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Abstract
The phase-field formulation for fracture based on the framework of representative crack elements is extended to transient
thermo-mechanics. The finite element formulation is derived starting from the variational principle of total virtual power. The
intention of this manuscript is to demonstrate the potential of the framework for multi-physical fracture models and complex
processes inside the crack. The present model at hand allows to predict realistic deformation kinematics and heat fluxes at
cracks. At the application of fully coupled, transient thermo-elasticity to a pre-cracked plate, the opened crack yields thermal
isolation between both parts of the plate. Inhomogeneous thermal strains result in a curved crack surface, inhomogeneous
recontact and finally heat flow through the crack regions in contact. The novel phase-field framework further allows to study
processes inside the crack, which is demonstrated by heat radiation between opened crack surfaces. Finally, numerically
calculated crack paths at a disc subjected to thermal shock load are compared to experimental results from literature and a
curved crack in a three-dimensional application are presented.

Keywords Phase-field fracture · Representative crack element · Multi-physics · Transient thermo-mechanics · Heat radiation

1 Introduction

A crack contact criterion and the decomposition into de-
graded and transferred forces through the crack are approx-
imated by splits of the deformation energy potential in
phase-field models for fracture. Unphysical predictions of
deformations at cracks are reported for common splits like
the volumetric-deviatoric, the spectral and similar splits. Fur-
thermore, the crack driving force of the phase-field variable
is significantly controlled by the split approach and, thus,
may result in unreliable predictions for the fracture process.

Artificial splits are replaced by Representative Crack
Elements (RCE) in [1], which allows to overcome the kine-
matical deficiencies. After first application to anisotropic
elasticity [1], the framework is successfully applied to phase-
field fracture for visco-elastic materials [2], for inelastic
materials, crack surface friction, finite deformations [3] and
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cohesive interface failure [4]. In the paper at hand, repre-
sentative crack elements are developed towards phase-field
fracture for transient coupled thermo-mechanics. The vari-
ational formulation is presented and derived into a finite
element model. Through academic examples, the potential
of representative crack elements is demonstrated for multi-
physical applications and for processes, which take place
inside the crack, e.g. heat radiation through the crack. It is
also shown in the theoretical discussion, that the numeri-
cal solution scheme, which is introduced to solve the RCE
model with heat radiation, can be used to model the reduced
heat conductivity in closed cracks as a consequence of micro
cavities, and to model heat convection at the crack surface.

2 Theory

The principle of total virtual power δP tot = δP int − δPext =
0 balances the virtual power, which is associated with a ther-
modynamic system (internal and kinetic energy) and the
virtual power transferred to the system from the exterior
(mechanical work and heat) for all admissible generalised
virtual velocities ∀δv ∈ Varv and their generalised local
strain rate actions D(δv). Internal and external virtual pow-
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ers are formed by dual products of the tensor valued virtual
velocity components δvi and strain rate components Di (δv)

with their thermodynamically conjugated forces f i and
stresses �i , which yield

P int(D(δv)) =
∫
B
〈〈D(δv),�〉〉 dV

=
∫
B

m∑
i=1

〈
Di (δv),�i

〉
dV , (1)

Pext(δv) =
∫
B
〈〈δv, f 〉〉 dV

=
∫
B

n∑
i=1

〈
δvi , f i

〉
dV . (2)

Displacements u, phase-field p and absolute temperature
θ are the state variables for transient thermo-mechanics of
phase-field fracture. Thus, the virtual velocity v = [v, ṗ, θ̇ ]
and virtual strain rate action D(v) = [v, Ḣ, ṗ, ∇̇ p, θ̇ , ∇̇θ ]
result in the total virtual power

δP tot =
∫
B

[
δv · �u + δ Ḣ : �H + δ ṗ� p

+δ∇̇ p · �∇ p + δθ̇ �θ + δ∇̇θ · �∇θ
]
dV

−
∫
B
[
δv · f u + δθ̇ f θ

]
dV , (3)

where H is the displacement gradient and the dot represents
time derivative.

