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Abstract
A novel nonlocal lattice particle method for modeling elastic deformation of cubic crystals was proposed and verified in this
paper. Different from all other numerical models, the lattice particle method decomposes the grain domain into regularly
packed discrete material particles according to the internal crystal lattice. Two most common Bravais cubic lattices, i.e.,
the body-centered cubic lattice and the face-center cubic lattice, were studied in this work. Model parameters were derived
in terms of the three elastic material constants based on energy equivalency and theory of hyper-elasticity. Different from
coordinates transformation used in the classical continuummechanics theory, rotation of the discretization lattice is employed
to equivalently represent the material anisotropy while capturing the underlying microstructure in the proposed model. The
validity and prediction accuracy of the proposed model were established by comparing the predicted directional Young’s
modulus and the resolved shear stress of different slip systems against analytical solutions.

Keywords Crystal elasticity · Cubic crystals · Lattice particle method · Lattice rotation · Resolved shear stress

1 Introduction

Crystalline materials are commonly used in engineering
applications crossing different length scales, such as large-
scale metal alloys and ceramics in civil systems and micro-
components for micro-electro-mechanical systems (MEMS)
[1]. The physical properties of crystalline materials are
uniquely determined by the microstructural features of inter-
nal grains, including the morphology, size distribution,
anisotropy and crystallographic orientation [2]. The behav-
ior of crystalline materials at the mesoscale can be studied
by both experiments [3, 4] and computational models [5,
6]. In terms of computational modeling, extensive research
has been performed to develop computational methods for
the modeling and simulation of failure of polycrystalline
microstructures acrossmultiple length scales. These includes
methods at the microscale, such as molecular dynamics [7,
8], methods at the mesoscale, such as cohesive zone models
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[9–11], extended finite elements [12, 13], phase field mod-
els [14–16], percolation model [17, 18] and peridynamics
[19–21], and methods that couple these two length scales,
such as quasi-continuum method [22, 23] and concurrent
atomic-continuumapproach [24, 25]. Themicroscalemodels
focus on investigating the grain boundary effects and can only
handle small polycrystal systems due to prohibitive com-
putational cost. On the other hand, the mesoscale models
can handle large polycrystal systems but at the sacrifice of
lower length scale information. The multiscale methods aim
to improve the computational efficiency while being able to
consider the lower length scale details at locations of interest.

For models at the mesoscale, the conventional way of
modeling anisotropic materials has been used, i.e., material
anisotropy is represented using anisotropic constitutive law
while the internal crystal lattice that results in this material
anisotropy is neglected [26]. For the case of cubic crys-
tals, because of the cubic symmetry of its underlying lattice,
three independent material constants are used to fully char-
acterize the elastic behavior under the principal coordinates
system. For an arbitrarily oriented grain in space, coordinates
transformation is used to transform the material stiffness
tensor from the principal coordinates system to the global
coordinates system.No information regarding the cubic sym-
metry of the internal crystal lattice that results in the cubic
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material stiffness tensor is directly modeled. This is under-
standable since continuum-level models are developed based
on the idea of homogenization. All microstructural features
are homogenized out or neglected in the continuum-level
models. However, for mesoscale or grain scale modeling and
simulation, the internal crystal lattice plays important role
in determining its mechanical behavior, such as in determin-
ing the cleavage planes [27] and slip planes [28]. Therefore,
being able to represent the lattice structure in the geometric
model is beneficial to the study of the mechanical behavior
of crystalline materials at the mesoscale.

In this paper, we propose a novel nonlocalmeshfreemodel
based on a recently developed lattice particle method (LPM)
for modeling the elastic behavior of single cubic crystals at
the mesoscale. Although demonstrated using cubic crystals,
the proposed methodology can be applied to model other
types of crystals such as the hexagonal close packed crys-
tals. Compared to other computational models based on the
classical continuum mechanics theory, the novelties of the
proposed model lie in at least the following two aspects:
First, LPM reformulates the classical continuum mechan-
ics theory using discretized integro-differential equations by
decomposing a material domain as an assemblage of regu-
larly packed material particles according to Bravais lattices.
The interactions between material particles are completely
nonlocal that a material particle interacts with neighboring
material particles up to certain distance and the interaction
between two material particles depends on all the neighbors
of these two material particles. This better avoid the spatial
discontinuity related stress singularity issue in the classi-
cal continuum mechanics theory [29]; Second, for modeling
crystalline materials, in addition to the anisotropic consti-
tutive law, the internal lattice that results in this anisotropy
in material property is explicitly captured in the geometry
model. This would greatly facilitate the modeling and sim-
ulation process where information regarding specific lattice
plane is useful and needed.

The remainder of this paper is organized as follows. In
Sect. 2, a brief review of the general formulation of LPM for
linear elastic solids is given. A realization of the general for-
mulation for cubic crystals using body-centered cubic (bcc)
lattice and face-centered cubic (fcc) lattice is presented in
Sect. 3. Rotation of the discretization lattice to accurately
represent the crystallographic orientation hence the mate-
rial anisotropy of a crystal is also discussed. In Sect. 4, two
benchmark examples regarding the directional Young’smod-
ulus and the resolved shear stress of different slip systems
are studied to assess the performance of the proposed model.
Discussions and conclusions are drawn in Sect. 5.

