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Abstract
Modeling particle based heterogeneous materials using statistical volume elements (SVE) for predicting its mechanical
behavior can be tedious when the particles are densely packed or elongated. Positioning particles without creating overlaps and
avoiding meshing problems are two obstacles frequently mentioned. To counter these obstacles, a newmodeling methodology
based onmultibody dynamics (MBD) and on an erosion-based homogenizationmethod is proposed. TheCADmodel of a SVE
is first generated and particles causing meshing problems are excluded. Meshing and finite element analysis are automatically
carried out and a subsequent erosion-based homogenization method is used to retrieve the macroscopic behavior of the SVE.
To illustrate the potential of this new method, results obtained with a random sequential adsorption algorithm on non-eroded
SVEs are compared with results obtained from the same SVEs submitted to our erosion method. These results are then
compared with results obtained using the new MBD based approach.

Keywords Representative volume element (RVE) · Statistical volume element (SVE) · Unified topology model (UTM) ·
Computer aided design (CAD) · Finite element analysis (FEA) · Multibody dynamics

1 Introduction

The need to model and understand new composite materials
as led to the development of several microstructure model-
ing techniques. The ability to represent and simulate complex
microstructures is valuable as it leads to faster prototyping
and decision making. Analytical modeling of a theoretical
assembly of constituents can provide a rough estimate of
thermal and mechanical properties of a composite mate-
rial but it requires specific conditions to assert validity of
results obtained. When feasible, actual mechanical testing
can provide an accurate evaluation of tested samples but is
time consuming and requires complex and costly equipment.
Hence popularity and thrive towards numerical modeling
and analysis of composite materials. Finite Element Anal-
ysis (FEA) applied on Statistical Volume Elements (SVE)
is a numerical approach that has generated a great deal
of interest in the research community [1–15]. Constituent’s
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intrinsic properties along with their distribution, orientation
and assembly are the major influences on the properties
of SVEs. To be considered as accurately representative of
the spatial distribution of constituent’s intrinsic properties,
referred to as a Representative Volume Element (RVE), a
single numerical sample or SVE must usually be of con-
siderable size, which is limited by modelling and analysis
issues. To overcome these limitations, a given microstruc-
ture is usually broken down into smaller but numerous SVEs
which leads to a statistical representation of the composite
properties. In this case, the set SVEs used is referred to as
a Representative Volume Element (RVE). These SVEs can
be generated from actual samples using scanning techniques
[16–19] or generated from scratch based on predetermined
material parameters. The latter option is interesting since
it does not require actual physical samples. Microstructure
modeling using the FEA approach as tremendously evolved
over time. Indeed, many research papers have considered
this approach towards assessing the influence of constituent’s
shapes [1–3, 15], size [3, 7–14], orientation [1, 20, 21], vol-
ume fraction [7, 21] and distribution [22, 23] on composite
materials mechanical and thermal properties.

Numerical analysis of a SVE usually starts with the gen-
eration of a geometric representation of its microstructure.
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Automatically generating the geometric representation of an
ordered microstructure is straightforward since it can be per-
formed based on a few simple operations. For example, a
unidirectional fiber glass laminate can be defined as a set of
equally spaced, unidimensional cylinders surrounded with
an epoxy matrix. The generation process is much more com-
plex when the material considered is composed of randomly
distributed particles. Positioning and orienting each parti-
cle, according to specified distributions, while achieving a
targeted volume fraction of particles comes with many chal-
lenges. One of these challenges is making sure that two
particles do not intersectwith each other. One simple solution
to avoid these intersections is to assume that all particles are
spherical in shape. Indeed, knowing the distance between
two spheres and their radius, one can easily determine if
they overlap or not. This method was first used along with
a random number generator to randomly position spherical
particles in a defined space [1, 2, 6, 8, 15, 24–26]. If a newly
created particle overlaps an existing one, it is discarded, and a
new particle is randomly generated. This generation method
is referred to as the Random Adsorption Algorithm or RSA.
However, it is obvious that the behavior of many material
microstructures cannot be accurately modeled with spherical
particles only. To circumvent this limitation, improved over-
lap detection methods relying on the parametric equations of
primitive shapes such as ellipsoidal particles [1, 3, 25–29],
cylindrical particles [1, 4, 7, 14, 21, 26, 29–32] and polyhe-
dral particles [2, 15] have been developed. Even with these
improved methods, automatically generating the geometric
representation of amicrostructure that features non-primitive
shapes is still problematic due to the lack of shape indepen-
dent overlap detection methods. Shape independent overlap
detection can be accounted for with the aid of Computer
Aided Design (CAD) tools. Indeed, computing the minimum
distance between two volumes or assessing the intersection
between two volumes are two basic features of modern CAD
software. Moreover, using a CAD model to represent SVE
microstructures brings other benefits such as, for example,
easily altering the shape of a particle that crosses the borders
of a SVE. Another efficient way to detect overlaps between
two neighboring particles is to generate boundary meshes of
these particles and to use this discretization to evaluate the
overlap. Such surface meshes can be obtained by applying
parametric mesh generation algorithms on primitive shapes
or by applying CAD based automatic mesh generation algo-
rithms. The second challenge associated with automatically
generating the geometric representation of a microstructure
is accurately reaching a specific targeted volume fraction of
particles. For example, with the RSA, if a new particle over-
laps an existing one it is discarded, and a new particle is
randomly generated. With just a few particles inserted in a
SVE, the chance that a new particle is accepted is high but,
the more particles are added, the more this chance drops,

sometimes reaching a point where there is no possible way
to insert a new particle. This phenomenon restricts achiev-
able volume fractions and this process is not representative
of particle packing as it occurs along actually manufacturing
the compositematerial. Indeed, with the RSA, once a particle
is accepted, it remains rigidly fixed in space. The theoretical
volume fraction achievable with mono-sized spherical parti-
cles is �

3
√
2

≈ 74.1% in a cubic centered configuration or an
hexagonal compact configuration [33]. With the same type
of particles, a standard RSA can only reach volume frac-
tions below 40% (38.5% [34], 38.2% [35]). To overcome
this limitation, spherical particles relocation procedureswere
elaborated, which enables to reach volume fractions up to
50% if direct contact between particles is avoided and 60%
if it allowed [6]. Such relocation procedures can be difficult
to implement with non-spherical particles because the orien-
tation of particles needs to be considered.