2.1 Constitutive relations

It is shown in [5] that the variational formulation in the form
of Eq. (3) represents the weak form of the momentum bal-
ance, the entropy balance and von Neumann boundary
conditions. Momentum rate �u, 1. Piola-Kirchhoff stress
�H , entropy rate �θ , negative entropy flux �∇θ and con-
tributions to the phase-field driving force � p, �∇ p can be
identified without additional assumptions on the constitutive
relations. The variation of entropy balance in the form of [6]
is obtained by accepting the relation of entropy flux to heat
flux θ h = q, and entropy source to heat source θ d = r . The
thermodynamically conjugated thermal stresses

�θ = ρ

[
−θ

∂2ψ

∂θ2
θ̇ − θ

∂2ψ

∂H∂θ
: D +

(
∂2ψ

∂α∂θ
+ β

)
α̇

]
,

�∇θ = −q (4)

and mechanical stresses

�H = ∂ψ

∂H
, � p = ∂ψ

∂ p
, �∇ p = ∂ψ

∂∇ p
(5)

can be derived evaluating the first and second law of ther-
modynamics using Helmholtz free energy ψ . Fourier’s
empirical law of heat conduction states the relations between
temperature and heat

c = −θ
∂2ψ

∂θ2
, q = −K · ∇θ (6)

and is experimentally validated at various thermodynamic
systems. Heat capacity c and thermal conductivity tensor K
are material parameters. 1. Piola-Kirchhoff stress �H is
known from standard thermo-mechanics and � p together
with �∇ p form the driving force for the phase-field.

The influence of the presence of a crack on themechanical
and thermal behaviour is considered through the postulation
of a constitutive structure in the form

ψ = ψm,c + g(p)
[
ψm,0 − ψm,c

]
+ ψph + ψ th, (7)

q = qc + g(p)
[
q0 − qc

]
. (8)

The degradation function g(p) acts as interpolation weight
between the material behaviour of intact material, repre-
sented by ψm,0 and q0, and fully degraded material, ψm,c

and qc, as introduced in [1]. The regularised fracture energy
is given by ψph. ψ th is the stored heat in the material. The
reader is referred e.g. to [6] for further discussion on ψ th at
dissipative deformation processes.

2.2 A thermo-mechanical representative crack
element

Whereas, constitutive laws for intact mechanical material
ψm,0, the regularised fracture energyψph and the heat storage
abilityψ th are defined using standard constitutivemodels, the
behaviour for cracked materialψm,c and qc is determined by
means of a Representative Crack Element, see Fig. 1. A local
coordinate system (N1, N2, N3) is introduced, where N1 is
the normal direction of the crack surface. The crack is mod-
elled as discrete crack by the RCE, hence, the state variables
are displacements and absolute temperature. Coupling oper-
ators between the cracked part of the phase-field model and
the representative crack model are defined by

ū(x̄) = u|x + H|x · (x̄ − x̄ref) + ¯̃u, (9)

θ̄ (x̄) = θ |x + ∇θ |x · (x̄ − x̄ref) + ¯̃
θ (10)

following the concept of variational homogenisation of [7].
Quantities denoted bybar are associatedwith theRCEmodel,

x̄ref = 1

V

∫
B̄ x̄ dV is the geometric centre, ¯̃u and ¯̃

θ are the

unknown displacement and temperature fluctuations, and V
is the RCE volume. Homogenisation of the state variables is
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given by

u|x = 1

V

∫

B̄

ū dV , H|x = 1

V

∫

B̄

H̄ dV , (11)

θ |x = 1

V

∫

B̄

θ̄ dV , ∇θ |x = 1

V

∫

B̄

∇̄θ dV . (12)

Once, a solution for the unknown fluctuation fields ¯̃u and¯̃
θ is determined, the thermodynamically conjugated forces,
stresses and heat flux can be calculated as

�c,H |x = 1

V

∫

B̄

[
�̄

H +
(
�̄

u − f̄
u
)

⊗ (x̄ − x̄ref)
]
dV ,

(13)

�c,u|x = 1

V

∫

B̄

�̄
u
dV , (14)

f c,u|x = 1

V

∫

B̄

f̄
u
dV , (15)

�∇θ,c|x = 1

V

∫

B̄

[
�̄

∇θ +
(
�̄

θ − f̄ θ
)

(x̄ − x̄ref)
]
dV ,

(16)

�θ,c|x = 1

V

∫

B̄

�̄
θ
dV , (17)

f θ,c|x = 1

V

∫

B̄

f̄ θ dV , (18)

where f̄
u
are volume forces and f̄ θ volume heat sources.