2 Linear elasticity using nonlocal lattice
particle method: a review

Lattice particle method (LPM) is a nonlocal meshfree refor-
mulation of the classical continuum mechanics theory by
replacing the governing partial differential equations with
discretized integro-differential equations. By virtue of this
reformulation, LPM doesn’t have any numerical issues, such
as stress singularity, resulted from the existence of spatial dis-
continuities in the solution domain. Therefore, LPM offers
some unique benefits in modeling and simulating material
failure behavior [29]. A brief review of the general formu-
lation of LPM for linear elastic solids is presented in this
section. Detailed formulations can be found in Refs. [30–32].

In LPM, the material domain is discretized into regularly
packedmaterial particles according to a given Bravais lattice.
Discretematerial particles interact with neighboringmaterial
particles up to certain distance via bonds, and unit cells are
identified for neighboring material particles of the same dis-
tance. In LPM, the total potential energy at amaterial particle
is the summation of all the energies of the unit cells associated
with the material particle as

Uparticle �
nc∑

I�1

Ucell_I , (1)

where nc is the number of unit cells associated with a mate-
rial particle. The potential energy of a unit cell in LPM is
different from that in the classical lattice spring model [33].
In LPM, both local pairwise and nonlocal multi-body poten-
tials are employed to describe the potential energy, which
can be written as

Ucell_I � Ulocal_I +Unonlocal_I �
n(I )
c∑
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whereUlocal_I is the total pair-wise potential energy of indi-
vidual bonds associated with the unit cell I ,Unonlocal_I is the
nonlocal multi-body potential energy related to the collective
behavior of all bonds associated with the unit cell I , k and
T are the local and nonlocal stiffness parameters for each
bond β,respectively, n(I )

c is the total number of neighboring
material particles associated with unit cell I , δl is the bond
elongation. It is noteworthy that a factor of 1/2 is used to
account the equal contribution of the energy of a bond to the
two material particles in the local component and only half
of the bond elongation is used in the nonlocal component.
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For infinitesimal strain problems, the bond elongation δl
can be related to the strain tensor εi j for a material particle
[34] as

e � δl

L
� Ni N jεi j , (3)

where N is the unit vector in the bond direction and L is the
initial bond length. Plugging Eq. (3) into Eq. (2), the total
potential energy of a unit cell can be rewritten in terms of the
components of a strain tensor as

Ucell_I � 1

4

n(I )
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,

(4)

Therefore, the total potential energy of a material particle
can be expressed as

Uparticle
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(5)

By equivalating the potential energy of an LPM material
particle to that of a continuum counterpart, the material stiff-
ness tensor can be obtained by the theory of hyper-elasticity
as

Ci jkl � 1
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(6)

where V is the volume of a LPM material particle, which is
usually the same as the volume of the unit cell for the first
nearest neighbors. For homogeneous Hookean materials, the
model parameters can be solved by matching the derived
material stiffness tensor in Eq. (6) with the one from the con-
tinuummechanics expressed in terms of materials constants,

such as Young’s modulus and Poisson’s ratio for isotropic
materials.

Assuming the model parameters are known and given the
potential energy of each material particle, the interaction
force between material particles can be calculated by dif-
ferentiating the potential energy with respect to the length
change δl of the bond as

F(αβ) � −
∂
(
U (α)

particle +U (β)
particle

)

∂
(
δl(αβ)

) n(αβ), (7)

wheren(αβ) is the unit vector betweenparticleα and its neigh-
boring material particle β. Carrying out the differentiation,
the force magnitude can be found as
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where n(β)
c is for material particle α’s unit cell that includes

material particle β and n(α)
c is for material particle β’s unit

cell that includes material particle α. As can be seen from
Eq. (8), the force between two interactingmaterial particles is
completely nonlocal, namely, the interaction depends on not
only the bond connecting these twomaterial particles but also
the bonds connecting these two material particles with their
neighbors that shares the same unit cells as these twomaterial
particles. The total internal force for a material particle is the
summation of the forces from all its neighboring material
particles as

Fint �
∑

I�1 ncn
(I )
c∑

β�1

F(β). (9)

Finally, the Equations of Motion for a material particle in
LPM has the following form

m ü � Fint + b, (10)

withm being themass of amaterial particle, u is the displace-
ment vector, and b is the body force. For dynamic problems,
Eq. (10) can be solved using standard explicit time integra-
tion schemes, such as Verlet integration [29]. For static or
quasi-static problems, the implicit solution scheme based on
energy minimization can be used [30, 35].
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Continuum-like measures such as strain and stress tensors
can be constructed at eachmaterial particle based on the bond
elongation and force using the least squares technique [34].
The second Piola–Kirchhoff (PK2) stress tensor at a material
particle can be approximated from the bond force as

SPK2
i j � 1

V

nc∑

I�1

n(I )
c∑

β�1

L(β)F (β)N (β)
i N (β)

j . (11)

where F (β) is the force magnitude of neighbor β.
For infinitesimal strain problems, the PK2 stress is approx-

imately the same as the Cauchy stress σi j .
So far, the general formulation of LPM for linear elastic

solids has been briefly reviewed. The number of LPMparam-
eters needed for full description of material elastic behavior
is dependent on the number of independent elastic materials
constants, i.e., material symmetry. In the following Sect. 3,
this formulation will be applied to develop a LPM cubic
crystal elasticity model. Explicit expression of the model
parameters in terms of the three elastic material constants
will be derived. The simplified form of the interaction force
for a specific lattice will also be given.