One alternative to the RSA is using rigid MultiBody
Dynamics (MBD) methods to simulate the dynamic inter-
action of particles [36–43]. By allowing particles to move
and collide with each other, higher compaction levels can be
reached.With spherical particles, usingMBDallows to reach
volume fractions up to 65% [37]. Timemanaging alongMBD
can either be driven by collision events or by predetermined
time stepping.Event-driven timemanagingmethods are suit-
able for spherical particles and rely on kinematic equations to
predict when two spheres come in contact.When two spheres
collide, the collision response is evaluated, kinematic equa-
tions are updated, and the time parameter is incremented
to the next collision. Time stepping time managing meth-
ods are suitable for any convex solid shapes and rely on a
refined discretization of time with short time steps. At first,
the boundary of solid shapes particles is meshed. This mesh
is used to evaluate if two solids shapes are in contact. At
each time step, a collision evaluation procedure is run to find
which solids shapes are in contact. Collision responses are
computed, and kinematic equations are updated. The next
time step is evaluated and so forth. Time steps driven meth-
ods show the advantage of being usable with any kind of
convex particles, but unlike event-driven methods, time step
driven methods may miss collisions if the time step used is
too long.

Generating geometric representations of SVEs is followed
by automatically meshing these representations. SVEs are
either meshed using unstructured mesh generation meth-
ods (Delaunay, advancing front, octree [44]) with quadratic
tetrahedrons in most cases, or using structured voxel-based
methods. Unstructured mesh generation methods generate
mesh elements of varying sizes and shapes and thus allows
for a better definition of curvature in comparison with voxel
based discretizations. As mentioned in [45], using a CAD
geometric representation of SVEs greatly facilitates the
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Fig. 1 Illustration of mesh refinement to fill a gap between two particles

meshing process since robust and proven CAD based mesh-
ing tools can be used. Regardless of the unstructuredmeshing
algorithm used, one important parameter that must be con-
trolled is the size of mesh elements. Locally refining the size
of mesh elements using an imposed size map will improve
the accuracy of geometric representation and increase the
accuracy of FEA computed fields. In addition, controlling
the size of mesh elements can be mandatory to ensure con-
vergence of automatic mesh generation algorithms in some
cases. Indeed, situationsmay occurwhere element creation is
impossible at a given location if surrounding mesh elements
are not appropriately sized. However, reducing the size of
mesh elements implies more mesh elements, which can also
significantly increase the size of the FEA model and thus
increase computing time and resources needed. If two parti-
cles are close to each other as illustrated in Fig. 1, the size of
mesh elements between those particles must be adjusted to
prevent badly shaped elements and to ensure mesh genera-
tion convergence. The same situation arises when a particle
is close to SVE boundaries. This proximity can lead to an
excessive number of mesh elements between the particle and
the SVE boundary, or to automatic mesh generation failure,
if this proximity is not taken into account in the imposed
size map. Mesh element quality is another aspect that must
be accounted for. Sharp angles between edges or faces of
the SVE geometric representation will also results in badly
shaped mesh elements as illustrated in Fig. 2. The effect
of such sharp angles can be minimized by locally refining
the size of mesh elements but cannot be completely avoided
(Fig. 2b). If particles themselves do not feature sharp angles,
the only situation where sharp angles can appear is when a
particle crosses the SVE boundary. For example, if a cylin-
drical particle is almost parallel to one of the faces of a cubic
SVE and is in contact with that face, it will generate such a
sharp angle.

Fig. 2 Illustration of the effect of a sharp angle on mesh element quality
(bad quality in red). a For constant sized mesh elements and b when
locally refining the mesh size

Controlling the minimum distance between particles,
between particles and SVE boundaries and controlling the
minimum angle between edges and faces can be accom-
plished along the generation of SVE geometry when using
RSA. Indeed, a newly generated particle that is too close to
another particle or too close to the SVE boundary can be
rejected. The same principle can be applied for sharp angles.

Up to a certain volume fraction, non-conforming particles
are rejected and replaced by new particles. This rejec-
tion comes at a cost since rejecting these particles likely
impedes the targeted distributions of location and orienta-
tion of particles. If one considers that the particles of a given
microstructure have a minimum distance separating them
(for example if the particles are completely surrounded by
matrix) then the exclusion problem will be localized in the
areas close to the SVE’s border as illustrated in (Fig. 15).
Indeed, particles are more prone to be excluded close to SVE
boundaries as the minimum angle problem arises when a
particle intersects these boundaries. Also, if the generation
domain is larger than the SVE’s domain, minimum distance
problems can occur at the borders of the SVE.With theMBD
simulation approach, as introduced earlier, controlling min-
imum distance and sharp angles is not that simple due to the
fact that a particle cannot be rejected and replaced if, at a
given moment, it does not meet minimum distance and sharp
angles criteria.

As mentioned above, the minimum distance and angle
between two geometric objects must be controlled in order
to ensure convergence of mesh generation, to limit the size of
the model and to promote quality of numerical results. The
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question that arises is how should be processed particles that
are close to SVE boundaries? From a geometric standpoint,
the solution could consist in modifying the microstructure
geometry in away that eliminates closeness and sharp angles.
One approach could be tomove, to cut or to extend the geom-
etry of particles to meet closeness and sharp angles criteria.
This approach would be very complex to implement, espe-
cially if the approach should apply for any shape of particles.
It would require complex geometric modification rules and
would inevitably affect fidelity of the geometric representa-
tion. On the other end of the spectrum, the solution could be
to keep the geometrical representation intact and adapt mesh
generation in a way that avoids non convergence and avoids
generating small or badly shaped mesh elements. The result-
ing mesh would not perfectly conform to the CAD model. It
would require a set of custom meshing rules to generate and
assign each element to the corresponding geometry (or mate-
rial). In the end, it would also be a very complex approach
to implement and it would induce a biased representation of
the actual microstructure.

The aim of this study is to present a simple solution to
meshing problem induced by particles that surround the SVE
boundary, as introduced above. The proposed solution can be
summarized though the following steps:

• Remove particles that are located close to boundaries of the
SVE.Removeparticles that donot conform to the preestab-
lished minimum distance and minimum angle criterions.

• Mesh the SVE using robust CAD meshing algorithms.
• Perform FEA and erode FEA results around the SVE
boundary. This erosion consists in an elimination of results
that are close the SVE boundary, which means only con-
sidering FEA results inside a core of the SVE in order to
avoid boundary effects.

Indeed, taken as a whole, the CAD model of a SVE
does not faithfully represent the simulated microstructure,
due to boundary effects. However, at some distance from
the SVE boundary, the CAD model is unaltered by bound-
ary effects and, by the way, it is representative of the actual
microstructure. This solution is inspired by a homogeniza-
tion technique presented in [24] where SVEs are eroded to
reduce boundary effects causedbyFEAboundary conditions.
It is shown in this reference that, as the erosion distance
increases, boundary conditions effects are reduced. Further-
more, it is also demonstrated in this reference that the erosion
technique approximately satisfies the Hill-Mandel homoge-
nization condition and that the average loading of eroded
SVEs is similar to that of complete SVEs.