These relations are a result of the principle of multi-scale
virtual power [7].

A solution for the unknown displacement and tempera-
ture fluctuations of the RCE can be obtained numerically,
for instance by application of the finite element method. The
embeddingoffinite element problems into thematerialmodel
of another finite element problem is called FE2 and is com-
putationally very expensive. That is why an analytical and
a semi-analytical solution are derived for linear and non-
linear bulk materials in the following. The computational
costs of the resultant phase-field model are similar to stan-
dard phase-field models. Both RCE solutions are based on
the assumptions of

• homogeneous displacement and temperature gradients in
B̄1 and B̄2,

• weak thermo-mechanical coupling through homoge-
neous thermal expansion, and

• homogeneousvolume forces f̄
u
, f̄ θ and transient stresses

�̄
u
, �̄

θ
.

Based on these simplifications, the RCE can be divided into a
quasi-static mechanical problem for the determination of the
displacement discontinuity v ū w and a steady-state thermal
problem for the determination of the temperature disconti-
nuity v θ̄ w.

The displacement field of the mechanical RCE for small
deformations reads

ū(x̄) = u|x + E|x · (x̄ − x̄ref) + κ(x̄)
1

l1
v ū w. (19)

The linearised strain tensor is E = 1
2 (H + Hᵀ). The

normalised relative displacement of the crack surfaces is
called crack deformation �i = v ū wi/l1. The solution for
the mechanical Representative Crack Element with thermal
strains is presented in [1] for the first time. Thermal strains
at the RCE are calculated based on the average temperature
θ |x in order to ensure homogeneous strain fields.

The thermal RCE for the heat conduction is determined
with the absolute temperature field

θ̄ (x̄) = θ |x + ∇θ |x · (x̄ − x̄ref) + κ(x̄)
1

l1
v θ̄ w, (20)

where

κ(x̄) = 1

2
l1sgn

[
N1 · (x̄ − x̄ref)

]
− N1 · (x̄ − x̄ref). (21)

A solution for the unknown temperature gradient through
the crack �θ = v θ̄ w/l1 follows from the principle of virtual
power of the RCE

δP̄ tot =
∫
B̄1∪B̄2

δ ˙̄∇θ · �̄
∇θ

dV

+
∫

¯∂B�
δ ˙̄∇θ · �̄

∇θ
dA

!= 0. (22)

The linearisation and discretisation of theRCEwith the nodal
vector, shape function and the derivative of the shape function

θ̂ =
⎡
⎣ θ |x

∇θ |x
�θ

⎤
⎦ , N̄ θ (x̄) =

⎡
⎣ 1
x̄ − x̄ref

κ(x̄)

⎤
⎦ ,

B̄θ (x̄) =
⎡
⎣ 0

I
−N1

⎤
⎦ (23)
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Fig. 1 Sketch of an RCE with a
discrete crack and local
coordinates in a reference
configuration and b deformed
configuration

(a) (b)

result in the linear system of equations for the nodal updates

⎡
⎣ K θθ K θ∇θ K θ�θ

K∇θθ K∇θ∇θ K∇θ�θ

K�θ θ K�θ∇θ K�θ�θ

⎤
⎦ ·

⎡
⎣�θ |x

�∇θ |x
��θ

⎤
⎦ =

⎡
⎣ Rθ

R∇θ

R�θ

⎤
⎦ , (24)

where θ |x and ∇θ |x are the quantities at the material point
of the phase-field model and given by Dirichlet boundary
conditions to the RCE.