3 Cubic linear elasticity using nonlocal
lattice particle method

To model the linear elastic behavior of cubic crystals, three
independent elastic material constants are needed, namely,
the C11, C12 and C44. The Voigt notation of the material
stiffness tensor for cubic crystals in the classical continuum
mechanics theory can be written as

Ccm �

⎡

⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12

C12 C11 C12

C12 C12 C11

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

C44 0 0
0 C44 0
0 0 C44

⎤

⎥⎥⎥⎥⎥⎥⎦
. (12)

In LPM, three independent model parameters are needed
in order to fully describe the elastic behavior of cubic crystals.
Therefore, based on the cubic symmetry and the structure of
bcc and fcc lattices, theminimum required neighboring inter-
acting material particles are the first and the second nearest
neighbors. Furthermore, bonds connecting a material parti-
cle with the same types of neighbors, i.e., either the first or
the second nearest neighbors, have the same local parameter
k and nonlocal parameter T . But these two parameters for the
first and the second nearest neighbors are different in general,
e.g., the local parameter k for the first nearest neighbors is
different from that for the second nearest neighbors. How-

ever, to match the number of independent elastic material
constants from the continuum mechanics theory, the nonlo-
cal parameter T of the first nearest neighbors is assumed to
be identical to that of the second nearest neighbors. As a
result, there are three independent model parameters in LPM
for cubic crystals, i.e., k(1), k(2), and T , and the minimum
neighbors need to be considered are the first and the second
nearest neighbors. As will be seen later in this section, these
three model parameters are uniquely determined in terms of
the three elastic material constants.

Therefore, for cubic crystals, the potential energy of an
LPM material particle has the following simplified form as

(13)
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In terms of the components of strain tensor, the above
potential energy can be rewritten as
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The material stiffness tensor can be determined by the
theory of hyper-elasticity as
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+
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2T
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The magnitude of the bond interaction force can also be
simplified as

F (αβ) �

⎧
⎪⎪⎨

⎪⎪⎩

k(1)δl(αβ) + T
4

(∑n(1)
c

γ�1 δl(αγ ) +
∑n(1)

c
γ�1 δl(βγ )

)
, ifβ is the 1st neighbor of α

k(2)δl(αβ) + T
4

(∑n(2)
c

γ�1 δl(αγ ) +
∑n(2)

c
γ�1 δl(βγ )

)
, if β is the 2nd neighbor of α

. (16)

As a result of the nonlocality of the interaction between
material particles, LPM doesn’t possess any limitation on
the range of Poisson’s ratio. LPM can be applied to model
materials with Poisson’s ration in the range of − 1.0 to + 0.5
[30, 32]. In the following subsections, the explicit forms of
the three model parameters will be derived in terms of the
three elastic material constants for two cubic Bravais lattices,
namely, the body-centered cubic (bcc) and the face-centered
cubic (fcc).

3.1 Body-centered cubic lattice

For bcc lattice, there are total of 14 interacting neighbors
for each material particle, eight of which are the first nearest
neighbors and the rest six are the second nearest neighbors.
The unit cells for the two types of neighbors are shown in
Fig. 1. The corresponding 14 bond unit vectors are given in
Table 1. The R is half the distance between amaterial particle
with its first nearest neighbors.

Plugging the bond unit vectors given in Table 1 into
Eq. (15), the material stiffness tensor in Voigt form using
bcc lattice can be found as

Cbcc �

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
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√
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√
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√
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√
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√
3T

6R√
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√
3T

6R

√
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√
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√
3T
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√
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√
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6R√
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√
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√
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√
3T
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√
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√
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√
3T

6R

[0]3x3

[0]3x3

√
3k1
6R 0 0

0
√
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6R 0

0 0
√
3k1
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⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

Comparing the material stiffness matrices in Eq. (17) and
Eq. (12), the model parameters for bcc lattice considering
the first and the second nearest neighbors can be uniquely
determined as

⎧
⎨

⎩

k(1)

k(2)

T

⎫
⎬

⎭ � R

⎡

⎢⎣
0 0 2

√
3

2
√
3

3 − 2
√
3

3 0

0 2
√
3

7 − 2
√
3

7

⎤

⎥⎦

⎧
⎨

⎩

C11

C12

C44

⎫
⎬

⎭. (18)

3.2 Face-centered cubic lattice

For fcc lattice, there are total of 18 interacting neighbors
for each material particle, 12 of which are the first nearest
neighbors and the rest six are the second nearest neighbors.
The unit cells for these two types of neighbors are shown in
Fig. 2. The corresponding 18 bond unit vectors are given in
Table 2.

