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Abstract
The global/local analysis allows to embed a specific local zone of interest with a different behaviour in a global coarse model.
In this local model, finemeshes are usually used tomodel some structural details and potentially non-linear behaviours, such as
plastic hardening and crack propagation. The standard global/local approach can be observed as a Dirichlet-Neumann iterative
algorithm where a Dirichlet problem on the local model and a Neumann problem on the global one are solved successively.
This paper proposes a new approach for the global/local framework as Robin parameters are considered on both local and
global models to obtain more flexibility and improvement for convergence. Particularly, Robin parameters are obtained using
a pre-defined strip of elements and the results are later improved by means of single-objective optimization, minimizing the
number of iterations to achieve convergence. This improvement is illustrated for cracked domains and plastic hardening in
2D problems and 3D elements within a non-intrusive framework, allowing the usage of commercial finite element software
along with open-source research finite element software.
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1 Introduction

The objective of non-intrusive frameworks is to carry out
advanced numerical methods as a result of efficient linear
and non-linear solvers applied in the commercial software
and used as “black boxes”. An example of the above is that
it is feasible to operate the free open-source industrial finite
elements software code-aster [12] with the Python interface.
Advanced algorithms can be designed within this Python
interface and call non-linear methods of code-aster to con-
sider complex phenomena. In addition, depending on the
perspective, the non-intrusivity might be the alternative to
“enrich” a global model with those that are more detailed and
without modifying the global one. For example, the global
model could be the product of a long industrial process,which
might not be altered easily. In this regard, methods consid-
ering local models without altering the global one can be
perceived as non-intrusive.

The global/local approach [38] is a very good option for
implementing the non-intrusive method [16]. In essence, the
idea is to introduce some more localized details into a global
and coarse model and potentially add non-linear behaviours
in specific areas without altering the global model. Sum-
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marizing, a global and a local model connected through
an interface coexist. The global/local approach is about an
iterative Dirichlet-Neumann algorithm and an iteration con-
sisting of two steps: (1) a problem in the local model with
Dirichlet boundary conditions on the interface, and (2) a
problem in the global model with Neumann boundary condi-
tions on the interface. Connections with optimized Schwarz
domain decompositionmethods can be observed in [18]. The
global/local structure has been expanded to a domain decom-
position method [11] and has been implemented to different
types of non-linearities such as crack propagation [11, 28,
32], structural joints and assemblies [19], local plasticity [16]
and cycling visco-elastic behaviour [4]. It is possible to find
other studies regarding different applications and improve-
ments for non-intrusive frameworks and the global/local
method in [1, 6, 15, 17, 18, 23].

Considering the St. Venant’s principle, the interface
between the local and global models should be nowhere
near the local details to avoid the inaccuracy of the Dirichlet
boundary conditions from the linear globalmodel close to the
area of potential non-linearity. This problem could be solved
by usingRobin parameters on the interface. The first proposal
to apply Robin parameters on the interface for a local plastic
model can be found in [15]. Their idea is to design a “quasi-
optimal” Robin parameter avoiding the full computation of
the Schur complement of the complementary models. They
prefer two-scale Robin parameters that include both short
and long-range effects. Very recent works [1, 28] applied a
global/local approach with Robin conditions for phase field
modelling for mechanical and hydraulic fractures in porous
media. They chose the Schur complement of the complemen-
tary domain and observed very good performance, improving
drastically the convergence of the global/local algorithm.

Finally, a formalmathematical approach toMixedDomain
Decomposition Methods and the application for non-
intrusive analysis with Robin Parameters can be found in
[27, 28, 31].

This paper focuses on the global/local method with a
non-intrusive implementation of Robin parameters on the
interface. These Robin parameters are developed with a strip
of elements linked to the interface similarly as [15]. The
choice of these Robin parameters is crucial for the conver-
gence of themethod. The optimal choice is classically known
but with an unaffordable cost as it would involve the compu-
tation of a Schur complement of a large model. Therefore,
approximations are sought and we propose to carry out an
optimization of the parameters to obtain a better convergence
of the mixed method for the global/local analysis and study
the impact of the Robin parameter as well.

The article is structured as follows: Section 2 formulates
the global/local method as a Dirichlet-Neumann algorithm;
Section 3 pursues the global/local method with the Robin
parameters; Section 4 and subsequent sections illustrate the

improvements of our implementation with numerical exam-
ples and different non-linear problems in 2D and 3Dmodels,
as well as the optimization of the Robin parameters.