Solution for thermally isolated cracks

The first analytical solution for the RCE model is derived
under the assumptions of perfect heat conduction through a
closed crack and that an opened crack behaves as thermal

isolator, i.e. no heat flux through the crack exists (�̄
∇θ

(x̄) =
0,∀x̄ ∈ ¯∂B�

, for �1 > 0). As introduced in [1], linear
thermo-elastic material at small deformations with the Lamé
constants λ, μ and the coefficient of thermal expansion α

yield

�1 =
〈

λ

λ + 2μ
tr (E − Eθ )

+ 2μ

λ + 2μ
(E − Eθ ) : (N1 ⊗ N1)

〉
+
,

�2 = E : (N2 ⊗ N1 + N1 ⊗ N2),

�3 = E : (N3 ⊗ N1 + N1 ⊗ N3), (25)

where the thermal strain tensor is Eθ = αθ |x I . For the kine-
matic coupling holds Ē = E|x − 1

2

∑3
i=1 �i (N i ⊗ N1 +

N1 ⊗ N i ).
The solution for the temperature discontinuity reads

�θ =
⎧⎨
⎩
0, �1 = 0,
N1 · K · ∇θ |x
N1 · K · N1

, �1 > 0,
(26)

which results in the homogenised thermal stress and tangent

�∇θ,c|x = K · ∇θ |x · (I − N1 ⊗ N1) , (27)

∂�∇θ,c|x
∂∇θ

= K · (I − N1 ⊗ N1) (28)

for an opened crack (�1 > 0). The thermal conductivity
tensor for an isotropic material is K = k I . The temperature
gradient of both solid blocks of the RCE reads ∇̄θ = ∇θ |x −
�θ N1.

The solution of the mechanical and thermal RCE depends
on the crack contact state, which is identified by �1. A
tolerance range is adopted from [3] in order to avoid con-
tact oscillations. However, still some additional Newton
iterations due to contact oscillations are observed for the
thermo-mechanical formulation with a tolerance range in the
subsequent examples. The reason is the bilinear character in
both, mechanical and thermal behaviour, due to crack con-
tact. Thus, the contact criterion is fixed in each time step after
the first Newton iteration, which results in quick and robust
convergence.

Solution for cracks with heat radiation

Heat transfer between bodies through radiation is discribed
in [8]. This process depends on the absolute temperature at
the body surfaces, the surface areas, the emissivity ε, the
Stefan-Boltzmann constant σ B and the geometrical view
factor F . The emissivity relates the radiation absorption abil-
ity of the physical concept grey body (can reflect radiation)
to those of a black body (no reflection). The view factor is the
fraction of energy which leaves the first surface and reaches
the second surface.

Crack surfaces are considered to be equally parallel planes
and the radiation is approximately related to the average sur-
face temperature in the following model. This simplification
allows to avoid a numerical integration on the crack surfaces
in the RCE for the calculation of radiation heat flux. Then,
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the heat flux reads

qr =
{

−σ BεF
[
(θ̄2)4 − (θ̄1)4

]
, for �1 > 0,

0, else.
(29)

The average temperature of the crack surfaces follows from
Eq. (20)

θ̄1(x̄) = θ |x + 1

2
l1�

θ , θ̄2(x̄) = θ |x − 1

2
l1�

θ . (30)

Following [9], the view factor of identical parallel square
facets of length l2 and distance l1�1 is given by

F = 1

πw2

(
ln

a4

1 + 2w2 + 4wb

)
(31)

with

w = l2
l1�1

, a =
√
1 + w2, b = a arctan

w

a
− arctanw.

(32)

Then the iterativeNewton-Raphson scheme for theunknown
temperature discontinuity reads

[
K�θ�θ

] · [��θ

] = [
R�θ

]
. (33)

The residuum is

R�θ = −k ∇θ |x · N1 + qr (34)

and the algorithmic tangent is

K�θ�θ = k − ∂qr

∂�θ

. (35)

A numerical derivative based on finite differences is imple-
mented for the view factor derivative

∂F

∂�θ

≈ F(�θ + ��θ) − F(�θ )

��θ

(36)

for the purpose of simplicity. The homogenised thermal stress
and tangent read

�∇θ,c|x = k (∇θ |x − �θ N1) , (37)

∂�∇θ,c|x
∂∇θ

= k

(
I + k

K�θ�θ
N1 ⊗ N1

)
(38)

for an opened cracked (�1 > 0).
Note, that heat radiation and, thus, the solution of theRCE,

depends on the value of the crack opening v ū w, whereas
previously published solutions of the RCE depend only on
the dimensionless crack deformation �i . Thus, in contrast to

the former RCE solutions, the model is not independent of
the RCE size and l1 becomes a model parameter.