In this paper, we present a new erosion based SVE gen-
eration and homogenization method along with a new SVE
generation algorithm based on rigid MultiBody Dynamics
(MBD). This newmultibody dynamics SVE generation algo-

rithm is introduced as a solution to reach higher volume
fractions for non-spherical particles. These new methods are
implemented using the Unified Topology Model (UTM) as
described in [45]. Using the Unified TopologyModel (UTM)
[45, 46] benefits the automatic CAD—mesh—FEA mod-
eling and analysis process thanks to a close data structure
integration between CAD objects (geometrical, topological
and co-topological entities) and FEA mesh elements, mate-
rial properties and boundary conditions. As detailed in [45]
the UTM notably allows fully automating the whole process,
from CAD model generation up to FEA analysis and statis-
tical calculations. The process detailed in [45] is synthesized
in (Fig. 3): using the RSA algorithm, particles are randomly
generated and inserted in the SVE if they satisfy geometrical
criteria used to prevent subsequent meshing problems such
as sharp angles and too finemesh elements. Then, amesh size
map is defined in such a way that the mesh element size is
small enough to prevent distorted elements but large enough
to minimize the number of elements. The SVE is meshed,
consistently with the imposed size map, using an automatic
mesh algorithm, which is based the advancing front method.
The process ends with FEA simulation and homogenization,
which allows assessing material properties. See reference
[45] for more details on this process.

To illustrate the potential and validity of the two new
approaches proposed in this paper, multiple sets of fiber-
glass and epoxy SVEs will be generated and compared with
previous results in [45].

The following section presents a complete description of
the new erosion-based homogenization method. In Sect. 3,
results for short glass fiber/epoxy composite SVEs generated
with the RSA algorithm and progressively eroded with the
erosion method are compared with non-eroded SVEs as pre-
sented in [45]. An original and alternative SVE generation
method based on rigid multibody dynamics combined with
erosion is detailed in Sect. 4. Results are presented in Sect. 5
for the same glass fiber composite using this new SVE gen-
eration method. The paper ends with conclusion remarks and
perspective work in Sect. 6.

2 An erosion-based homogenizationmethod

The aim of introducing erosion in SVE modelling is to avoid
the boundary effects caused by a lack of participles close to
the SVE boundary and by the effect of FEA boundary con-
ditions. In the approach proposed, erosion is performed on
FEA results, which makes that no subsequent FEA solving
is required. Therefore, this erosion method can be applied
in conjunction with any type of SVE generation method. In
this new approach, erosion is performed by gradually erod-
ing the SVE from its boundary towards its center using an
erosion distance de. In this erosion scheme, a mesh element
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Fig. 3 Synthesis of the SVE automatic generation process presented in
reference [45]

is preserved if its center is located inside a cube with faces
at distance de from the SVE boundary (Fig. 4).

Volume averaged tensor
〈
A
〉
V

of a given tensor field a

defined at all points x for a non-eroded SVE of volume V is
obtained with Eq. (1).

〈
A
〉
V

� 1

V

∫

V

a
(
x
)
dV (1)

The volume average of an eroded tensor field
〈
A
〉
Vde

is

redefined for the eroded SVE of volume Vde with Eq. (2).

〈
A
〉
Vde

� 1

Vde

∫

Vde

a
(
x
)
dV (2)

Fig. 4 Erosion of a unit cube SVE. a No erosion, b de � 0.1, and
c de � 0.2

Since the erosion method only consists in post-processing
FEA results, it is possible to extract homogenized results
for multiple value of de and evaluate their evolution as de
increases.
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Table 1 Configurations of SVEs
generated with the RSA Particles Lable Geometrical properties V ftarget (%) Distmin Number of samples

Spheres RSA_S1FV5 Dia. � 1/6 5 0.04 100

RSA_S1FV10 Dia. � 1/6 10 0.04 100

RSA_S2FV10 Dia. � 1/8 10 0.04 20

RSA_S2FV20 Dia. � 1/6 20 0.01 20

Cylinders RSA_C1FV5 Dia. � 0.085, L/D � 5 5 0.03 100

RSA_C1FV10 Dia. � 0.085, L/D � 5 10 0.03 100

RSA_C2FV10 Dia. � 0.064, L/D � 5 10 0.02 20

Table 2 Material properties
considered

Material E (GPa) ν

Epoxy 3.5 0.33

Glass 72.3 0.22

3 Erosion based homogenization applied
to SVEs generated with the RSA

3.1 Homogenization results

The effect of erosion on homogenized results is evaluated
by making comparisons on SVEs generated with RSA, with-
out erosion, as presented in a previous paper [45]. In the
following sections, SVEs generated with RSA are identi-
fied with the prefix RSA. Table 1 lists the different sample
configurations used with spherical and cylindrical particles.
Spherical particles are labeled as S1, S2 and cylindrical par-
ticles are labeled as C1, C2. Targeted volume fractions are
labeled as FV. Material properties of constituents are indi-
cated in Table 2. Considering that particles are isotopically
distributed, resulting SVEs are considered isotropic.

Figure 5 illustrates the evolution of the volume frac-
tion of particles for numerical samples RSA_S1FV10 and
RSA_C1FV10. When erosion distance is zero, the volume
fraction of particles is 10%, which corresponds to the target
volume fraction. As erosion distance increases, the volume
fraction of particles increases until it reaches a plateau around
de � 0.2. This increase illustrates side effects induced by the
particle insertion process with the RSA. Indeed, it is harder
to insert a particle near faces of the SVE than in its core.
Statistically a particle has a better chance of finding itself in
the center of the SVE than close to its faces. Table 3 lists the
volume fractions of microstructures generated with the RSA
without erosion and volume fractions with erosion distance
de � 0.2. For all samples, the volume fractions with erosion
distancede � 0.2 are higher than correspondingvolume frac-
tions without erosion. Increasing the target volume fraction
of particles reduces the gap between eroded and non-eroded
volume fractions. Indeed, as the volume fraction increases,
a particle has a higher chance of being close to SVE faces.
A reduction in deviation is also observed when the size of

SVEs is increased since particles are smaller, with respect to
the erosion distance.

Kinematic Uniform Boundary Conditions (KUBC) and
Static Uniform Boundary Conditions (SUBC) are used
to evaluate the apparent elasticity modulus Eapp [45]. In
the present case, compressibility modulus Kapp and shear
modulus Gapp are calculated using Eqs. (3)–(5) with the
assumption of a macroscopically isotropic microstructure.
The apparent elasticity modulus Eapp is calculated from
Kapp and Gapp using Eq. (5).

