − Q∇ ... 〈ε̄∇,n ⊗ x〉∇Y = P∇ : ε̄∇,n = E∇ (105)

the update of the average strain and its gradient can bewritten
as

ε̄n+1 = E + M : (S − Q : C0 : E)

− M : Q : 〈σ(εn) − C0 : εn〉Y , (106)

ε̄∇,n+1 = E∇ + M∇ ...
(

S∇ − Q∇ ... C0 : E∇)

− M∇ ... Q∇ ... 〈(σ (εn) − C0 : εn) ⊗ x〉∇Y . (107)

The two other equations can be simplified to

εn+1 = ε̄n+1 +
[
ε̄
∇,n+1
‖0 − Λ

∇,n
⊥0

]
· x

− Γ 0 :
(
σ(εn) − C0 : εn

)
, (108)

Λ∇,n+1 = Λ∇,n + 〈εn+1 ⊗ x〉∇Y − ε̄∇,n+1. (109)

or equivalently

εn+ 1
2 = ε̄n+1 + ε̄

∇,n+1
‖0 · x

− Γ 0 :
(
σ(εn) − C0 : εn

)
, (110)

Λ∇,n+1 = 〈εn+ 1
2 ⊗ x〉∇Y − ε̄∇,n+1, (111)

εn+1 = εn+ 1
2 − Λ

∇,n
⊥0 · x . (112)

This can be transformed into

εn+ 1
2 =ε̄n+1 − Γ 0 :

(
σ(εn) − C0 : εn

)
, (113)

Λ∇,n+1 =ε̄∇,n+1 − 〈εn+ 1
2 ⊗ x〉∇Y , (114)

εn+1 =εn+ 1
2 +

[
ε̄
∇,n+1
‖0 + Λ

∇,n
⊥0

]
· x . (115)

so that the complete algorithm using the variable τ for the
polarization reads

τ n = σ(εn) − C0 : εn (116)

ε̄n+1 =E + M : (S − Q : C0 : E)

− M : Q : 〈τ n〉Y , (117)

ε̄∇,n+1 = E∇ + M∇ ...
(

S∇ − Q∇ ... C0 : E∇)

− M∇ ... Q∇ ... 〈τ n ⊗ x〉∇Y , (118)

εn+ 1
2 = ε̄n+1 − Γ 0 : τ n, (119)

Λ∇,n+1 = ε̄∇,n+1 − 〈εn+ 1
2 ⊗ x〉∇Y , (120)

εn+1 = εn+ 1
2 +

[
ε̄
∇,n+1
‖0 + Λ

∇,n
⊥0

]
· x . (121)

Therefore, the limit strain field ε satisfies the kinematicall
constrained extended Lippmann–Schwinger equation with
mixed first order boundary conditions

ε +
(
Γ 0 + M : Q : 〈·〉Y −

[
〈Γ 0 : · ⊗ x〉∇Y ,⊥0

− M∇ ... Q∇ ... 〈· ⊗ x〉∇Y
]

· x
)

: (σ (ε) − C0 : ε)

= E + M :
(

S − Q : C0 : E
)

+
[

E∇ + M∇ ...
(

S∇ − Q∇ ... C0 : E∇)]
· x, (122)
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where 〈Γ 0 : ·⊗x〉∇
Y ,⊥0 andM

∇ ... Q∇ ... 〈·⊗x〉∇Y are shorthand
notations for the operators

T �→ 〈Γ 0 : T ⊗ x〉∇Y ,⊥0 , T : Y → Sym3 (123)

and

T �→ M∇ ... Q∇ ... 〈T ⊗ x〉∇Y , T : Y → Sym3 . (124)

The corresponding Lagrange parameters of the strain field ε

can be computed by

τ = σ(ε) − C0 : ε (125)

Λ∇ = E∇ + M∇ ...
(

S∇ − Q∇ ... C0 : E∇)

− M∇ ... Q∇ ... 〈τ ⊗ x〉∇Y + 〈Γ 0 : τ ⊗ x〉∇Y . (126)

The equation (122) can be simplified if the projectorsP,P∇
and the reference tensor C0 commute, i.e.,

C0 : P : T = P : C0 : T ,

C0 : P∇ ... T ∇ = P∇ ... C0 : T ∇ ,
(127)

holds for all T ∈ R3×3 and T ∇ ∈ R3×3×3. This is automat-
ically satisfied if C0 is chosen as a multiple of the identity
tensor I. Conversely, (127) holds for all projectors P,P∇ if
and only if C0 is a multiple of the identity. Then, equation
(122) simplifies to

ε +
(
Γ 0 + D0 : Q : 〈·〉Y −

[
〈Γ 0 : · ⊗ x〉∇Y ,⊥0

−D0 : Q∇ ... 〈· ⊗ x〉∇Y
]

· x
)

: (σ (ε) − C0 : ε)

= E + D0 : S +
[

E∇ + D0 : S∇]
· x,

(128)

where D0 denotes the inverse of C0.
An alternative derivation more in the line of [12] can be

found in the Appendix 1

4 FFT-based algorithms

In this section we will derive FFT-based algorithms to solve
the extended Lippmann–Schwinger equation (122). The pro-
jected gradient descent method [23,27] will use Λ

∇,n+1
⊥0

instead of the last iterateΛ
∇,n
⊥0 for the update of εn in equation

(121) and can therefore be seamlessly integrated into existing
(nonlinear) conjugate gradient (CG) methods [30,46].