Remarks on further heat flux processes at cracks

Perfect heat conduction behaviour through a closed crack is
assumed for both solutions above, i.e. �θ = 0 for �1 =
0. However, the heat conduction in compressed cracks is
typically less than in the bulk material due to spot contact,
conduction in micro cavities and further effects. [10] has
identified the following constitutive structure for the heat
flux through a closed crack

qN = q̂N(θ̄1, θ̄2, pN), (39)

where qN is the heat flux normal to the crack surface and
pN is the normal pressure of the crack surfaces in contact.
Thus, the iterative solution scheme for the temperature dis-
continuity at the RCE model with heat radiation (�1 > 0),
given by Eqs. (33–35), (37) and (38), also applies to the pro-
posed RCE model when Eq. (39) is considered for closed
cracks (�1 = 0).

It is further possible to consider heat convection at the
crack surface, which depends on the temperature of the crack
surfaces θ̄1 and θ̄2, and the temperature of the medium in the
crack θ̄c. Then, the heat flux at the crack surface can be given
in the form

qN = q̂N(θ̄1, θ̄2, θ̄c). (40)

However, the medium temperature in the crack depends on
the heat conduction and fluid mechanics of the medium in
the whole crack in general, which is not part of the proposed
phase-field model. Thus, heat convection at crack surfaces
is restricted to slow processes, where θ̄c = const. can be
assumed, or very quick processes, where θ̄c can be calculated
from the heat capacity of the medium in the crack and the
heat transferred through the crack surfaces.

2.3 Finite element formulation

The finite element method is applied to the phase-field model
in Eq. (3). Thus, a solution is obtained iteratively starting at
the state (ui , pi , θ i ) with

Gi = G(ui , pi , θ i ):=δP tot
∣∣∣u=ui
p=pi

θ=θ i

→ 0 (41)

and the linearisation by means of the first order Taylor
expansion

G(ui + �ui , pi + �pi , θ i + �θ i )
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≈ G(ui , pi , θ i )

+ ∂G

∂u

∣∣∣∣u=ui
p=pi

θ=θ i

· �ui + ∂G

∂ p

∣∣∣∣u=ui
p=pi

θ=θ i

�pi + ∂G

∂θ

∣∣∣∣u=ui
p=pi

θ=θ i

�θ i ,

≈ Gi + ∂Gi

∂u
· �ui + ∂Gi

∂ p
�pi + ∂Gi

∂θ
�θ i

!= 0 (42)

with respect to the state variables. For the discretisation
into finite elements, the same shape functions N (x) and
derivatives B(x) are used for the state variables and their
corresponding virtual velocities

u(x) = Nu(x) · û(e)
, δv(x) = Nu(x) · δv̂

(e)
, (43)

p(x) = N p(x) · p̂(e)
, δ ṗ(x) = N p(x) · δ ˆ̇p(e), (44)

θ(x) = Nθ (x) · θ̂
(e)

, δθ̇ (x) = Nθ (x) · δ ˆ̇θ (e), (45)

H(x) = Bu(x) · û(e)
, δ Ḣ(x) = Bu(x) · δv̂

(e)
, (46)

∇ p(x) = B p(x) · p̂(e)
, δ∇̇ p(x) = B p(x) · δ ˆ̇p(e), (47)

∇θ(x) = Bθ (x) · θ̂
(e)

, δ∇̇θ(x) = Bθ (x) · δ ˆ̇θ (e). (48)

The total virtual power is required to vanish for all admissible
virtual velocities,

G(ui + �ui , pi + �pi , θ i + �θ i ) ≈
δv̂·

{
−Ru + Kuu · �ûi + Kup · � p̂i + Kuθ · �θ̂

i}

+δ ˆ̇p·
{
−R p + K pu · �ûi + K pp · � p̂i + K pθ · �θ̂

i}

+δ ˆ̇θ ·
{
−Rθ + K θu · �ûi + K θ p · � p̂i + K θθ · �θ̂

i}
,

(49)

which yields the linear system of equations for the nodal
updates of the state variables

⎡
⎣ Kuu Kup Kuθ

K pu K pp K pθ

K θu K θ p K θθ

⎤
⎦ ·

⎡
⎣�û

� p̂
�θ̂

⎤
⎦ =

⎡
⎣ Ru

R p

Rθ

⎤
⎦ (50)

with

Kuu =
n

A
e=1

∫
B(e)