Kapp �
Tr

(
�

)

3Tr
(
E

) (3)

Gapp � 1

3

(
�xy

2Exy
+

�yz

2Eyz
+

�xz

2Exz

)
(4)

Eapp � 9KappGapp

3Kapp + Gapp
(5)

The evolution of the volume fraction of particles Fvol

with erosion distance de necessarily induces an evolution of
the apparent modulus of elasticity Eapp. Indeed, if the vol-
ume fraction Fvol increases, it is reasonable to anticipate an
increase of Eapp. However, this is not always the case. Fig-
ure 6 illustrates the evolution of Eapp and Fvol as a function
of de for two types of microstructures. One of the interesting
observations that can bemade on this figure is the progressive
convergence of results with KUBC and SUBC. This conver-
gence clearly illustrates a presence of side effects due to FEA
boundary conditions and due to the method used for particles
insertion. This observation also brings about an explanation
about why SUBC results in Fig. 13a from [45], which are ini-
tially below the HS– limit without erosion, cross above the
HS– limit when erosion distance increases. The underlying
evolution of Fvol with de makes it possible to observe that
Eapp basically follows the evolution of Fvol with de. Table 4
lists elasticitymoduli obtained for non-erodedSVEs (de � 0)
and for eroded SVEs with erosion distance de � 0.2. When
de � 0.2, all results with KUBC are above the HS− limit
and the difference �(%) between moduli with KUBC and
SUBC is significantly reduced. It can also be observed that
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Fig. 5 Evolution of the volume
fraction of particles with erosion
distance de for a RSA_S1FV10
and b RSA_C1FV10

(a) RSA_S1FV10 

(b) RSA_C1FV10

Table 3 Resulting volume fractions for SVEs generated with the RSA

Label V f

de � 0.0 de � 0.2 �(%)

RSA_S1FV5 4.91±0.05 7.26±1.42 47.86

RSA_S1FV10 9.88±0.05 12.63±1.23 27.83

RSA_S2FV10 9.70±0.12 11.56±0.60 19.17

RSA_C1FV5 4.97±0.06 7.31±1.19 48.29

RSA_C1FV10 9.94±0.07 10.92±0.87 9.85

RSA_C2FV10 9.88±0.02 10.42±0.75 5.46

the standard deviation of elasticitymodulus slightly increases
with de. However, the envelope formed by average results in
KUBC and SUBC with their respective standard deviations
is clearly narrower than that without erosion.

3.2 Homogenization analysis

As mentioned previously, mechanical properties of the sim-
ulated glass fiber composite are considered as isotropic.
Compressibility modulus Kapp, shear modulus Gapp and
ultimately apparent elasticity modulus Eapp are calculated

based on this assumption. Kapp is evaluated using a spheri-
cal load while Gapp is evaluated using a deviatoric load. To
ensure that the resulting modules are representative, several
metrics are evaluated. In order to checkwhether the tensors of
strain and stress are always spherical or deviatoric at a given
erosion distance de, the difference in loading as a function of
the erosion distance is calculated as explained in [24]. The
difference in spherical loading for each component δS

(
ai j

)
of

tensor a is calculated according to Eq. (6). The global differ-

ence in spherical loading �S
(
a
)
is calculated using Eq. (7).

The difference in deviatoric loading �D
(
a
)
is evaluated in

a similar way using Eqs. (8) and (9).

δS(ai j ) �
∣∣∣∣∣

3
〈
ai j

〉
Vde

〈a11〉Vde + 〈a22〉Vde + 〈a33〉Vde

∣∣∣∣∣ − δi j (6)

�S
(
a
)

� 1

9

(∣∣∣δS(a11)
∣∣∣ +

∣∣∣δS(a22)
∣∣∣ +

∣∣∣δS(a33)
∣∣∣

+2
∣∣∣δS(a12)

∣∣∣ + 2
∣∣∣δS(a23)

∣∣∣ + 2
∣∣∣δS(a13)

∣∣∣
)

(7)

δD(ai j ) �
∣∣∣∣∣

3
〈
ai j

〉
Vde

〈a12〉Vde + 〈a23〉Vde + 〈a13〉Vde

∣∣∣∣∣ − (1 − δi j ) (8)
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Fig. 6 Evolution of Eapp and
Fvol as a function of erosion
distance de

(a) RSA_S2FV10 

(b) RSA_C2FV10

�D
(
a
)

� 1

9

(∣∣∣δD(a11)
∣∣∣ +

∣∣∣δD(a22)
∣∣∣ +

∣∣∣δD(a33)
∣∣∣

+2
∣∣∣δD(a12)

∣∣∣ + 2
∣∣∣δD(a23)

∣∣∣ + 2
∣∣∣δD(a13)

∣∣∣
)

(9)

Figures 7, 8, 9 and 10 show the difference between
spherical and deviatoric loadings for a complete SVE and
results obtained with an increasing erosion distance, both
with KUBC and SUBC. Tables 5 and 6 lists differences for
de � 0.0 and de � 0.2. With KUBC at de � 0.0, �S
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Table 4 Apparent elasticity
modulus Eapp and analytics
bounds for non-eroded and
eroded SVEs generated with the
RSA

Label de V f (%) Numerical results Analytic bounds

KUBC SUBC �(%) Reuss HS− HS+ Voigt

RSA_S1FV5 – 4.91±0.05 4.023±0.045 3.819±0.006 5.05 3.671 3.837 5.367 6.951

0.2 7.26±1.42 4.034±0.111 4.025±0.111 0.22 3.759 4.009 6.284 8.584

RSA_S1FV10 – 9.88±0.05 4.694±0.060 4.173±0.007 11.09 3.863 4.211 7.326 10.398

0.2 12.63±1.23 4.477±0.106 4.470±0.106 0.16 3.978 4.434 8.446 12.298

RSA_S2FV5 – 9.70±0.12 4.420±0.025 4.186±0.011 5.29 3.855 4.197 7.254 10.274

0.2 11.56±0.60 4.391±0.055 4.389±0.055 0.04 3.932 4.346 8.007 11.559

RSA_C1FV5 – 4.97±0.06 4.090±0.038 3.905±0.024 4.52 3.673 3.841 5.390 6.993

0.2 7.31±1.19 4.232±0.159 4.203±0.152 0.67 3.761 4.013 6.303 8.619

RSA_C1FV10 – 9.94±0.07 4.799±0.052 4.332±0.033 9.74 3.865 4.216 7.350 10.440

0.2 10.92±0.87 4.623±0.150 4.586±0.144 0.81 3.905 4.294 7.746 11.117

RSA_C2FV10 – 9.88±0.02 4.752±0.037 4.352±0.017 8.42 3.863 4.211 7.326 10.398

0.2 10.42±0.75 4.558±0.091 4.543±0.089 0.33 3.885 4.254 7.544 10.771

Fig. 7 Evolution of loading gap

�S
(
�

)
and �S

(
E

)

(KUBC—spherical loading)
with erosion distance de

(a) RSA_S2FV10 – KUBC – Spherical loading 

(b) RSA_C2FV10 –KUBC –Spherical loading 

(
E

)
is close to zero while �D

(
�

)
is around 5% (Figs. 7,

9). The opposite tendency is observed with SUBC. As de
increases, loading differences slightly increase (Figs. 8, 10).
This increase is more pronounced for E in KUBC and for
� in SUBC for both loading types. Loading differences
for de � 0.2 are more pronounced for microstructures
made of cylindrical particles (Figs. 7b, 8b, 9b, 10b) than
for microstructures made of spherical particles (Figs. 7a, 8a,
9a, 10a). However, load differences for de � 0.2 remain
relatively low.