4.1 Projected gradient descent

After the derivations of Sect. 3.3 it seems natural to use the
gradient descent ascent method [47] for the solution of the

ε ∇
+ 〈∇

s
u⊗

x〉 ∇
Y

=
ε̄ ∇
,n
+
1

ε̄∇,n+1

εn+1
2

εn+1

ε ∇ · x + ∇ s
u ≡ const

·

ε∇

u

Fig. 9 Projected gradient descent method

extended Lippmann–Schwinger (122). It is known, however,
that even the convergence speed of gradient descent meth-
ods is limited [11] and that one should use (nonlinear) CG
methods whenever possible [30].

Since it seems to be difficult to integrate the gradient
descent ascent algorithm (116)–(121) into a CG method, we
decided to use the projected gradient descent (PGD) method
[23,27]. This method projects the iterates of the standard gra-
dient descent method for the unconstrained problem onto the
(affine linear) subspace of admissible functions satisfying
the constraints. From an algorithmic point of view this can
be achieved by only changing the update of the strain field in
the gradient descent ascent algorithm. More precisely, using
Λ

∇,n+1
⊥0 instead of the last iterate Λ

∇,n
⊥0 for the update of εn

allows to eliminate the Lagrange parameters

τ n = σ(εn) − C0 : εn (129)

ε̄n+1 = E + M : (S − Q : C0 : E)

− M : Q : 〈τ n〉Y , (130)

ε̄∇,n+1 = E∇ + M∇ ...
(

S∇ − Q∇ ... C0 : E∇)

− M∇ ... Q∇ ... 〈τ n ⊗ x〉∇Y , (131)

εn+ 1
2 = ε̄n+1 + ε̄

∇,n+1
‖0 · x − Γ 0 : τ n, (132)

εn+1 = εn+ 1
2 +

[
ε̄
∇,n+1
⊥0 − 〈εn+ 1

2 ⊗ x〉∇Y ,⊥0

]
· x . (133)

While the first part (129)–(132) performs the classical basic
scheme of Moulinec–Suquet on the unconstrained extended
Lippmann–Schwinger equation, the last step (133) projects
the next iterate on an admissible state.

Unfortunately, as the visualization in Fig. 9 shows, the
projection is in general not orthogonal to the subspace of
admissible solutions.
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Algorithm 1 Projected gradient descent scheme for mixed boundary conditions (multiple load steps)
1: ε ← 0 � Initialization of ε

2: for k ∈ {0, . . . , kmax} do
3: repeat
4: ε ← MSiterate[ε,C0

k ,P,Ek ,Sk ,P∇ ,E∇
k ,S∇

k ] � Reference material C0 is adjusted, see Sect. 4.1
5: until Convergence
6: end for
7: return ε

MSiterate[ε,C0,P,E ,S,P∇ ,E∇ ,S∇ ]
8: ε ← σ(ε) − C0 : ε � Computing the stress polarization (129)
9: T ∇ ← 〈ε ⊗ x〉∇Y � Higher order average of stress polarization
10: ε ← FFT(ε) � Fast Fourier transform
11: ε(ξ) ← −Γ̂ 0(ξ) : ε(ξ), ξ = 0 � Application of Γ 0 in Fourier space
12: ε(0) ← E + M : [

S − Q : C0 : E
] − M : Q : ε(0) � Correcting the mean strain in Fourier space (130),(134)

13: ε ← FFT−1(ε) � Inverse Fast Fourier transform
14: E∇ ← E∇ + M∇ ...

[
S∇ − Q∇ ... C0 : E∇] − M∇ ... Q∇ ... T ∇ − 〈ε ⊗ x〉∇

Y ,⊥0 � Strain gradient with constraints (131),(135)

15: ε ← ε + E∇ · x � Adding linear strain
16: return ε

Algorithm 2 CG method for mixed boundary conditions (multiple load steps)
1: ε ← 0 � Initialization of ε

2: for k ∈ {0, . . . , kmax} do
3: ε ← MSiterate[ε,C0

k ,P,Ek ,Sk ,P∇ ,E∇
k ,S∇

k ] � P : 〈ε〉Y = Ek , P∇ ... 〈ε ⊗ x〉∇Y = E∇
k

4: A ← MSiterate[ε,C0
k ,P,0,0,P∇ ,0,0] � Reference material C0 is adjusted, see Sect. 4.1

5: D ← E + M : [
Sk − Q : C0

k : Ek
] − ε − A

6: G ← −D
7: g ← ‖G‖2
8: repeat
9: A ← D−MSiterate[D,C0

k ,P,0,0,P∇ ,0,0] � Reference material C0 is adjusted, see Sect. 4.1
10: h ← 〈A, D〉
11: ε ← ε + g

h D
12: G ← G + g

h A
13: gold ← g
14: g ← ‖G‖2
15: D ← g

gold
D − G

16: until Convergence
17: end for
18: return ε

Algorithm 3 Fletcher–Reeves method for mixed boundary conditions (multiple load steps)
1: ε ← 0 � Initialization of ε

2: for k ∈ {0, . . . , kmax} do
3: γ ← 1
4: D ← 0
5: repeat
6: G ← MSiterate[ε,C0

k ,P,Ek ,Sk ,P∇ ,E∇
k ,S∇

k ] � Reference material C0 is adjusted, see Sect. 4.1
7: G ← G − ε

8: γold ← γ

9: γ ← ‖G‖
10: D ← G + min

(
γ

γold
, 1

)
D � Stabilization

11: ε ← ε + D
12: until Convergence
13: end for
14: return ε
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The projection can only be interpreted as ascent step in
orthogonal direction to the (affine linear) subspace of admis-
sible solutions.

Using the equivalent steps

εn+ 1
2 = ε̄n+1 − Γ 0 : τ n, (134)

εn+1 = εn+ 1
2 +

[
ε̄∇,n+1 − 〈εn+ 1

2 ⊗ x〉∇Y ,⊥0

]
· x . (135)

instead of (132) and (133) this method can be implemented
as shown in Algorithm 1.