[
(Bu)ᵀ · ∂�H

∂H
· Bu

+(Nu)ᵀ ·
(

∂�u

∂u
− ∂ f u

∂u

)
· Nu

]
dV , (51)

Kup =
n

A
e=1

∫
B(e)

[
(Bu)ᵀ · ∂�H

∂ p
· N p

]
dV , (52)

Kuθ =
n

A
e=1

∫
B(e)

[
(Bu)ᵀ · ∂�H

∂θ
· Nθ

]
dV , (53)

K pu =
n

A
e=1

∫
B(e)[

(N p)ᵀ · ∂� p

∂H
· Bu + (B p)ᵀ · ∂�∇ p

∂H
· Bu

]
dV , (54)

K pp =
n

A
e=1

∫
B(e)

[
(N p)ᵀ · ∂� p

∂ p
· N p

+(B p)ᵀ · ∂�∇ p

∂∇ p
· B p

]
dV , (55)

K pθ =
n

A
e=1

∫
B(e)

[
(N p)ᵀ · ∂� p

∂θ
· Nθ

+(B p)ᵀ · ∂�∇ p

∂θ
· Nθ

]
dV , (56)

K θu =
n

A
e=1

∫
B(e)

[
(Nθ )ᵀ · ∂�θ

∂H
· Bu

+(Bθ )ᵀ · ∂�∇θ

∂H
· Bu

]
dV , (57)

K θ p =
n

A
e=1

∫
B(e)

[
(Nθ )ᵀ · ∂�θ

∂ p
· N p

+(Bθ )ᵀ · ∂�∇θ

∂ p
· N p

]
dV , (58)

K θθ =
n

A
e=1

∫
B(e)

[
(Bθ )ᵀ · ∂�∇θ

∂∇θ
· Bθ

+(Nθ )ᵀ ·
(

∂�θ

∂θ
− ∂ f θ

∂θ

)
· Nθ

]
dV ,

(59)

Ru = −
n

A
e=1

∫
B(e)

[
(Bu)ᵀ · �H + (Nu)ᵀ · (�u − f u

)]
dV ,

(60)
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Fig. 2 a Sketch of the
thermo-mechanical boundary
value problem and b the load
history at the upper edge of the
pre-cracked plate

(a) (b)

R p = −
n

A
e=1

∫
B(e)

[
(N p)ᵀ · � p + (B p)ᵀ · �∇ p

]
dV ,

(61)

Rθ =−
n

A
e=1

∫
B(e)

[
(Bθ )ᵀ · �∇θ +(Nθ )ᵀ · (�θ − f θ

)]
dV .

(62)

An
e=1 is the assembly operator for the n finite elements

towards the global system of equations.

3 Application to linear thermo-elasticity

3.1 Pre-cracked plate

The proposed thermo-mechanical phase-fieldmodel for frac-
ture is applied to a pre-cracked plate. For a plate of 100mm
length with an initial middle crack, a displacement of uy =
4mm is applied to open the crack, cf. Fig. 2a. The tempera-
ture at one edge parallel to the crack is increased by 6K. The
load history of the boundary conditions is given in Fig. 2b.
The time is discretised into 100 time steps. The thermo-
elastic material parameters are λ = 19.6MPa, μ = 2MPa,
α = 0.01mm/K, ρ = 0.1 kg/mm3, c = 38.8 J/kg/K and
k = 1000W/m/K, while thermal isolation is assumed for
opened crack states.

The temperature distribution on the deformed plate is
shown in Fig. 3c, and the temperature and displacement pro-
file at the vertical symmetry axis (x = 50mm) are given in
Fig. 3a, b. The heat propagates from the plate edge towards
the crack and causes thermal expansion. The heat cannot pass
the opened crack and yields a curved crack surface, which
propagates towards the opposite, straight crack surface. The
first crack contact takes place at the middle of the plate and
allows the heat to propagate through the region in contact into

the second half of the plate. The ongoing thermal expansion
in both halves of the plate increases the contact area of the
crack until contact along the entire crack surface.