2 Global/local problem formulation

2.1 Reference problem

A mechanical model of a structure determined on a domain
ΩR is considered. This domain consists of two non-
overlapping domains ΩC , the complementary domain, and
ΩL , the local domain. ΩC considers elastic linear isotropic
assumptions with small perturbations, meanwhile inΩL , the
mechanical model may be non-linear, such as a crack prop-
agation model or a plastic material. This local model allows
embedding localized richer contents in the structure’s sim-
ple global model. Γ is noted as the interface between the
complementary and local models.

Defining the admissible space of displacements as:

V (ΩR) � {v ∈ H1(ΩR) v � ud on ∂uΩR} (1)

.
The mechanical problem is equivalent to:

Find u ∈ V (ΩR), aR(u, v) � lR(v), ∀v ∈ V0(ΩR) (2)

with aR the bi-linear form representing the structure’s equi-
librium and lR the linear form symbolizing the Neumann
boundary conditions. The Dirichlet boundary conditions are
taken into account in the affine space V (ΩR).

A discretization of standard finite elements with Lagrange
shape functions is considered in order to obtain discretemod-
els for which a conforming mesh in the interface between the
complementary and local models is adopted.

A full elastic linear isotropic material over the whole
domain ΩR � ΩC ∪ ΩL is considered to detail the methods
and the equation. Under this type of hypothesis, the discrete
problem becomes as follows:

Find uR solution of KRuR � f Rd (3)

with KR the stiffness matrix, uR the discrete unknown of
displacements and f Rd the right-hand side conforming to
the boundary conditions. The null Dirichlet conditions are
expected to be eliminated.

This reference problem can be seen as the coupling
between the complementarymodel inΩC and the localmodel
inΩL , as presented in Figure 1.We note that KC and KL are
the stiffness matrices of the complementary and local models
respectively, uC and uL are the displacements inΩC andΩL ,
fCd and f Ld are the load vectors in ΩC and ΩL . The perfect
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Fig. 1 Reference problem

coupling of the two models to impose the continuity of the
displacement is enforced with a Lagrange multiplier λ into
the following Lagrangian:

L(uC , uL ,λ) �1

2
uT
CKCuC +

1

2
uT
LKLuL − fCd

T
uC

− f Ld
T

uL + λT (CCuC − CLuL) (4)

Where CC and CL are coupling operators. For conforming
meshes, these are trace operators that extract displacements
from ΩC and ΩL on the interface Γ . They are sparse matri-
ces filled with number ones in the indexes associated to the
interface degrees of freedom.

The minimization of the Lagrangian leads to:

– Equilibrium of the coarse model:

∂L
∂uC

� KCuC + CT
Cλ − fCd � 0 (5)

– Equilibrium of the local model:

∂L
∂uL

� KLuL − CT
Lλ − f Ld � 0 (6)

– Continuity of the interface displacements:

CCuC − CLuL � 0 (7)

Therefore we obtain the standard coupling system:

Find (uC , uL ,λ),

⎡
⎢⎢⎣

KC 0 − CT
C

0 KL CT
L

−CC CL 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

uC

uL

λ

⎤
⎥⎥⎦ �

⎡
⎢⎢⎣

fCd
f Ld
0

⎤
⎥⎥⎦ (8)

This problem can be rewritten as two sub-problems: one over
ΩC withNeumann conditions of the interfaceΓ and the other
problem over ΩL with Dirichlet conditions on the interface
Γ :

Find uC , KCuC � fCd + CT
Cλ

Find (uL ,λ),

[
KL CT

L
CL 0

][
uL

λ

]
�

[
f Ld−CCuC

] (9)

ADirichlet-Neumann iterative algorithm is used to solve this
problem. The iteration consists in the following two steps:

1. Knowing a
(
un
L ,λn

)
solution in ΩL to solve a Neumann

problem on ΩC :

Find un+1
C , KCun+1

C � fCd + CT
Cλn (10)

2. Knowing a un+1
C solution inΩC to solve a Dirichlet prob-

lem on ΩL :

Find
(

un+1
L ,λn+1

)
,

[
KL CT

L
CL 0

][
un+1
L

λn+1

]
�

[
f Ld

CCun+1
C

]

(11)

and obtain λn+1, the opposite of the reaction forces λn+1L
on the interface of the local model.

Remark 1 This type of algorithm could be considered with
multiple local models and conceived as a non-overlapping
domain decomposition [11].

2.2 Primal-dual global/local analysis

The subtlety of the global/local method is to slightly modify
the problem in the complementary domain with the aim of
not solving it inΩC , but in a “global” domainΩG , which cor-
responds to the union of ΩC and an auxiliary domain ΩA.
Globally, this auxiliary domain corresponds geometrically
to the local domain ΩL but coarsely meshed as the comple-
mentary model. As shown in Figure 2, the local model is
substituted by an auxiliary model to obtain a global model.