Plugging the bond unit vectors in Table 2 into Eq. (15),
the material stiffness tensor in Voigt form using fcc lattice
can be found as
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Fig. 1 The bcc lattice, neighbors
and unit cells
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. (19)

Comparing thematerial stiffness matrices in Eqs. (19) and
(12), themodel parameters for fcc lattice considering the first
and the second nearest neighbors can be uniquely determined
as

⎧
⎨

⎩

k(1)

k(2)

T

⎫
⎬

⎭ � R

⎡

⎢⎣
0 0 2

√
2√

2
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√
2
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√
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√
2
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⎤
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⎨
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C11

C12

C44

⎫
⎬

⎭ (20)

As can be seen from the second equality of Eq. (20),
it is possible that the local parameter k(2) for the second
nearest neighbors of the fcc lattice becomes negative when
C11 < C12 + C44, i.e., when the anisotropy factor 2C44/

(C11 − C12) > 2 for fcc crystals such as Copper. However,
the bond forces whose calculation depend on this parameter
could be still positive due to the nonlocal contributions from
all the neighbors, as can be seen in Eq. (16). Nonetheless,
the rest model parameters for both lattices are guaranteed
to be positive for all cubic crystals (see Eqs. (18) and (20)).
This non-positiveness of the local parameter k(2) for the fcc
lattice will not affect the numerical performance of the pro-

Table 1 The bond unit vectors of all neighbors for bcc lattice

The first nearest neighbors
(

1√
3
, 1√

3
,− 1√

3

) (
− 1√

3
, 1√

3
,− 1√

3

) (
− 1√

3
,− 1√

3
,− 1√

3

)

(
1√
3
,− 1√

3
,− 1√

3

) (
1√
3
,− 1√

3
, 1√

3

) (
− 1√

3
, 1√

3
, 1√

3

)

(
− 1√

3
,− 1√

3
, 1√

3

) (
1√
3
, 1√

3
, 1√

3

)

The second nearest neighbors

(1, 0, 0) (0, 1, 0) (−1, 0, 0)

(0,−1, 0) (0, 0, 1) (0, 0,−1)

posed LPM model using fcc lattice, as will be demonstrated
in the numerical study section.

So far, the LPM model parameters have been derived in
terms of the elastic material constants for cubic crystals for
both bcc and fcc lattices. It is noteworthy that the derivation
was developed under the crystal coordinates system or the
principal coordinates system. Tomodel cubic crystal arbitrar-
ily oriented in the sample coordinates system or the global
coordinates system, the crystallographic orientation must be
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Fig. 2 The fcc lattice, neighbors
and unit cells

Table 2 The bond unit vectors of all neighbors for fcc lattice

The first nearest neighbors
(

1√
2
,− 1√

2
, 0

) (
1√
2
, 1√

2
, 0

) (
− 1√

2
, 1√

2
, 0

)

(
− 1√

2
,− 1√

2
, 0

) (
0, 1√

2
,− 1√

2

) (
0, 1√

2
, 1√

2

)

(
0,− 1√

2
, 1√

2

) (
0,− 1√

2
,− 1√

2

) (
1√
2
, 0,− 1√

2

)

(
1√
2
, 0, 1√

2

) (
− 1√

2
, 0, 1√

2

) (
− 1√

2
, 0,− 1√

2

)

The second nearest neighbors

(1, 0, 0) (0, 1, 0) (−1, 0, 0)

(0,−1, 0) (0, 0, 1) (0, 0,−1)

accurately accounted for. In Sect. 3.3, rotation of the dis-
cretization lattice to accurately represent the crystallographic
orientation in LPM will be discussed.

3.3 Crystallographic orientation representation
using lattice rotation

In the case when the crystal coordinates system is differ-
ent from the sample coordinates system, the transformation
of axes is used in the classical continuummechanics theory to
account for the crystallographic orientation. Different from
the transformation of axes, lattice rotation or axes rotation
is employed to represent the crystallographic orientation in

LPM. Since the real underlying lattice is used to discretize
the material domain and the derived model parameters are
orientation dependent, lattice rotation can explicitly repre-
sent the crystallographic orientation and offers great benefits
in modeling of crystalline materials using LPM.

In crystallography and texture analysis, the so-calledEuler
angles with Bunge convention [36] are commonly used for
describing the orientation of each crystal. LPM adopts the
Bunge convention to capture the crystallographic orientation
of a crystal. To that end, one can consider going froma sample
coordinate system (X ,Y , Z) to a rotated crystal coordinate
system (x, y, z) using three subsequent rotations. The angles
associated to those elementary rotations are usually denoted
as ϕ1, 
, ϕ2, respectively. The subsequent rotations can be
expressed as follows:

(X , Y , Z)
Z axis:ϕ1→ (u, v, Z)

u axis:
→ (u, w, z)
z axis:ϕ2→ (x, y, z).