The example demonstrates realistic deformations at the
crack for thermo-mechanical material behaviour and the
influence of the crack state on the thermal conduction, while
the opened crack is considered as thermal isolator. Conver-
gence is obtained in three or less Newton iterations for all
time steps.

The simulation of the pre-cracked plate is repeated and
heat radiation between the crack surfaces is considered,
cf. Fig. 4a. The boundary condition loads are changed to
uy = 7mm and 6 K in order to prevent crack contact when
only one plate half is thermally expanding. The emissivity
is considered as ε = 1, which represents heat radiation for
black bodies. The heat is propagating from the plate edge
to the crack. However, the temperature difference between
the crack surfaces increases slowly and, thus, only a small
amount of heat is transferred by radiation. With increasing
temperature at the crack surface, also the distance between
the crack surfaces reduces, which increases heat flux from
radiation.The slightly curved crackyields an inhomogeneous
distribution of the heat flux at the crack.The secondhalf of the
plate is heated up faster at the middle than at the plate sides.
The temperature distribution on the deformed plate is given
in Fig. 4c for a simulation with and without heat radiation
at the opened cracked. The thermal expansion of the lower
half plate yields crack contact after a while, which cannot be
achieved without taking heat radiation into account.

The solution scheme of the non-linear problem consists of
twoNewton-Raphson loops, one applied to the global sys-
tem of equations and one at the RCEmodel. The convergence
behaviour in terms of the number of iterations is presented in
Fig. 5. Up to nine iterations per time step at the global level
are required due to the strongly non-linear radiation relation.
Corresponding relative residuum norms of the iterations are
given for three time steps at all phases of the simulation.
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Fig. 3 a, b Temperature and
displacement profile along the
vertical symmetry axis of the
plate (x = 50mm), and c
temperature distribution on the
deformed plate (scaling factor 5)

(a) (b)

(c)

The local Newton loop for the radiation flux is plotted
for an element in the centre of the plate in Fig. 5b and, thus, at
the centre of the crack. Convergence is achieved within two
to three iterations. Quadratic convergence is demonstrated
by the relative residuum norms of three time steps. The local
loop is not activated when the crack is in contact, which is
the case from step 26 onwards for the investigated element.

3.2 Thermal shock of a circular specimen

The second example examines the capability of the present
phase-field model applied to a practical engineering prob-
lem.A recent experiment of [11] attempts to investigate crack
evolution patterns of ceramic materials exposed to a thermal
shock (quench treatment), which obtains a quasi periodical
and hierarchical crack profile within a thin layer of circu-
lar specimen. Thereafter, a numerical method [12] using a
thermal coupled phase-field fracturemodel studies the crack-
ing pattern, showing good agreement with the experimental
investigation in [11]. Thework at hand reproduces thismodel
problem using the proposed thermo-phase-field approach
within anRCE framework based on the setup shown in Fig. 6.

In particular, a two-dimensional boundary value problem,
which is characterized as homogeneous and isotropically lin-
ear elastic, is taken into account. For the initial phase, the
specimen is uniformly heated up by 200K, where the whole
heating procedure yields a complete stress-free state of the
specimen. In the sequel, the most outside surface is supposed
to be cooling down in a significantly fast manner. Naturally,
this process leads to material shrinkage at the outside layer
and results in tensile stress along the tangential direction.

As long as the elastic strain potential sufficiently exceeds
the critical energy release rate of the material, e.g. Gc =
8 × 10−3 GPa/m2, multiple cracks are nucleated and start
to propagate inwards along the radial direction. Due to
the symmetry characteristics of the geometric setup and
the temperature loading condition, the model problem is
simplified as a quarter of the original one with proper
boundary conditions, depicted in Fig. 6a. The simulation
is performed by a standard parallel computation technique,
where the finite element discretization is partitioned by 80
individual domains, see Fig. 6b. The material
parameters are given as κ = 196GPa, μ = 20GPa, ρ =
1000 kg/m3, k = 50W/m/K, c = 3.88 × 10−3 kJ/kg/K,
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Fig. 4 a Sketch of the
thermo-mechanical boundary
value problem, b temperature
profile along the vertical
symmetry axis of the plate
(x = 50mm) and c temperature
distribution on the deformed
plate (scaling factor 5) with and
without heat radiation through
the crack