Notice that the operators M = (
Q : C0 : Q)†

and M∇ =
(
Q∇ ... C0 : Q∇)†

have to be computed only once in prepro-
cessing of each loading step, whenC0 is adapted by setting it
to the average of the maximal and minimal (positive) eigen-
value of the tangential stiffness dσ/dε [11].

Similar as described by Kabel et al. [12] for unidirec-
tional tensile tests, the following affine linear extrapolation
improves the convergence speed for strain gradient simula-
tions without superimposed stretch

εk = εk−2 +
∥
∥E∇

k − E∇
k−2

∥
∥

∥
∥E∇

k−1 − E∇
k−2

∥
∥ (εk−1 − εk−2). (136)

4.2 Conjugate gradient methods

In the case of linear material behavior, i.e. σ(ε) = C : ε,
the extendedLippmann–Schwinger equationwithmixedfirst
order boundary conditions (122) is a linear relation and there-
fore the conjugate gradient (CG) method can be used. This
method was first applied by Zeman et al. [46] for FFT-based
homogenization. It needs four instead of one solution vector
but can be expected to have a significantly improved con-
vergence behavior, see the detailed comparison of Schneider
[30] for standard boundary conditions.

The implementation shown in Algorithm 2 is based on
theMoulinec–Suquet iterate for computing the matrix vector
product on the left hand side of (122), which was previously
used as core function of the PGD implementation shown in
Algorithm 1.

In the case of nonlinear material behavior we suggest
using the Fletcher–Reeves (FR) nonlinear CG [30] for solv-
ing (122), see Algorithm 3. The implementation proposed
by Schneider [30] can be stabilized by limiting the factor
γ

γold
, compare line 10 of Algorithm 3. It needs one solu-

tion vector less but typically also converges slower than the
standard CG method in the linear elastic case. To reduce
memory requirements, both the CG and FR methods could
also be implemented by using additional displacement vec-
tors instead of additional strain vectors [9,11].

In Sect. 5.4 we will compare the convergence speed of all
three methods.

5 Examples

In the following we will discuss multiple examples of lami-
nate structures. At first, we will use in Sect. 5.1 our analytical
solution for the two-phase laminate shown in Fig. 4 under
pure tensionwith the additional constraints to study the influ-
ence of the discretization on the local solution quality. After
discussing the relation of the force and moment resultant
with the effective stress and stress gradient in Sect. 5.2 we
will then investigate in Sect. 5.3 the examples of Nguyen et
al. [22] andGélébart [7] for which only grid-aligned loadings
are applied. Afterward, we will modify one of their examples
and validate our extended Lippmann–Schwinger equation in
the linear elastic regime by comparison with the classical
laminate theory [26] in Sect. 5.4. Finally, in Sect. 5.5 we will
study the effective linear and nonlinear behavior of a multi-
layer laminate subjected to tensile and bending loadings. All
simulations results were obtained with FeelMath [5] which
is distributed as part of GeoDict2.

5.1 Strain gradient boundary conditions

In this section, the analytical solution shown in Figs. 5, 6 and
7 for a two-phase laminate under tensile loading and with
suppressed strain gradient is used to validate our method and
to investigate the local solution quality.

In the middle column of Fig. 10 we compare the local
strain fields for three different resolution and two dis-
cretizations. Obviously, the staggered grid discretization [34]
exhibits a significantly higher local accuracy than the Hex8R
discretization [42]. This is at least partly related to the
fact, mentioned earlier, that for the Hex8R discretization the
Nyquist frequencies are set to zero [41]. Somewhat surpris-
ingly, the Hex8R discretization does not show comparable
solution quality even at doubled resolution. Only the (phase-
wise) averages are of similar accuracy, compare Table 1.

Since the displacement field is obtained by integrating the
strain field according to the formulas derived in [10], we
make the same observation for the local displacement field
shown in the left column of Fig. 10.

The non-trivial stress components σ11 and σ22 are not
shown because their errors are only a constant rescaling of
the error for σ33 that is visualized in the right column of
Fig. 10. This is due to the fact that the numerical error for ε11
is equal zero. Therefore, the phase-wise scaling factor of the
error coincides with λ±/(λ± + 2μ±), which for both phases
is equal to 3/7.

Despite these observations, we will only use the Hex8R
discretization in the following. Otherwise, our results would
not be comparable to the benchmark results of Gélébart [7]

2 www.geodict.com.
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Fig. 10 Local numerical solution fields of the two-phase laminate under pure tensile loading and their corresponding error for the Hex8R dis-
cretization of Willot [42] and the staggered grid discretization [34] at different resolutions. Left column: Displacement. Middle column: Strain.
Right column: Stress

Table 1 Phase-wise averages of the local strain and global average of the stress field shown in Fig. 10

Resolution Analytical Hex8R[42] (rel. Error [%]) Staggered grid[34] (rel. Error [%])

〈ε±
33〉[%] 〈σ33〉[GPa] 〈ε±

33〉[%] 〈σ33〉[GPa] 〈ε±
33〉[%] 〈σ33〉[GPa]

16 ±1.7605 0.2107 ±1.7071 (∓3.0333) 0.2139 (1.5355) ±1.7467 (∓0.7840) 0.2115 (0.3969)

32 ±1.7605 0.2107 ±1.7465 (∓0.7947) 0.2115 (0.4023) ±1.7571 (∓0.1949) 0.2109 (0.0988)

64 ±1.7605 0.2107 ±1.7595 (∓0.0575) 0.2107 (0.0291) ±1.7597 (∓0.0484) 0.2107 (0.0246)

in Sect. 5.3 and the subsequent extension to arbitrary loading
directions.