To evaluate the variation of internal energy due to erosion,
the difference in averaged elastic energy between the eroded
SVE compared to the complete SVE is calculated. For each
finite element K , the elastic energy epot is calculated accord-
ing to Eq. (10) where C is the stiffness tensor inside K . The
difference between the averaged elastic energy of an eroded
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Fig. 8 Evolution of loading gap

�S
(
�

)
and �S

(
E

)
(SUBC—spherical loading)

with erosion distance de

(a) RSA_S2FV10 – SUBC – Spherical loading 

(b) RSA_C2FV10 –SUBC – Spherical loading 

Fig. 9 Evolution of loading gap

�D
(
�

)
and �D

(
E

)

(KUBC—spherical loading)
with erosion distance de

(a) RSA_S2FV10 – KUBC – Deviatoric loading 

(b) RSA_C2FV10 –KUBC – Deviatoric loading 

SVEand a non-eroded SVE�epot (de) is calculated following
Eq. (11).

epot � 1

2

∫

K

ε : C : ε (10)

�epot (de) �
〈
epot

〉
Vde

− 〈
epot

〉
V

〈epot 〉V (11)

The difference in elastic energy �epot (de) for each SVE
configuration for de � 0.2 is listed in Table 7. Figure 11
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Fig. 10 Evolution of loading gap

�D
(
�

)
and �D

(
E

)

(SUBC—deviatoric loading)
with erosion distance de

(a) RSA_S2FV10 – SUBC – Deviatoric loading 

(b) RSA_C2FV10 –SUBC – Deviatoric loading 

Table 5 Loading gap on E (%)
Label de �S �D

KUBC SUBC KUBC SUBC

RSA_S1FV5 – 0.024±0.012 0.489±0.183 0.020±0.006 0.607±0.262

0.2 7.643±2.359 3.328±1.184 3.877±1.313 4.050±1.597

RSA_S1FV10 – 0.056±0.132 0.665±0.237 0.038±0.072 0.950±0.366

0.2 7.898±2.994 4.451±1.681 4.103±1.622 4.303±1.684

RSA_S2FV5 – 0.065±0.031 0.327±0.123 0.069±0.129 0.674±0.282

0.2 5.762±1.550 2.945±1.203 2.960±1.043 2.830±1.141

RSA_C1FV5 – 0.004±0.002 6.761±2.219 0.004±0.001 4.586±1.636

0.2 11.35±4.266 16.49±5.579 7.414±2.752 11.43±4.559

RSA_C1FV10 – 0.010±0.040 8.911±2.971 0.007±0.014 5.997±2.341

0.2 11.68±4.016 19.19±5.477 9.027±2.977 13.83±4.995

RSA_C2FV10 – 0.009±0.002 6.377±2.521 0.007±0.002 4.963±1.693

0.2 8.249±2.204 14.82±4.215 6.475±2.323 11.20±5.245

illustrates the evolution of �epot (de) for RSA_S1FV10 and
RSA_C1FV10 cases. Boundary effects caused by particle
insertion can be observed. Indeed, �epot significantly drops
between de � 0.0 and de � 0.1 and remains nearly constant
for de > 0.1. This drop is more important with cylindrical
particles. This drop indicates that the elastic energy is higher
close to the borders of SVEs, which can be explained by
the fact that there are fewer particles in these areas. Fig-

ure 12 illustrates the distribution of elastic energy for a
RSA_C1FV10 case.

To verify if the Hill-Mandel macro-homogeneity condi-
tion is verified, difference �Hill(de) between the macro-
scopic work E

de
: �

de
and the volume averaged mesoscopic

work
〈
ε
de

: σ
〉
Vde

based on the erosion distance is evaluated

according to Eq. (12). This condition states that macroscopic
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Table 6 Loading gap on � (%)
Label de �S �D

KUBC SUBC KUBC SUBC

RSA_S1FV5 – 1.167±0.544 0.007±0.002 3.548±1.544 0.025±0.010

0.2 2.036±0.617 0.834±0.295 6.790±2.845 6.229±2.710

RSA_S1FV10 – 1.929±0.653 0.013±0.002 5.462±1.844 0.033±0.013

0.2 2.177±0.787 1.034±0.372 6.032±2.290 5.770±2.085

RSA_S2FV5 – 0.914±0.196 0.024±0.006 2.153±0.580 0.061±0.122

0.2 1.683±0.435 0.774±0.310 3.899±1.168 3.117±1.419

RSA_C1FV5 – 2.699±0.975 0.003±0.001 8.848±3.531 0.015±0.007

0.2 5.411±2.005 1.942±0.708 18.09±6.572 9.032±3.470

RSA_C1FV10 – 3.720±1.328 0.004±0.005 12.08±4.859 0.022±0.014

0.2 6.683±2.740 2.424±0.787 21.86±7.746 9.146±3.642

RSA_C2FV10 – 2.163±0.843 0.005±0.002 6.897±2.185 0.020±0.010

0.2 4.588±1.621 1.736±0.388 13.06±5.099 6.481±2.319

Table 7 Difference in elastic
energy �epot (de)

Label Spherical Deviatoric

KUBC SUBC KUBC SUBC

RSA_S1FV5 − 6.10±7.50 − 8.56±7.26 − 3.47±7.21 − 10.20±7.59

RSA_S1FV10 − 11.64±8.58 − 15.63±7.59 − 7.95±8.01 − 17.98±7.97

RSA_S2FV10 − 20.88±4.63 − 24.91±4.51 − 13.87±13.08 − 25.51±10.20

RSA_C1FV5 − 48.99±8.99 − 52.85±8.24 − 47.27±9.01 − 54.63±8.40

RSA_C1FV10 − 33.38±6.50 − 43.95±5.66 − 30.76±6.19 − 46.64±5.76

RSA_C2FV10 − 14.40±7.63 − 24.05±7.54 − 12.61±7.10 − 26.54±7.90

Fig. 11 Evolution of �epot with
erosion distance de for
RSA_S1FV10 and
RSA_C1FV10 cases

(a) RSA_S1FV10 

(b) RSA_C1FV10

123



Computational Mechanics (2022) 69:1041–1066 1053

Fig. 12 Distribution of elastic energy for a RSA_C1FV10 case under
spherical KUBC loading

work must be equal to the volume average of mesoscopic
work.