(21)

These three rotations are counterclockwise positive. The
asymmetric units are given by the intervals [36]:

ϕ1 ∈ [
0, 360◦) ,
 ∈ [

0, 180◦) , ϕ2 ∈ [
0, 360◦) . (22)

As a result of these three subsequent rotations, the overall
rotation matrix is the product of the three rotation matri-
ces corresponding to the three elementary rotations, which is
given as
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Fig. 3 Demonstration of lattice rotation to represent crystallographic orientation using bcc lattice (the crystal 〈111〉 direction aligns with the sample
X -direction after a series of three rotations, the more accurate value for the second rotation is φ � 144.7356◦)

Table 3 The elastic constants of
single cubic crystals [37] (GPa) Cubic single crystals C11 C12 C44 Anisotropy factor 2C44/(C11 − C12)

bcc α-Iron (α-Fe) 230 135 117 2.4632

Niobium (Nb) 245 132 28.4 0.5027

fcc Aluminum (Al) 108 62 28.3 1.2304

Copper (Cu) 169 122 75.3 3.2043

R(ϕ1,
, ϕ2) �
⎡

⎣
cosϕ1 sinϕ1 0

−sinϕ1 cosϕ1 0
0 0 1

⎤

⎦

⎡

⎣
1 0 0
0 cos
 sin


0 −sin
 cos


⎤

⎦

×
⎡

⎣
cosϕ2 sinϕ2 0

−sinϕ2 cosϕ2 0
0 0 1

⎤

⎦. (23)

A demonstration of this lattice rotation process is pre-
sented in Fig. 3 using bcc lattice. Three subsequent rotations
of ϕ1 � 45◦, 
�̇145◦, and ϕ2 � 90◦ are applied to align the
crystal 〈1, 1, 1〉 direction to the sample X -direction.

4 Numerical results

The proposed LPM model is numerically tested and veri-
fied in this section. Two benchmark examples concerning
the elastic behavior of cubic crystals are studied. The first
example applies the model to predict the directional Young’s
modulus of cubic crystals, while the second example verifies
the predicted resolved shear stress (RSS) in each slip system
of both bcc and fcc crystals. Four different cubic crystals are
studied, and their elastic constants are tabulated in Table 3.
Anisotropy factors are also calculated to indicate the degrees
of elastic anisotropy of these four crystals. The closer the
factor to value of 1, the less anisotropic or the more isotropic
of the crystal elastic behavior. As can be seen from the cal-
culated anisotropy factor, the Copper has the largest degree

of elastic anisotropy, with value of 3.2043. As discussed in
Sect. 3.2, the anisotropic factor of fcc crystals will determine
the sign of the local parameter for the second nearest neigh-
bor. Therefore, this local parameter for the case of modeling
Copper is negative (see second equality of Eq. (20)).

All the numerical tests in this section are based on the
same cubical crystal domain subjected to uniaxial tension
loading in the Z -direction under the sample coordinates sys-
tem, as shown in Fig. 4. The cube is constrained on the top
surface and a uniform force of 100N is applied on the bottom
surface in the negative Z -direction. The whole top surface is
fixed for the Z -displacement, and the surface center is fixed
additionally both the X - and Y - displacements. Consider-
ing the dimensions of the cubical domain, the 100 N tensile
force applied uniformly at the bottom surface is equivalent
to a nominal tensile stress of 1 MPa on the bottom surface.
For all cases studied in this section, there are about 200,000
material particles used in discretizing the cubical domain.
The displacement of a surface under deformation is calcu-
lated as the average displacement of all the material particles
on the surface. The implicit solution scheme based on energy
minimization is used [30, 35].

4.1 Verification of directional Young’s modulus

In this example, the accuracy of using the proposed LPM
to model the elastic deformation of a single crystallite is
examined.We compare the directional Young’s modulus cal-
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Fig. 4 Configuration of a cubical crystal domain

culated using LPM with the analytical solution from Ref.
[38]. The analytical solution for the Young’s modulus in any
arbitrary direction 〈hkl〉 is given by

E Analytical
〈hkl〉

� 1

S11 − 2
(
S11 − S12 − 1

2 S44
) (
c21c

2
2 + c22c

2
3 + c21c

2
3

) ,

(24)

where Si j are the components of the compliance matrix with

[S] � [
C−1]; c1, c2 and c3 are the direction cosine of

the 〈hkl〉 direction with the 〈100〉, 〈010〉 and 〈001〉 crystal
directions, respectively. The comparisons between the LPM
predicted and analytical directional Young’s moduli on the
{100}, {110} and {111} crystal planes are shown in Figs. 5 and
6 for bcc and fcc crystals, respectively. To make sense of the
three-dimensional variations of the Young’s modulus, plots
based on the analytical solution are also provided. The LPM
predictions are generated byfirst rotating the 〈100〉, 〈110〉 and
〈111〉 crystal directions to align with the sample X -direction.
The Bunge Euler angles are (0◦, 0◦, 0◦), (315◦, 0◦, 0◦) and
(45◦, 145◦, 90◦), respectively. Simulations are then carried
out for a series of in-plane angles from 0◦ to 90◦ at the incre-
ment of 15◦. One additional angle of 35.3◦ for the case of
Copper crystal is also used to calculate the maximum direc-
tional Young’s modulus on the {110} planes. The directional
Young’s modulus is approximated using

ELPM〈hkl〉 � σZ Z

uZ/L
, (25)

where σZ Z � 1MPa is the equivalent applied stress, L �
0.01 m is the initial edge length of the cubical domain, and

uZ is the average Z -displacement on the bottom surface. The
predicted values for the realizations of in-plane angles from
0◦ to 90◦ are then mapped to the interval of [0, 360◦) due to
the symmetry of the cubic crystals.
As can be seen from the comparisons shown in Figss. 5 and 6,
LPM can accurately reproduce the directional Young’s mod-
ulus for both bcc and fcc single crystal. Both the anisotropy
of the Young’smodulus on the {100} and {110} crystal planes
and the isotropy of the Young’s modulus on the {111} crystal
planes are accurately reproduced using LPM. For fcc crys-
tals, the largest Young’s modulus is in the crystal direction of
〈111〉, normal to the close packed planes. However, it is not
general the case for bcc crystals. It should be noted that the
negative local parameters k(2) for the case of Copper does not
affect the performance of the model. As can be seen from the
results in Fig. 6, LPM can accurately predict the directional
Young’s modulus on all the three crystal planes for Copper
crystal, which is consistent with the LPM predictions for the
other crystals.