5.2 Force andmoment resultant

To be able to compare our simulation results for a plate
Y = [−L1/2, L1/2] × [−L2/2, L2/2] × [−h/2, h/2] with
thickness h in the x-y-plane with the benchmark results of
Nguyen et al. [22] and Gélébart [7] in Sect. 5.3 as well as
classical results of the laminate theory [26] in Sects. 5.4 and
5.5 we first discuss the relation between the force resultant
N and the moment resultant M with the effective stress 〈σ 〉Y

and the effective stress gradient 〈σ ⊗ x〉∇Y of the plate.

Since the components of the force and moment resultants
are defined by

Ni j = 1

L1L2

∫

Y
σi j dx (137)

Mi j = 1

L1L2

∫

Y
x3σi j dx (138)

for i, j ∈ {1, 2} we obtain

Ni j = h〈σi j 〉Y (139)

Mi j = h〈x3σi j 〉∇Y

123



296 Computational Mechanics (2022) 70:281–308

= 〈σi j ⊗ x3〉∇Y
h

|Y |
∫

Y
(1∇ x)i j ⊗ x3 dx

= 〈σi j ⊗ x3〉∇Y
∫ h/2

−h/2
x23 dx3

= h3

12
〈σi j ⊗ x3〉∇Y , (140)

where 〈σi j ⊗ xk〉∇Y denotes the i jk component of 〈σ ⊗ x〉∇Y .
These tensors are set into relationwith the prescribed average
in-plane strain components E11, E22, E12 and their average
gradient in thickness direction E∇

113, E∇
223, E∇

123

(141)

To simulate plates with plane stress assumption and to
directly obtain coefficients of the extensional stiffness matrix
A and bending stiffness matrix B we apply the following
loadings in Voigt notation

1. Tension: P = e1 ⊗ e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2 ⊗ e2 +
e1 ⊗ e2 ⊗ e1 ⊗ e2 and P∇

1 = P∇
2 = P∇

3 = I with

E = (
E11 0 ∗ ∗ ∗ 0

)T
, S = (∗ ∗ 0 0 0 ∗ )T

(142)

and

E∇ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, S∇ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (143)

2. Bending: Using P∇
i = I− ei ⊗ ei ⊗ ei ⊗ ei and P = P∇

3
with

E = (
0 0 ∗ 0 0 0

)T
, S = (∗ ∗ 0 ∗ ∗ ∗ )T

(144)

and

E∇ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ 0 E∇
113

0 ∗ 0
0 0 ∗
0 0 0
0 0 0
0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, S∇ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 ∗ ∗
∗ 0 ∗
∗ ∗ 0
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (145)

Then— depending on the applied loading E11 resp. E∇
113 —

it is possible to directly compute entries of the extensional
resp. bending stiffness matrix from the local stress field

1. Tension:

A11 = N11

E11
= h

〈σ11〉Y

E11
(146)

2. Bending:

D11 = M11

E∇
113

= h3

12

〈σ11 ⊗ x3〉∇Y
E∇
113

(147)

If Y is symmetrically extended by pore space in thickness
direction, as proposed by Gélébart [7], the same formulas
apply when h is replaced by the thickness of the extended
plate.

The closed-form solution for the effective stiffnesses of
the Kirchhoff plate with n layers are given by the following
relations [26]

A =
n∑

k=1

(hk − hk−1)Ck (148)

B = 1

2

n∑

k=1

(h2
k − h2

k−1)Ck (149)

D = 1

3

n∑

k=1

(h3
k − h3

k−1)Ck (150)

whereCk denotes the two-dimensional stiffnessmatrix under
plane stress assumption for the kth layer of the plate located
between the points x3 = hk−1 and x3 = hk in thickness
direction. Under the assumption of isotropic material behav-
ior described by Young’s modulus E and Poison’s ratio ν the
stiffness matrix is given by

Ck = E

1 − ν2

⎛

⎝
1 ν 0
ν 1 0
0 0 1−ν

2

⎞

⎠ , (151)

and, more generally, for transversely isotropic material
behavior with Young’s moduli E1, E2, in-plane shear mod-
ulus G12 and in-plane Poisson’s ratio ν12 (ν21 = ν12E2/E1)

Ck =
⎛

⎜
⎝

1
E1

− ν21
E2

0
− ν12

E1

1
E2

0
0 0 1

G12

⎞

⎟
⎠

−1

=
⎛

⎜
⎝

E1
1−ν12ν21

ν12E2
1−ν12ν21

0
ν12E2

1−ν12ν21

E2
1−ν12ν21

0
0 0 G12

⎞

⎟
⎠ .

(152)
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The four independent parameters are related to the five inde-
pendent parameters of a transversely isotropic material in the
following way

E1 = E‖ (153)

E2 = E3 = E⊥0 (154)

G12 = G13 = G‖ (155)

ν12 = ν13 = ν (156)

G23 = G⊥0 (157)

ν21 = ν31 = E⊥0

E‖
ν (158)

ν23 = ν32 = E⊥0

2G⊥0
− 1 (159)

The plate stiffness matrices A, B and D of a rotated plate
can be obtained by rotating the stiffness matricesCk for each
layer [8].

5.3 Grid-aligned loading directions

In the following we compare the results of our approach for
grid-aligned loading directions with the benchmark results
of Nguyen et al. [22] and Gélébart [7]. The first benchmark
example is a laminate plate withmoderate phase contrast, see
Fig. 11 and Table 2. In this case, the results with and without
extension by pore space coincide if the correct thickness is
used for the formulas (146) and (147). Therefore, in Tables 3
and 4weonly show the valueswithout extension. Sincewedo
not increase the phase contrast by an extension, our approach
converges for the conjugate gradient method shown in Algo-
rithm 2 with fewer iterations and also gives more precise
results at the same time.