�Hill(de) �

〈
ε : σ

〉
Vde

− E
de

: �
de

E
de

: �
de

(12)

The difference between macroscopic work and the vol-
ume average of mesoscopic work as a function of the erosion
distance is evaluated for each type of sample. Figure 13 illus-
trates the evolution of �Hill(de) for a RSA_S1FV10 case
and a RSA_C1FV10 case. For all SEVs considered, �Hill

(de) remains below±5%, which means that Hill’s macro-
homogeneity condition is therefore quite well satisfied.

3.3 Choosing the appropriate erosion distance

The choice of the appropriate erosion distance at which the
mechanical properties are accounted requires finding the
minimum distance at which boundary effects are negligi-
ble. A generalized method with which the optimal erosion
distance could be found for any given microstructure is
not reported in this work and remains to be studied and
implemented. Such a method would require balancing the
minimum erosion distance with the minimum variation of
loading and potential energy. In the results presented above,
mechanical properties could be evaluated for de � 0.2 since,
at this level, the variation of potential energy is low for all
SVEs. In a more general perspective, a proper calibration
of the targeted non-eroded volume fraction is necessary to
obtain the correct eroded volume fraction using the RSA
algorithm.

3.4 Benefits of the erosionmethod proposed

One problematic encountered when modeling SVEs is that
the distance and angle between two particles and between
a particle and the SVE border must stay below a minimum
threshold to account for mesh generation issues. If this dis-
tance is too small, it will result in either a few numbers
of ill shaped mesh elements or too many very small well
shaped mesh elements. The same logic applies for small
angles between particles and between a particle and the
SVE border. Another problematic is boundary effects caused
by FEA boundary conditions, which are inevitable when
modeling non-periodic microstructures. The erosion method
presented here alleviates these two problems by only consid-
ering results that are far enough from the SVEs borders. Thus,
erosion makes it possible to faithfully generate microstruc-
tures with a high-volume fraction of particles, which could
not bemodeled otherwise consideringminimumdistance and
angle criterions for inserting particles. The implementation
of erosion is simple and does not require any modification
of the geometric model, of the FEA mesh or FEA model
since it is only based on processing FEA results. When using
the erosion method, one must keep in mind that the eroded
SVE is not guaranteed to be in perfect equilibrium with the
boundary conditions applied to the non-eroded SVE. In the
present case, this non equilibrium is illustrated by the dif-
ference �Hill(de). Still, the benefits provided by the erosion
method are significant considering that �Hill(de) is below
5%.

4 Generation of SVEs based on rigid
multibody dynamics

Asmentioned in the introduction, one important drawback
of the RSA is the relatively low volume fractions achievable.
Indeed, once a particle is inserted with the RSA, it cannot
move anymore, which limits the ability to pack particles. The
following method uses a rigid MultiBody Dynamics (MBD)
approach to position particles in a SVE. In this project, the
simulation of motion and collision of rigid particles is car-
ried out by a time-driven based algorithm. The equations
governing dynamics of moving and colliding particles are
updated at each time step Tstep. The opensource library
Project Chrono [47] is used to perform these rigid multi-
body simulations. The first step of this process is creating
the generation domain �gen . The dimensions of this domain
are slightly larger than the SVE dimensions in order to avoid
boundary effects caused by particles in contact with the bor-
ders of�gen . In thiswork, a SVE is a unit cube ofmaterial and
�gen is a cube that is slightly larger than this unit cube. �gen

boundaries are considered as rigid and impenetrable walls
that act as impassible barriers. One by one, �gen is filled
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Fig. 13 Evolution of �Hill with
erosion distance de for
a RSA_S1FV10 and
b RSA_C1FV10

(a) RSA_S1FV10 

(b) RSA_C1FV10

Fig. 14 Initial distribution of particles

with particles without any concern to interference between
particles as illustrated in Fig. 14. Position P(x, y, z), ori-
entation Ori(φ, θ) and geometric parameters GeoP (radius,
length, etc.) of particles are generated according to prede-
termined distributions. The volume fraction of particles Fvol

is evaluated after each particle insertion in �gen and parti-
cles are added until the targeted volume fraction Fvoltarget is
reached. Then, the boundary of each particle is tessellated
using a surface Delaunay based triangulation method. These
tessellations are used for detecting collisions between parti-
cles alongMBDcalculations. To enforce aminimumdistance
Distmin between two particles, the tessellation is outwardly
offset by Distmin/2. Therefore, if the tessellations of two
particles are in contact (with no penetration) minimum dis-
tance Distmin between these two particles is respected. The
algorithm used for filling �gen with particles is described in
Algo 1.
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Algo 1: Filling the genera�on domain with par�cles

At this stage of the process, the resulting set of particles
generated is not valid since there are many overlap occur-
rences. The next step of this generation process is to eliminate
these overlaps (see Algo 2).

Algo 2: Overlap resolving thru mul�body dynamic simula�on

This step is carried out byMBD (based on Project Chrono
in this work). A velocity vector is first applied to the center of
mass of two overlapping particles in opposite directions in
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order to separate these two particles. Given enough space,
overlapping particles will eventually separate from each
other. The collision response model used considers that there
is no kinetic energy loss in a collision between two particles.
This eliminates eventual percolation effects that could occur
when multiple particles collide and bond between each other
through loss of kinetic energy. Once all overlap occurrences
have been resolved this way, particles are gradually slowed
down to reach a rest state. This rest state occurs when the
velocity of a particle is very close to zero. Particles in rest
state are faster to compute which accelerates the simulation.
The simulation ends when all particles are at a rest state. The
rigid multibody dynamic simulation algorithm is detailed in
Algo 3.

Algo 3: Mul�body dynamic genera�on method

First, the generation domain �gen is created. Particles are
inserted using the Filling algorithm (Algo 1) and overlaps
are resolved using a MBD simulation (Algo 2). The SVEs
domain is created, in this case, a unit cube labeled as Mstruct .
Position and orientation of particles obtained with MBD are
used to automatically generate the CAD representation of
SVEs. CAD methods and tools used to generate this geo-
metric representation are similar to those used in [45]. As
mentioned in the introduction, to be inserted, a particle needs
to meet minimal distance and angle criterions. A particle that
does not conform to these criterions is removed and is not
replaced by a new particle. Consequently, since the targeted
volume fraction Fvoltarget is respected during the MBD sim-
ulation, the actual resulting volume fraction will be lower
than Fvoltarget . Excluded particles are mostly located close to
SVEs borders as illustrated in Fig. 15. Before mesh gener-
ation, resulting CAD representations of SVEs are analyzed
using different metrics such as volume fraction of each con-

stituents, number of particles, and orientation tensor [48] for
elongated particles.