(a) (b)

(c)

Fig. 5 a Number of
Newton-Raphson iterations
per time step and relative
residuum norm of three time
steps (10, 27, 63) for the global
system of equations, and b
number of Newton-Raphson
iterations per time step (first
global iteration) and relative
residuum norm of three time
steps (8, 18, 25) for the heat
radiation

(a) (b)

α = 1.2 × 10−4 mm/K, l = 1mm. The simulation results,
shown in Fig. 7, depict that multiple cracks are nucleated
at the circular edge in an approximately periodical manner.
In the sequel, cracks propagate with different growth speed.
Some of them slowly evolve straightforwardly inwards, and

some slightly change their directions. The simulation result
shows good agreement with the experimental investigation
in [11].
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(a) (b)

Fig. 6 Schematic description of thermal shock cracking of a circular
specimen, a geometric setup and b finite element discretization for each
partition domain of parallel computation

Fig. 7 Simulation of crack evolution induced by thermal shock versus
the experimental investigations in [11]

3.3 Thermally induced cracking of a notched beam

This example studies the crack evolution induced by ther-
mal shrinking within a beam with an initial notch. Similar
to the aforementioned thermal shock cracking mechanism,
sudden cooling is applied to the surface of the structure.
Thus, the thermal shrinking yields a stress concentration at
the notch tip, where the crack is supposed to be initiated.

In order to demonstrate the propagation of curved cracks
in a three-dimensional specimen, an inclined notch is taken
into account. The geometrical setup of the boundary value
problems is depicted in Fig. 8. The material parameters are
given as κ = 196 GPa, μ = 20 GPa, ρ = 3000 kg·m−3,
k = 520 W/m/K, c = 1.66e−5 kJ/kg/K, α = 1.2e−4 mm/K,
Gc = 5e−2 GPa/m2, l = 2 mm. The maximum principal
stress direction is used to approximate the crack normal ori-
entation [1,3].

The temperature loading is applied to the bottom surface,
where the initial notch is located at, as aDirichlet boundary
condition. In the sequel, due to continuous heat conduction,
the lower temperature propagates upwards reaching the notch
tip. As a result, a concentrated elastic deformation occurs at
the notch tip to initiate the phase-field crack. The inclined
notch yields a curved crack surface, which reduces the crack
surface areawhile dividing the beam into twoparts, seeFig. 9.
For the sake of better visualization, a post-processing tech-
nique generates the isosurface with p = 0.95 to represent
the evolved crack surfaces.

4 Conclusions and outlook

The abstract variational principle of total virtual power is
applied to phase-field fracture for coupled thermo-mechanics.
The state variables are chosen to be the displacement vector,
the phase-field variable and the absolute temperature. The
obtained variational problem represents the weak form of
momentum balance, entropy balance and phase-field bal-
ance. A representative model for a portion of a crack is
introduced in order to determine crack contact, force degra-
dation, degradation of the heat conductivity and further
processes inside the crack. This Representative Crack Ele-
ment (RCE) is coupled to the phase-field formulation by
means of variational homogenisation.

The presented framework is used to derive a phase-field
fracture model for transient thermo-elasticity, where the
crack acts either as thermal isolator or where heat radiation
through the crack is considered. An iterative solution scheme

Fig. 8 Schematic description of
notched beam and perspective
visualisation

(a) (b)
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Fig. 9 Evolution of the curved
crack surface as a result of
thermal strains in a clamped
beam, a perspective view and b
top view

to solve the non-linear RCE model is introduced. The possi-
ble application of the solution scheme to considered further
thermal effects, e.g. spot contact, micro-cavity conduction or
heat convection, is discussed. The derivedmodels are applied
to a plate with an initial crack, demonstrating the interaction
of thermal strain and heat conduction with the crack with and
without considering heat radiation. A thermal shock simula-
tion is presented and the results are compared to experimental
findings. The three-dimensional application is performed at a
clamped beam with an inclined notch, which yields a curved
crack surface.

The presented procedure to derive multi-physical models
of phase-field fracture basedon representative crack elements
can be adopted to further formulations in future works, e.g.
nonlocal material models, higher order continuum models,
multi-scale problems and other multi-physical couplings.
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