4.2 Verification of resolved shear stress (RSS)

According to Schmid’s law [39], crystal will begin to yield
on a slip system when the shear stress on this slip system
first reaches a critical value (critical resolved shear stress
(CRSS)), independent of the tensile stress or any other nor-
mal stress on the crystal plane. In this example, we verify
the predicted RSS using LPM for both lattices with the ana-
lytical value given by the Schmid law. The RSS τRSS by the
Schmid’s law can be calculated as

τRSS � σZ Zcosφcosλ � σZ Z P, (26)

where cosφ and cosλ are the direction cosines of the slip
direction vector and the normal vector of the slip plane with
respective to the Z -axis of the sample coordinate system,
respectively. The Schmid’s factor P � cosφcosλ can also
be expressed in tensor form [40] as

Pi j � 1

2

(
min j + m jni

)
, (27)

wherem is the slip direction vector andn is the corresponding
normal vector of a slip system.

For infinitesimal strain problems, the RSS τRSS also can
be expressed as

τRSS � σi j Pi j , (28)

Two different crystallographic orientations are consid-
ered, namely,

(
00, 00, 00

)
and

(
00, 450, 00

)
in termsofBunge

Euler angles. Under the same uniaxial loading along the Z -
direction of the sample coordinate system, the resolved shear
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Fig. 5 Variation of Young’s modulus of bcc α-Fe and Nb single crystals

stresses of all possible slip systems for both bcc and fcc lat-
tices are calculated and compared. The predicted RSS by
LPM, the RSS calculated using Schmid’s law (Eq. (26)) and

the relative error between them are tabulated in Table 4 and
Table 5 for bcc and fcc lattices, respectively. The RSS in
opposite directions have equal absolute values but opposite
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Fig. 6 Variation of Young’s modulus of fcc Al and Cu single crystals

sign, therefore only the RSS in one direction is presented.
The slip planes and slip directions correspond to the slip sys-
tem numbers indicated in Tables 4 and 5 are given in the

Appendix. The RSS by LPM is calculated using Eqs. (11)
and (28). The relative error is computed as

Error �
∣∣τ LPM

RSS − τ Schmid
RSS

∣∣
∣∣τ Schmid

RSS

∣∣ . (29)
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It also should be noted that the predicted RSS is the aver-
age of all the material particles of the discretization. Since
the calculation of RSS, both using LPM and Schmid’s law,
does not depend on the crystal deformation under force load-
ing for a specific lattice (see Eq. (26) for the case of using

Schmid’s law), only the results of α-Fe for bcc and Al for
fcc are presented. The dash lines in the Error column indicate
values are not available due to the Schmid solutions are zeros.

It is clear from the comparisons presented in Tables 4
and 5, LPM can predict the RSS at high accuracy compared

Table 4 RSS comparison of bcc
α-Fe under 1 MPa uniaxial
tension in sample Z -direction

slip sys. #
(
00, 00, 00

) (
00, 450, 00

)

τ Schmid
RSS τ LPM

RSS Error τ Schmid
RSS τ LPM

RSS Error

1 0.0000 1.08E−12 – 0.4082 0.4017 0.0162

3 0.0000 1.19E−12 – 0.0000 2.80E−08 –

5 0.0000 − 2.97E−13 – − 0.4082 − 0.4017 0.0162

7 0.0000 8.48E−14 – 0.0000 2.80E−08 –

9 0.4082 0.4048 0.0085 0.4082 0.4017 0.0162

11 − 0.4082 − 0.4048 0.0085 0.0000 2.65E−08 –

13 − 0.4082 − 0.4048 0.0085 − 0.4082 − 0.4017 0.0162

15 − 0.4082 − 0.4048 0.0085 0.0000 2.65E−08 –

17 0.4082 0.4048 0.0085 0.0000 1.50E−09 –

19 − 0.4082 − 0.4048 0.0085 0.0000 − 1.50E−09 –

21 − 0.4082 − 0.4048 0.0085 0.0000 − 1.50E−09 –

23 − 0.4082 − 0.4048 0.0085 0.0000 − 1.50E−09 –

25 0.2357 0.2337 0.0085 0.4714 0.4638 0.0162

27 − 0.2357 − 0.2337 0.0085 0.0000 3.15E−08 –

29 − 0.2357 − 0.2337 0.0085 0.0000 3.15E−08 –

31 0.2357 0.2337 0.0085 0.0000 1.70E−08 –

33 − 0.2357 − 0.2337 0.0085 0.2357 0.2319 0.0162

35 − 0.4714 − 0.4674 0.0085 0.0000 1.44E−08 –

37 − 0.4714 − 0.4674 0.0085 − 0.2357 − 0.2319 0.0162

39 0.4714 0.4674 0.0085 0.2357 0.2319 0.0162

41 0.2357 0.2337 0.0085 − 0.2357 − 0.2319 0.0162

43 − 0.2357 − 0.2337 0.0085 0.0000 − 1.70E−08 –

45 0.4714 0.4674 0.0085 0.0000 − 1.44E−08 –

47 0.2357 0.2337 0.0085 0.4714 0.4638 0.0162

Table 5 RSS comparison of fcc
Al under 1 MPa uniaxial tension
in sample Z -direction

slip sys. #
(
00, 00, 00

) (
00, 450, 00

)