For the secondbenchmark example of a platewith periodic
inclusions and three different sets of material parameters, see
Fig. 11 and Table 2, it is not possible to reproduce the FEM
reference solution of Nguyen et al. [22] without using an
extension by pore space. Mixed boundary conditions [12]
only allow to prescribe zero average stress but not zero sur-
face stress as prescribed in Nguyen et al. [22]. The resulting
stress fields for the third parameter set are visualized in
Fig. 12 for tensile and in Fig. 13 for bending loadings. Conse-
quently,we show inTables 5, 6, 7, 8, 9 and10 the results of our
approach for the microstrucuture with pore space extension
to obtain comparable results under tensile loadings. Follow-
ing the observation of Gélébart, we used mixed boundary
conditions, i.e., P = e1 ⊗ e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2 ⊗
e2 + e1 ⊗ e2 ⊗ e1 ⊗ e2, on the extended geometry to reduce
the number of iterations. Nevertheless, for this infinite con-
trast problem only the conjugate gradient method 2 and the
Fletcher–Reeves algorithm 3 converge at a moderate number
of iterations.

Fig. 11 Microstructures used by Nguyen et al. [22] and Gélébart [7].
Top: Laminate plate. Bottom: Plate with periodic inclusion. Middle:
Central part of the plate with periodic inclusions which is first homog-
enized in the two-step homogenization approach in Sect. 5.4
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Table 2 Material parameters for
the laminate plate and the
parameter sets for the plate with
periodic inclusions

Parameter Unit Inner layer Outer layer Matrix1 Incl.1 Matrix2 Incl.2 Matrix3 Incl.3

E [GPa] 10 46 10 0 1000 1 1 10

ν [–] 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Table 3 Extensional stiffness obtained for the laminate case (without extension by pore space)

Resolution Analytical Nguyen et al. [22] Iterations Gélébart[7] Iter. This work Iterations

GD CG FR

16 3.077 3.077 10 3.077 6 3.077 13 3 8

32 3.077 3.077 10 3.077 6 3.077 13 3 8

64 3.077 3.077 10 3.077 6 3.077 13 3 8

Table 4 Bending stiffness obtained for the laminate case (without extension by pore space)

Resolution Analytical Nguyen et al. [22] Iter. Gélébart [7] Iter. This work Iter.

(rel. Error [%]) (rel. Error [%]) (rel. Error [%]) PGD CG FR

16 3.8004 3.8200 (0.52) 10 3.7904 (−0.26) 15 3.8052 (0.13) 21 7 12

32 3.8004 3.8050 (0.12) 10 3.7979 (−0.07) 15 3.8016 (0.03) 21 6 12

64 3.8004 3.8020 (0.04) 10 3.7997 (−0.02) 15 3.8007 (0.01) 21 5 13

Fig. 12 Local stress in the plate with periodic inclusion under tensile
loading for Einclusion = 10GPa and Ematrix = 1GPa. Top: Without
extension by pore space. Bottom: With extension by pore space. The
wireframe indicates the discretization and deformed position of the
inclusion

Fig. 13 Local stress in the plate with periodic inclusion under bending
loading for Einclusion = 10GPa and Ematrix = 1GPa. Top: Without
extension by pore space. Bottom: With extension by pore space. The
wireframe indicates the discretization and deformed position of the
inclusion
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For these results, we did not use the energy based con-
vergence criterion proposed by Nguyen et al. [22] because it
leads to inaccurate solutionswhen combined to our approach.
With our strain based convergence criterion[11]

∣
∣
∣‖εnew‖2 − ∥

∥εold
∥
∥2

∣
∣
∣

∥
∥εinitial

∥
∥2

< tolerance, (160)

we obtain in general more accurate solutions than Nguyen
et al. [22] and Gélébart [7] especially for the coarsest reso-
lution. On the other hand, we also need significantly more
iterations for convergence. Without the extension by pore
space, this would not be the case. We will study the con-
vergence behavior and the influence of the extension on the
convergence speed in detail for arbitrary loading directions
in the next section.

5.4 Arbitrary loading direction

To validate the derived Lippmann–Schwinger equation for
mixed boundary conditions, we compare in the following
the results of our approach with the 2-step homogenization
approach described in the introduction of this paper. Con-
trary to the previous section,we nowusemixed (strain/stress)
boundary conditions only on the geometries without exten-
sion.

As test geometry we use the plate with inclusion from the
previous sectionwith the third parameter set, i.e., Einclusion =
10 GPa and Ematrix = 1GPa. Numerically homogenizing the
central part of the plate with inclusion shown in themiddle of
Fig. 11 we obtain the anisotropic stiffness parameters shown
in Table 11. In Fig. 14 we compare five different results.

1. The results of the laminate theory using the parameters of
Table 11.

2. Numerical results for the laminate structure without
extension by pore space.

3. Numerical results for the laminate structure with exten-
sion by pore space.

4. Direct numerical results on the plate with inclusion with-
out extension by pore space.

5. Direct numerical results on the plate with inclusion with
extension by pore space.

The left part of Fig. 15 shows that the first three results
coincide independently of the loading direction. The last two
results on the resolved geometry with and without extension
coincide only for the bending stiffness but not for the exten-
sional stiffness due to the boundary effects discussed in the
previous section. Then the plane strain and zero surface stress
boundary conditions lead to a softer response.

The relative difference of the results on the resolved
geometry and the two-step approach is below 4% for the
extensional and below 8% for the bending stiffness, see right
part of Fig. 15. For tensile and bending loadings in fiber
direction (y-direction) the five results are even in perfect
agreement.

The number of iterations necessary for convergence,
shown on the right side of Fig. 14 is robust with respect to
the loading direction and the resolution of the geometry, but
extending the geometry by pore space significantly decreases
the convergence speed.