Mesh generation is carried out using 2D and 3D advanc-
ing front mesh generation algorithms as described in [45].
Beforehand, a mesh size map is generated with the objec-
tive of ensuring that a minimum number of mesh elements
is generated between two distinct topological entities (for
example between two particles). In this work, meshes used
are composed of quadratic tetrahedrons. Boundary condi-
tions are automatically applied to the faces of SVEs. As
mentioned previously, Kinematic Uniform Boundary Con-
ditions (KUBC) and Static Uniform Boundary Conditions
(SUBC) are used to evaluate the apparent elasticity modu-
lus Eapp. Again with the assumption of a macroscopically

isotropic composite, spherical and deviatoric loads are used
[45]. FEA simulation of SVEs is automatically performed
with the use of the UTM linked to the open-source solver
Code_Aster [49]. Like in Sect. 3 for SVEs generated with
the RSA, material properties resulting from homogenization
of entire and partially eroded SVEs are then calculated.

5 Homogenization results obtained for SVEs
generated withMBD simulations

5.1 Homogenization results

To evaluate the effect of erosion on homogenizedmechan-
ical results, SVEs are generatedwith themultibody dynamics
approach presented in the previous section (referred to with
the prefix MBD) in the two following contexts:
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(a) MBD_S1FV30 

(b) MBD_C1FV30

Fig. 15 Illustration of voids caused by the exclusion of non-conforming
particles

• with particles intersecting SVEs borders (referred to with
the suffix INT)

• without particles intersecting SVEs borders (referred to
with the suffix NOI).

Table 8 lists the different configurations considered with
spherical (S) and cylindrical (C) particles.

Figure 16 illustrates BREP models of each MBD config-
uration. Even though some of the SVEs were generated with
the possibility that a particle intersects SVE borders (INT
cases), it can be observed that there are few particles touch-
ing SVE borders. Indeed, compared with RSA based SVEs,
the MBD generation approach does not generate a new par-
ticle to replace a non-conforming particle.

Orientation tensors for SVEs with cylindrical particles are
shown in Tables 9, 10, 11 and 12 for 4 configurations. These
4 tensors show that the orientation of cylindrical particles
closely fits an isotropic distribution which is, in our case, an
objective in the generation of non-spherical particles. This
indicates that the MBD based generation of particles meets
the isotropic distribution at which the particles were initially
positioned.

The volume fraction of particles obtained with a de � 0.0
erosion distance (without erosion) and a de � 0.2 erosion
distance, along with the number of mesh elements gener-
ated are listed in Table 13. As expected, volume fraction for
de � 0.0 is significantly lower than the target volume frac-
tion for each case, which explains given the nearly absence
of particles close to the SVE boundary. When de � 0.2, vol-
ume fraction obtained is close to the target volume fraction
for each case. It can also be observed that not inserting a par-
ticle that intersects the SVE boundary (NOI cases) decreases
the number of mesh elements. Indeed, for NOI cases the size
map does not need to be refined close to the SVE boundary
since nearly no particles are located there.

Figure 17 illustrate the evolution of apparent elasticity
modulus Eapp as a function of the erosion distance. Table 14
lists Eapp for SVEs eroded with de � 0.2. Analytical bounds
(Reuss, Voigt and Hashin–Shtrikman) are calculated accord-
ing to the volume fraction of particles obtained after erosion.
All modules are located inside these analytical bounds. The
difference between Eapp obtained with KUBC and SUBC

Table 8 RSA SVE
configurations Particle Lable Geometrical properties V ftarget (%) Number of samples

Sphere MBD_S1FV10_INT Dia. � 1/6 10 100

MBD_S1FV10_NOI Dia. � 1/6 10 100

MBD_S1FV30_NOI Dia. � 1/6 30 10

MBD_S2FV30_NOI Dia. � 1/8 30 3

Cylinder MBD_C1FV10_INT Dia. � 0.085, L/D � 5 10 100

MBD_C1FV10_NOI Dia. � 0.085, L/D � 5 10 100

MBD_C1FV30_NOI Dia. � 0.085, L/D � 5 30 10

MBD_C2FV30_NOI Dia. � 0.064, L/D � 5 30 3
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Fig. 16 Illustration of BREP
models for each MBD
configuration

(a) MBD_S1FV10_INT (b) MBD_C1FV10_INT

(c) MBD_S1FV10_NOI (d) MBD_C1FV10_NOI

(e) MBD_S1FV30_NOI (f) MBD_C1FV30_NOI

(g) MBD_S2FV30_NOI (h) MBD_S2FV30_NOI 
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Table 9 Orientation tensor for MDB_C1FV10_INT⎡
⎣

0.339 ± 0.0642 −0.005 ± 0.0486 −0.003 ± 0.054
−0.005 ± 0.0486 0.334 ± 0.0683 −0.001 ± 0.052
−0.003 ± 0.0549 −0.001 ± 0.0525 0.326 ± 0.058

⎤
⎦

Table 10 Orientation tensor for MDB_C1FV10_NOI⎡
⎣
0.324 ± 0.084 0.005 ± 0.062 0.003 ± 0.069
0.005 ± 0.062 0.335 ± 0.083 0.008 ± 0.066
0.003 ± 0.069 0.008 ± 0.066 0.339 ± 0.084

⎤
⎦

conditions is very small.As formicrostructures obtainedwith
the RSA method, the more the erosion distance increases
the more the apparent elasticity modules Eapp with KUBC
and SUBC converge towards the same value. The differ-
ence between results obtained with and without intersections
(between INT and NOI cases) is small and standard devia-
tions obtained show that this difference cannot be clearly
related to a presence or absence of particles close to the SVE
boundary. A comparison between Table 4 and Table 14 show
that apparent elasticity moduli calculated for MBD_S1FV10
andMBD_C1FV10 microstructures are close to those calcu-
lated for RSA_S1FV10 and RSA_C1FV10 microstructures
with de � 0.2. Apparent elasticity moduli calculated for
SVEs composed of 30% of particles (in volume) are much
higher than those obtained for a 10% volume fraction. These
moduli aremore distant fromHS bounds—which is expected
given the high-volume fraction in particles.

5.2 Analysis of homogenization results

Loading differences obtained for SVEs generated withMBD
are similar to those observed with SVEs generated with
the RSA. In addition, no clear difference can be made
between loading differences observed for MBD_NOI and
MBD_INT cases (Fig. 18). Figures 19, 20, 21 and 22
illustrates loading differences for MDB_S2FV30_NOI and
MDB_C2FV30_NOI. As for the difference in elastic energy,
the situation is similar for theMBD:�epot significantly drops
between de � 0.0 and de � 0.1 and remains nearly constant
forde > 0.1 (Fig. 23).Hill’smacro-homogeneity condition is
quite well satisfied Similar to what is observed for SVEs gen-
erated with the RSA, Hill’s macro-homogeneity condition is
quite well satisfied since �Hill(de) remains below±5% for
all SEVs considered.