τ Schmid
RSS τ LPM

RSS Error τ Schmid
RSS τ LPM

RSS Error

1 0.0000 − 1.15E−09 – − 0.4082 − 0.3993 0.0220

3 0.4082 0.4045 0.0092 0.4082 0.3993 0.0220

5 − 0.4082 − 0.4045 0.0092 0.0000 − 5.85E−10 –

7 0.4082 0.4045 0.0092 0.4082 0.3993 0.0220

9 0.0000 1.91E−09 – − 0.4082 − 0.3993 0.0220

11 − 0.4082 − 0.4045 0.0092 0.0000 2.76E−10 –

13 0.4082 0.4045 0.0092 0.0000 − 9.90E−07 –

15 − 0.4082 − 0.4045 0.0092 0.0000 1.65E−07 –

17 0.0000 − 1.15E−09 – 0.0000 8.25E−07 –

19 0.0000 1.91E−09 – 0.0000 9.90E−07 –

21 0.4082 0.4045 0.0092 0.0000 − 8.25E−07 –

23 − 0.4082 − 0.4045 0.0092 0.0000 − 1.65E−07 –
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to the values given by Schmid’s law, with the relative error
within 0.92% and 2.2% for crystallographic orientation of(
00, 00, 00

)
and

(
00, 450, 00

)
, respectively, for both bcc and

fcc lattices. The main source for this slight discrepancy is the
“skin effect” inherently presented in LPM. The LPM model
parameters are derived for a material particle with full neigh-
bors, i.e., away from the boundary surfaces. Therefore, direct
use of themodel parameters formaterial particles do not have
full neighbors, i.e., close to the boundary surfaces,will results
in prediction inaccuracy. The smaller number of neighbors
a material particle has, the worse the result of that material
particle will be. It is also observed that the errors for dif-
ferent slip systems of the same crystallographic orientation
are the same. This is because all the resolved shear stress
of different slip systems are calculated based on the same
stress using Eq. (28). The distributions of the stress compo-
nent σZ Z are shown in Figss. 7 and 8 for bcc and fcc lattices,
respectively.

As can be seen in Fig. 7, the distribution of the stress com-
ponent σZ Z deviates from the analytical solution of uniform
distribution of 1 MPa at material particles close to the faces
for both crystallographic orientations. However, after remov-
ing a material layer of 1 mm from all the six faces, the results
significantly improved (see the second column figures). The
same phenomenon can be observed for the fcc Al crystal,
presented in Fig. 8. Prediction significantly improved after
removing material particles without full neighbors.

Similar skin effect exists in other nonlocal methods, such
as peridynamics [41]. Numerous approaches have been pro-
posed to alleviate this skin effect, such as, by using additional
fictitious layer of material particles at the free surface and
alternating the values of model parameters for material par-
ticles close to the surface [42]. It is not the intend of this work
to illustrate application of those ideas to reduce the skin effect
in LPM. To conclude, LPM can model the elastic behavior
of single cubic crystals with high accuracy, compared to ana-
lytical solutions.

5 Conclusion

A novel nonlocal lattice particle method (LPM) is pro-
posed to model the elastic behavior of cubic crystalline
materials. In this paper, focus was placed on the formu-
lation and verification of the proposed model for single
crystal cases. Based on the energy equivalency between
LPM and its continuum mechanics counterpart and the the-
ory of hyper-elasticity, the model parameters were derived
for cubic linear elasticity for discretizations based on the
body-centered cubic lattice and face-centered cubic lattice.
Different from the transformation of axes used in the classical
continuum mechanics, lattice or axes rotation was employed
in LPM to represent crystallographic orientation of a crystal.
The validity and prediction accuracy of the proposed model

Fig. 7 Distributions of the stress component σZ Z for bcc α-Fe
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Fig. 8 Distributions of the stress component σZ Z for fcc Al

were established using two benchmark problems concerning
the variation of directional Young’s modulus on three crystal
planes and the resolved shear stress of all slip systems of both
body-centered cubic and face-centered cubic lattices.

For face-centered cubic crystals, when the anisotropy fac-
tor is greater than two, the local parameter for the second
nearest neighbors becomes negative. However, this negative
local parameter will not affect the performance of the model
thanks to the nonlocal dependency of a bond force. This also
has been demonstrated in the numerical examples using Cop-
per crystal whose anisotropy factor is 3.2043.