5.5 Multilayer laminate

For representative volume elements the boundary effects,
enforcing us to use an extension by pore space in Sect. 5.3,
are by definition negligible. Therefore, for our representative
microstructure of a multilayer laminate, see Fig. 1, we will
only discuss the results obtained without extension. The (-
45◦/0◦/+45◦/0◦)s laminate has a total thickness of 2mm.Each
unidirectional layer has a carbon fiber volume content of
40%. The transversely isotropic elastic material parameters
of the carbon fibers are shown in Table 12. Since for bend-
ing always a combination of tensile and compressive loading
occurs, the tension-compression asymmetry of epoxy has to
be taken into account by the material model. Therefore, we
model the epoxy matrix material by an elasto-plastic mate-
rial model of Stier et al. [36] that incorporates different yield
strengths in tension and compression. The material parame-
ters of Table 13 were calibrated by Ullah et al. [39] according
to the measurements of Stier et al. [36] on pure epoxy sam-
ples, see Fig. 16.

At first we compare—similar to the previous section— in
the first row of Fig. 17 the extensional and bending stiffness
predicted by the following three methods.

1. Laminate theory for the numerically homogenized unidi-
rectional layers, see Fig. 2.

2. Two-step numerical homogenization.
3. Direct numerical homogenization on the resolved geom-

etry.

The iteration numbers shown in the second row of Fig. 17
reveal that also for this complicated geometry, the conver-
gence speed is not influenced by the loading direction. As
to be expected for the homogenized unidirectional layers the
FFT-based homogenization methods needs fewer iterations.

The last row of Fig. 17 shows the difference between the
predictions of the three approaches. The two-step numerical
homogenization approach is closer to the laminate theory,
because it uses the same intermediate results. For any load-
ing direction, the relative difference of the extensional and
bending stiffness is below 0.15% resp. 0.5%.
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Table 5 Extensional stiffness obtained for the inclusion case (with extension by pore space) for Einclusion = 0GPa and Ematrix = 10GPa

Resolution Analytical Nguyen et al. [22] Iter. Gélébart[7] Iter. This work Iter.

(rel. Error [%]) (rel. Error [%]) (rel. Error [%]) GD CG FR

16 0.5840 0.5826 (−0.24) 8 0.5822 (−0.31) 8 0.5834 (−0.10) 75 20 25

32 0.5840 0.5837 (−0.05) 9 0.5834 (−0.10) 11 0.5837 (−0.05) 136 22 31

64 0.5840 0.5839 (−0.02) 9 0.5838 (−0.03) 14 0.5838 (−0.04) 263 29 57

128 0.5840 0.5840 (0.00) 9 0.5838 (−0.03) 15 0.5838 (−0.03) 511 34 86

Table 6 Bending stiffness obtained for the inclusion case (with extension by pore space) for Einclusion = 0 GPa and Ematrix = 10 GPa

Resolution Analytical Nguyen et al[22] Iter. Gélébart[7] Iter. This work Iter.

(rel. Error [%]) (rel. Error [%]) (rel. Error [%]) PGD CG FR

16 0.8224 0.8242 (0.22) 8 0.8204 (−0.24) 8 0.8230 (0.07) 59 65 238

32 0.8224 0.8228 (0.05) 8 0.8219 (−0.06) 8 0.8226 (0.03) 450 45 103

64 0.8224 0.8225 (0.01) 8 0.8223 (−0.01) 8 0.8224 (0.00) 448 45 92

128 0.8224 0.8224 (0.00) 8 0.8224 (0.00) 8 0.8224 (-0.00) 467 45 101

Table 7 Extensional stiffness obtained for the inclusion case (with extension by pore space) for Einclusion = 1GPa and Ematrix = 1000GPa

Resolution Analytical Nguyen et al[22] Iter. Gélébart[7] Iter. This work Iter.

(rel. Error [%]) (rel. Error [%]) (rel. Error [%]) GD CG FR

16 58.4950 58.3630 (−0.23) 8 58.3290 (−0.28) 8 58.4458 (−0.08) 62 45 21

32 58.4950 58.4720 (−0.04) 9 58.4550 (−0.07) 11 58.4803 (−0.03) 112 35 29

64 58.4950 58.5020 (0.01) 9 58.4840 (−0.02) 14 58.4868 (−0.01) 216 48 59

128 58.4950 58.5060 (0.02) 9 58.4870 (−0.01) 15 58.4874 (−0.01) 417 34 82

Table 8 Bending stiffness obtained for the inclusion case (with extension by pore space) for Einclusion = 1GPa and Ematrix = 1000GPa

Resolution Analytical Nguyen et al[22] Iter. Gélébart[7] Iter. This work Iter.

(rel. Error [%]) (rel. Error [%]) (rel. Error [%]) PGD CG FR

16 82.2500 82.4400 (0.23) 8 82.0600 (−0.23) 8 82.3197 (0.08) 445 28 202

32 82.2500 82.3000 (0.06) 9 82.2100 (−0.05) 8 82.2823 (0.04) 342 43 87

64 82.2500 82.2700 (0.02) 9 82.2400 (−0.01) 8 82.2670 (0.02) 344 41 87

128 82.2500 82.2600 (0.01) 9 82.2500 (0.00) 8 82.2591 (0.01) 359 49 89

Table 9 Extensional stiffness obtained for the inclusion case (with extension by pore space) for Einclusion = 10GPa and Ematrix = 1GPa

Resolution Analytical Nguyen et al. [22] Iter. Gélébart[7] Iter. This work Iter.