5.3 Choosing the appropriate erosion distance

As mentioned in Sect. 3.3, the choice of the appropriate
erosiondistance requires balancing theminimumerosiondis-

Table 11 Orientation tensor for MDB_C1FV30_NOI⎡
⎣

0.349 ± 0.037 −0.004 ± 0.032 −0.024 ± 0.039
−0.004 ± 0.032 0.326 ± 0.029 0.009 ± 0.036
−0.024 ± 0.039 0.009 ± 0.036 0.324 ± 0.050

⎤
⎦

Table 12 Orientation tensor for MDB_C2FV30_NOI⎡
⎣

0.338 ± 0.009 0.008 ± 0.030 −0.006 ± 0.024
0.008 ± 0.030 0.356 ± 0.022 −0.008 ± 0.045

−0.006 ± 0.024 −0.008 ± 0.045 0.305 ± 0.029

⎤
⎦

Table 13 Volume fractions and mesh statistics for MBD based SVEs

Label V f (%)

de � 0.0 de � 0.2

MBD_S1FV10_INT 6.39±0.51 11.23±1.00

MBD_S1FV10_NOI 5.66±0.47 11.14±1.05

MBD_S1FV30_NOI 15.84±0.53 34.12±0.57

MBD_S2FV30_NOI 19.35±0.47 32.87±0.90

MBD_C1FV10_INT 5.60±0.70 10.30±1.65

MBD_C1FV10_NOI 3.59±0.73 9.13±1.93

MBD_C1FV30_NOI 14.84±0.98 27.01±1.88

MBD_C2FV30_NOI 13.61±0.09 31.58±5.04

tance with the minimum variation of loading and potential
energy. Size of particles with respect to the dimension of the
generation domain �gen can also affect the erosion distance.
Large particles in a small �gen will affect the particle’s dis-
tribution. Since �gen is an impenetrable barrier, it affects the
particle’s distribution by limiting their movements. There-
fore, a small �gen coupled with large particles will require a
larger erosion distance to avoid a biased particle distribution
than a large �gen coupled with small particles. A general-
ized method with which the optimal ratio of particle size
to �gen size is not reported in this work and remains to be
implemented.

5.4 Benefits of the MBD basedmethod

It is important to outline that using the rigid multibody
dynamics (MBD) generation method without erosion would
not yield representative results as the volume fraction close
to SVE borders is far below the targeted volume fraction.
Indeed, the main limitation of the MBD generation method
is the difficulty in inserting particles close to SVEboundaries,
due to insertion criteria used. As demonstrated above, ero-
sion, by only considering the representative core of SVEs,
makes it possible to use rigid multibody dynamics as a
method towards the automatic generation of microstructures.
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Fig. 17 Evolution of apparent
elasticity modulus Eapp as a
function of the erosion distance
de

(a) MDB_S1FV10_NOI 

(b) MDB_C1FV10_NOI

The interest of using MBD based methods is that it allows
managing and positioning very slender particles,which could
not be properly arranged with the RSA. Indeed, one of the
potentials of MBD based methods is their ability to pack
particles closer to each other while avoiding overlaps. Thus,

combining MBD with erosion opens the path towards being
able to model materials with more realistic shapes of parti-
cles.
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Fig. 17 continued

(c) MDB_S2FV30_NOI 

(d) MDB_C2FV30_NOI

6 Conclusion

Statistical volume element representation of particle based
composite materials can be challenging when the targeted
volume fraction is high or when particles are elongated.

Densely packing particles with no overlaps has been the sub-
ject of many research papers and remains a tedious task when
dealing with non-spherical particles. If not accounted for, the
position and orientation of particles that are close to the faces
SVEs can induce significant meshing problems in the form
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Table 14 Apparent elasticity modulus Eapp and analytics bounds for non-eroded and eroded SVEs generated with MBD

Label V f (%) Numerical results Analytic bounds

KUBC SUBC �(%) Reuss HS− HS+ Voigt

MBD_S1FV10_INT 11.23±1.00 4.352±0.085 4.347±0.085 0.11 3.919 4.319 7.873 11.332

MBD_S1FV10_NOI 11.14±1.05 4.346±0.089 4.341±0.090 0.11 3.915 4.312 7.836 11.269

MBD_S1FV30_NOI 34.12±0.57 6.898±0.096 6.906±0.096 − 0.10 5.183 6.725 18.332 27.083

MBD_S2FV30_NOI 32.87±0.90 6.763±0.098 6.760±0.101 0.04 5.093 6.558 17.693 26.224

MBD_C1FV10_INT 10.30±1.65 4.582±0.218 4.536±0.207 1.00 3.880 4.245 7.496 10.689

MBD_C1FV10_NOI 9.13±1.93 4.469±0.246 4.432±0.238 0.85 3.833 4.152 7.026 9.880

MBD_C1FV30_NOI 27.01±1.88 6.765±0.294 6.645±0.276 1.78 4.711 5.838 14.813 22.197

MBD_C2FV30_NOI 31.58±5.04 7.566±0.777 7.544±0.775 0.28 5.004 6.390 17.043 25.338

Fig. 18 Evolution of loading gap

�S
(
�

)
and �S

(
E

)

(KUBC—spherical loading)
with erosion distance de—(NOI
vs INT)

(a) MDB_C1FV10_NOI

(b) MDB_C1FV10_INT

of ill shaped elements or incommensurable quantity of small
elements. The proposed method is aimed at addressing these
two problems. The spatial arrangement of particles is carried
out in twomain steps. First particles are randomly positioned
according to pre-defined position and orientation distribu-
tions without considering overlaps. Overlapping particles are
gradually moved using a multibody simulation which adds
flexibility to the entire particle arrangement. Once all over-
laps are resolved, aCADmodel of the SVE is generated using

aUTMbased platform. Each particle is subjected to insertion
criterions in order to promote mesh quality andmesh genera-
tion convergence. Any particles not meeting these criterions
is rejected and not replaced. The SVE is meshed and FEA
analysis is automatically performed, thanks to the UTM. To
account for particle deficient areas created close to the bor-
ders of a SVE, an erosion-based homogenization method is
used to evaluate volume averaged fields in the inner core of
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Fig. 19 Evolution of loading gap
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Fig. 20 Evolution of loading gap
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Fig. 21 Evolution of loading gap
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Fig. 22 Evolution of loading gap
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the SVE instead of inside the entire SVE. The erosionmethod
is applied on FEA results obtained with the whole SVE and
thus does not require any subsequent FEA analysis. Mechan-

ical properties can be evaluated at different levels of erosion
along with validation metrics. To illustrate the potential of
this method, a short glass fiber/epoxy composite material
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Fig. 23 Evolution of �epot with
erosion distance de for
MBD_S2FV30 and
MBD_C2FV30 cases

(a) MBD_S2FV30 

(b) MBD_C2FV30

is simulated and compared with results obtained on non-
eroded SVEs generated with the RSA algorithm. Extending
this methodology to various other shapes of particles and to
flexible particles could be easily foreseen for future work.
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