Due to the assumption of full neighbors for a mate-
rial particle in the derivation of the model parameters, skin
effect inherently exists in LPMwhen directly applying those
derived model parameters for material particles that do not
have full neighbors. This will affect the prediction accuracy
to certain degree. However, increasing discretization den-
sity and introducing a fictitious material particle layer at
the boundaries like those techniques used in peridynamics
can mitigate the skin effect and improve the prediction accu-
racy.

For computational cost of the proposedmethod, due to the
introduction of interaction nonlocality, it inevitably increases
the computational time compared to any local methods, such
as the finite element method. Also, the proposed method
has linear convergence rate since constant strain is assumed
within a bond connecting two material particles. This will

also affect the computational performance of the proposed
method, since a larger number of material particles is needed
for the same converged solution when compared to the finite
element method where higher-order elements could be used
to improve the prediction accuracy while using a smaller
number of elements. However, compared to other nonlo-
cal methods, such as peridynamics where a finite horizon
is used to introduce nonlocality, the computational cost due
to the employment of both the first and the second nearest
neighbors is minimum. In peridynamics, a practical hori-
zon size is at least three times of the spacing between
two material particles. For regular discretization, this will
include at least the neighbors to the third nearest neigh-
bors. We will further investigate the computational cost of
the proposed method for system of large number of crys-
tals.

Future work is to apply the proposed formulation tomodel
cubic polycrystalline materials and study the grain boundary
effect on the failure behavior.

Appendix. Slip systems in fcc and bcc single
crystals

See Tables 6 and 7.
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Table 6 Slip systems for fcc crystals with both positive and negative slip directions [43]

slip sys. # m n slip sys. # m n

1, 2
(

1√
2
, −1√

2
, 0

)
,
( −1√

2
, 1√

2
, 0

) (
1√
3
, 1√

3
, 1√

3

)
13, 14

( −1√
2
, 0, 1√

2

)
,
(

1√
2
, 0, −1√

2

) (
1√
3
, −1√

3
, 1√

3

)

3, 4
( −1√

2
, 0, 1√

2

)
,
(

1√
2
, 0, −1√

2

)
15, 16

(
0, −1√

2
, −1√

2

)
,
(
0, 1√

2
, 1√

2

)

5, 6
(
0, 1√

2
, −1√

2

)
,
(
0, −1√

2
, 1√

2

)
17, 18

(
1√
2
, 1√

2
, 0

)
,
( −1√

2
, −1√

2
, 0

)

7, 8
(

1√
2
, 0, 1√

2

)
,
( −1√

2
, 0, −1√

2

) ( −1√
3
, 1√

3
, 1√

3

)
19, 20

( −1√
2
, 1√

2
, 0

)
,
(

1√
2
, −1√

2
, 0

) ( −1√
3
, −1√

3
, 1√

3

)

9, 10
( −1√

2
, −1√

2
, 0

)
,
(

1√
2
, 1√

2
, 0

)
21, 22

( −1√
2
, 0, 1√

2

)
,
(

1√
2
, 0, −1√

2

)

11, 12
(
0, 1√

2
, −1√

2

)
,
(
0, −1√

2
, 1√

2

)
23, 24

(
0, −1√

2
, −1√

2

)
,
(
0, 1√

2
, 1√

2

)

Table 7 Slip systems for bcc crystals with both positive and negative slip directions [44]

slip sys. # m n slip sys. # m n

1, 2
( −1√

3
, 1√

3
, 1√

3

)
,
(

1√
3
, −1√

3
, −1√

3

) (
1√
2
, 1√

2
, 0

)
25, 26

( −1√
3
, 1√

3
, 1√

3

)
,
(

1√
3
, −1√

3
, −1√

3

) (
2√
6
, 1√

6
, 1√

6

)

3, 4
(

1√
3
, −1√

3
, 1√

3

)
,
( −1√

3
, 1√

3
, −1√

3

)
27, 28

(
1√
3
, −1√

3
, 1√

3

)
,
( −1√

3
, 1√

3
, −1√

3

) (
2√
6
, 1√

6
, −1√

6

)

5, 6
(

1√
3
, 1√

3
, 1√

3

)
,
( −1√

3
, −1√

3
, −1√

3

) (
1√
2
, −1√

2
, 0

)
29, 30

(
1√
3
, 1√

3
, −1√

3

)
,
( −1√

3
, −1√

3
, 1√

3

) (
2√
6
, −1√

6
, 1√

6

)

7, 8
(

1√
3
, 1√

3
, −1√

3

)
,
( −1√

3
, −1√

3
, 1√

3

)
31, 32

(
1√
3
, −1√

3
, 1√

3

)
,
( −1√

3
, 1√

3
, −1√

3

) (
1√
6
, 2√

6
, 1√

6

)

9, 10
( −1√

3
, 1√

3
, 1√

3

)
,
(

1√
3
, −1√

3
, −1√

3

) (
1√
2
, 0, 1√

2

)
33, 34

( −1√
3
, 1√

3
, 1√

3

)
,
(

1√
3
, −1√

3
, −1√

3

) (
1√
6
, 2√

6
, −1√

6

)

11, 12
(

1√
3
, 1√

3
, −1√

3

)
,
( −1√

3
, −1√

3
, 1√

3

)
35, 36

(
1√
3
, 1√

3
, −1√

3

)
,
( −1√

3
, −1√

3
, 1√

3

) (
1√
6
, 1√

6
, 2√
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