(rel. Error [%]) (rel. Error [%]) (rel. Error [%]) GD CG FR

16 0.1629 0.1621 (−0.49) 15 0.1627 (−0.13) 14 0.1627 (−0.10) 251 51 57

32 0.1629 0.1626 (−0.19) 16 0.1628 (−0.02) 17 0.1628 (−0.03) 454 38 84

64 0.1629 0.1628 (−0.06) 16 0.1629 (−0.01) 17 0.1629 (0.01) 862 45 124

128 0.1629 0.1629 (−0.01) 16 0.1629 (0.01) 17 0.1629 (0.01) 1679 53 178
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Fig. 14 Comparison of the laminate theory with the two-step homogenization approach and the direct simulation results on the resolved geometry
of the plate with inclusion shown in Fig. 11. Left: Extensional/Bending stiffness. Right: Corresponding number of iterations needed for convergence
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Fig. 15 Relative difference for the numerically calculated stiffness to the laminate theory for homogenized layers. Left: Two-step homogenization.
Right: Simulation on the resolved geometry of the plate with inclusion shown in Fig. 11
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Table 10 Bending stiffness obtained for the inclusion case (with extension by pore space) for Einclusion = 10GPa and Ematrix = 1GPa

Resolution Analytical Nguyen et al[22] Iter. Gélébart[7] Iter. This work Iter.

(rel. Error [%]) (rel. Error [%]) (rel. Error [%]) PGD CG FR

16 0.1065 0.1070 (0.46) 18 0.1060 (−0.52) 17 0.1063 (−0.19) 99 21 43

32 0.1065 0.1066 (0.07) 18 0.1064 (−0.13) 17 0.1065 (−0.03) 65 22 45

64 0.1065 0.1065 (0.02) 18 0.1065 (−0.03) 17 0.1065 (0.01) 61 22 23

128 0.1065 0.1065 (0.02) 18 0.1065 (0.00) 17 0.1065 (0.02) 61 22 22

Table 11 Anisotropic stiffness
of the central part of the plate
with inclusions shown in the
middle of Fig. 11 for the third
parameter set of Table 2

Parameter Unit Value

E‖ [GPa] 2.1962

E⊥ [GPa] 5.5

G‖ [GPa] 0.6993

G⊥ [GPa] 2.1154

ν [–] 0.1198

Table 12 Material parameters
for carbon fibers [36]

Parameter Unit Value

E‖ [GPa] 230

E⊥ [GPa] 15

G‖ [GPa] 15

G⊥ [GPa] 7

ν [–] 0.2

Table 13 Material parameters for epoxy [39]

Parameter Unit Value

Young’s modulus (E) [GPa] 3.76

Poissons’ ratio (ν) [–] 0.39

Plastic Poissions’ ratio (νplas) [–] 0.3

Initial yield strength in tension (σt0 ) [MPa] 29

Initial yield strength in compr. (σc0 ) [MPa] 67

Ht [MPa] 67

Hc [MPa] 58

nt [–] 170

nc [–] 150

At this point one could argue, that deriving an extended
Lippmann–Schwinger equation is not really helpful, because
it only reproduces the results of classical laminate theory
and the original version of the Lippmann–Schwinger equa-
tion [20,21] would be sufficient to derive the stiffness of the
unidirectional layers. When nonlinear effects enter the stage,
this is no longer true. Only the direct simulation approach can
be applied to physically nonlinear material behavior without
any changes. On the left of Fig. 18 the force and moment
resultant under increasing tensile resp. bending loadings for
different loading directions are shown. For tensile loadings
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Tensile - Simulation
Tensile - Measurement
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Compression - Measurement
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Fig. 16 Calibrated material model for epoxy [39]

the stacking order of the unidirectional layer does not influ-
ence the force resultant. Therefore, the force resultant for
α◦ and 180◦ − α◦ coincide. For the moment resultant under
bending loadings this is not true because the outer layers of
the (-45◦/0◦/+45◦/0◦)s laminate, e.g., the −45◦ layers, are
submitted to higher loadings.

By post-processing of these force and moment resultants
and the corresponding evolution of the average plastification,
the yield surfaces under tensile and bending loadings shown
in Fig. 20 were derived. For tensile loadings the yield stress
is the highest in themain fiber direction of 0◦. Under bending
loadings the yield surface is reoriented into the direction of
the outermost fiber orientation.

The computational effort for tensile and bending simu-
lations could be kept limited thanks to the application of
the Fletcher–Reeves algorithm 3. The iteration numbers for
convergence of each loading step on the right of Fig. 18
were obtained with affine linear extrapolation (136) between
the loading steps. Only for the first iterate, these numbers
are independent of the loading direction. Then the plastic
evolution changes the convergence behavior significantly.
Since bending loadings lead to higher local plastifications
than comparable tensile loadings, the iteration numbers are
approximately 50% higher for this type of loading.
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Fig. 17 Comparison of the
laminate theory with the
two-step homogenization
approach and the direct
simulation results on the
resolved geometry of the
(− 45◦/0◦/ + 45◦/0◦)s
laminate shown in Fig. 1. Left:
Tensile loadings. Right:
Bending Loadings
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6 Conclusion

In this work, we first extended the Lippmann–Schwinger
equation to strain gradient boundary conditions. To be able
to prescribe the full strain gradient of the solution, it was
necessary to introduce additional kinematic constraints. This
allowed us to also integrate stress gradient boundary condi-

tions and to enforce mixed first order boundary conditions
with respect to an arbitrary coordinate system. Thanks to the
use of a projected gradient descent method, the kinematic
constraints can be easily implemented in existing FFT-based
algorithms. This extension makes it possible, for example, to
simulate plate bending. In contrast to the simulation of tensile
experiments, a volume element can only be representative for
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Fig. 18 Loading direction
dependent force/moment
resultant curves and number of
iterations for convergence. Top
row: Tensile loading. Bottom
row: Bending
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bending simulations if it contains the entire thickness of the
plate.

When applied to the test cases with grid-aligned load-
ings of Nguyen et al. [22], our method gave more accurate
predictions at coarse resolutions. By extending the exam-
ple to anisotropic material behavior, we could validate our
approach for arbitrary loading directions with the classical
laminate theory. It turned out that the approach of Gélébart
[7] to extend the domain bypore space significantly decreases
the convergence speed. The difference in the boundary con-
ditions due to the pore space extension, e.g., zero surface
stress instead of periodic stress, did not influence the pre-
dicted effective response.

Regarding the multilayer laminate example, in the linear
elastic regime the predictions of our approach coincide with
the classical laminate theory, if the boundary conditions are
set properly. By applying the Fletcher–Reeves method [30]
we were able to predict the force andmoment resultant under
arbitrary loading directions atmoderate computational effort.
Thereby, we could also determine the yield surface of the
laminate under tensile and bending loadings.

It should be remarked, that our derivation directly carries
over to problems of finite strains. Therefore, our FFT-

based solver for the kinematically constrained extended
Lippmann–Schwinger equation could replace—similar to
previously developed FE-FFT methods [14,35]—the micro-
scale solver in higher order FE2 methods [15,29,40] at small
and finite strains.
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Fig. 19 Local solution fields in the upper half of the (− 45◦/0◦/ + 45◦/0◦)s laminate microstructure at the end of the bending simulation in 0◦
direction. Left: Strain component ε11 in the epoxy phase. Middle: Stress component σ11 in the carbon fibers. Right: Equivalent plastic strain in the
epoxy phase

Fig. 20 Orientation dependent
Rp02 value of the force resultant
[MPam] (left) and moment
resultant [kN] (right)
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Appendix

Alternative derivation of the extension tomixed
strain/stress gradient boundary conditions

Given projectors P,P∇ and prescribed loads E, S ∈ Sym3
as well as E∇ , S∇ ∈ Sym3

3 satisfying the constraints (80)

and (81) we want to incorporate the boundary condition (79)
into the Lippmann–Schwinger equation (48)

Adding a zero the boundary condition (79) for the stress
gradient is equivalent to

Q∇ ... 〈σ(ε) ⊗ x − (C0 : ε) ⊗ x〉∇Y
= S∇ − Q∇ ... 〈(C0 : ε) ⊗ x〉∇Y .

(161)
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Invoking the splitting

〈ε ⊗ x〉∇Y = P∇ ... 〈ε ⊗ x〉∇Y + Q∇ ... 〈ε ⊗ x〉∇Y
= E∇ + Q∇ ... 〈ε ⊗ x〉∇Y

(162)

the last equation can be rewritten as

Q∇ ... 〈σ(ε) ⊗ x − (C0 : ε) ⊗ x〉∇Y
= S∇ − Q∇ ... C0 : E∇ − Q∇ ... C0 : Q∇ ... 〈ε ⊗ x〉∇Y .

(163)

As C0 is positive definite, the last equation can be solved for
Q∇ ... 〈ε ⊗ x〉∇Y . More precisely, using the Moore–Penrose
pseudoinverse [19,25] M∇ whose components are given by

M∇
i jklmn = δkn

(
Qk : C0 : Qk

)†

i jlm
, (164)

we arrive at the equation

Q∇ ... 〈ε ⊗ x〉∇Y = M∇ ...
[

S∇ − Q∇ ... C0 : E∇

−Q∇ ... 〈σ(ε) ⊗ x − (C0 : ε) ⊗ x〉∇Y
]
.

(165)

By using again the splitting (162) we obtain

〈ε ⊗ x〉∇Y = E∇ + M∇ ...
(

S∇ − Q∇ ... C0 : E∇

−Q∇ ... 〈σ(ε) ⊗ x − (C0 : ε) ⊗ x〉∇Y
)

.
(166)

Inserting the last identity (166) into the extended Lippmann–
Schwinger equation (48) yields

ε + Γ 0 : (σ (ε) − C0 : ε)

= E +
[

E∇ + M∇ ...
(

S∇ − Q∇ ... C0 : E∇

− Q∇ ... 〈σ(ε) ⊗ x − (C0 : ε) ⊗ x〉∇Y
)

+ 〈Γ 0 :
(
σ(ε) − C0 : ε

)
⊗ x〉∇Y ,⊥0

]
· x,

(167)

or expressed more compactly

ε +
(
Γ 0 −

[
〈Γ 0 : · ⊗ x〉∇Y ,⊥0

−M∇ ... Q∇ ... 〈· ⊗ x〉∇Y
]

· x
)

: (σ (ε) − C0 : ε)

= E +
[

E∇ + M∇ ...
(

S∇ − Q∇ ... C0 : E∇)]
· x,

(168)

where 〈Γ 0 : ·⊗x〉∇
Y ,⊥0 andM

∇ ... Q∇ ... 〈·⊗x〉∇Y are shorthand
notations for the operators

T �→ 〈Γ 0 : T ⊗ x〉∇Y ,⊥0 , T : Y → Sym3 (169)

and

T �→ M∇ ... Q∇ ... 〈T ⊗ x〉∇Y , T : Y → Sym3 . (170)

This extendedLippmann–Schwinger equationwithmixed
first order boundary conditions can be combined with zero
order mixed boundary conditions [12,17,32]

ε +
(
Γ 0 + M : Q : 〈·〉Y −

[
〈Γ 0 : · ⊗ x〉∇Y ,⊥0

− M∇ ... Q∇ ... 〈· ⊗ x〉∇Y
]

· x
)

: (σ (ε) − C0 : ε)

= E + M :
(

S − Q : C0 : E
)

+
[

E∇ + M∇ ...
(

S∇ − Q∇ ... C0 : E∇)]
· x, (171)

where M = (
Q : C0 : Q)†

.
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