This can also be interpreted differently. Starting from
a global model with a coarse mesh and an elastic linear
isotropic material, this model can be enriched with localized
details such as structural details (holes or a particular geom-
etry) or complex non-linear behaviour (plasticity or cracks).
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Fig. 2 Linear problem

This is especially suitable in an industrial design process
where the global model may not be easily changed to incor-
porate localized details.

The complementary problem to be solved is defined as:

Find un+1
C , KCun+1

C � fCd + CT
Cλn (12)

The contribution of the auxiliary model is added to the two
sides of the equation where the exponent n + 1 and n are
omitted in order to simplify the notations:

KCuC + KAuA � f
C
d + f

A
d︸ ︷︷ ︸

f Gd

+ CT
Gλ + K AuA− f

A
d︸ ︷︷ ︸

CT
GλA

(13)

where the notation �X means that the variable or operator �
specified inΩX is extended with zeros to the domain ΩG for

the rest of the degrees of freedom. In addition, f
A
d corresponds

to the boundary conditions that could be implemented on the
auxiliary model in order to represent an approximation of

those on the local model. The term KAuA − f
A
d symbolizes

the reaction forces of a Dirichlet problem on the auxiliary
modelwith displacementuG |Γ imposed inΓ and aNeumann

boundary condition through f
A
d . For more details see [18].

Therefore, as uC � uA on the interface Γ , the equation
becomes as follows:

KGun+1
G � fGd + CT

Gλn + CT
Gλn

A

� fGd + CT
GPn

(14)

with un+1
G the displacement specified on the global model.

The reaction forces λn
A are computed with displacement un

G
from the previous iteration of the algorithm. Pn � λn

A − λn
L

represents the correction of forces that will be applied to the
global model in order to consider the local model. It can also
beobserved thatPn verifies the following equations assuming
exact solutions for the global and local problems [18]:

Pn � λn+1
A + λn+1

C

Pn+1 � Pn + rn+1 with rn+1 � −
(
λn+1
L + λn+1C

) (15)

Under this notation, rn+1 represents the disequilibrium of
forces between the complementary model and the local
model. When convergence is fulfilled, rn+1 � 0 and the
forces are balanced: the solution on ΩC ∩ ΩL reaches the
solution of the reference model.

The error indicator for the convergence of the method is
the residual norm for each iteration normalized regarding the
first residual obtained from global/local iterations, as pre-
sented in Eq. (16).

η � ‖rn+1‖2
‖r0‖2 (16)

2.3 Global/local algorithm

The iterations described above lead to the algorithm 1 of the
global/local method.

Moreover, the case of matching meshes on the interface
between auxiliary and local models is assumed. For the case
of non-matching meshes, a projection step needs to be devel-
oped to communicate the displacement field from the global
to the local model, and the reaction forces from the local to
the global auxiliary domain.

This algorithm is no more than a fixed point for which
the convergence is known to be slow. Full linear models
can be considered as preconditioners for a Krylov solver to
improve the convergence rate. In the case of a non-linear local
model, quasi-Newton or Aitken’s relaxation must be taken
into account [11, 18].

3 Global/Local method with robin
parameters

As previously stated, the standard global/local analysis can
be observed as a coupling of the complementary and local
model by means of a Lagrange’s multiplier. This coupling
problem can be solved with an iterative Dirichlet-Neumann
fixed-point algorithm.

However, in the same way as Schwarz domain decompo-
sition methods [14], Robin conditions can be introduced to
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enhance the convergence and obtain more flexibility. In fact,
the kinematic compatibility between the complementary and
local model is broken and replaced by Robin conditions writ-
ten on the interface Γ . The first studies in the global/local
method with Robin conditions are introduced in [15] and
reminded in [18]. The proposal in this paper is to go further
and derive a complete mixed global/local method.

3.1 Derivation of global/local analysis with robin
parameters

The mechanical problem is presented differently in this sec-
tion as it follows a mixed domain decomposition framework.
Instead of using a Lagrange’s multiplier specified on the
interface Γ , reaction forces λL and λC are considered as full
unknowns on the interface. The conditions to be enforced at
the interface are provided bywriting the problem as a domain
decomposition:

λL + λC � 0 Equilibrium of forces

CLuL − CCuC � 0 Continuity of displacements
(17)

These two equations interpreting the interface behaviour are
written with Robin conditions:

λL + λC − kC (CLuL − CCuC ) � 0

λL + λC + kL(CLuL − CCuC ) � 0
(18)

kC and kL are Robin parameters, which are stiffness oper-
ators. Symmetric definite positive operators are selected to
ensure the equivalence with Eq. (17) of the interface. These
Robin conditions are determined and written on the inter-
faces, connecting reaction forces λC and λL to the interface
displacements CLuL and CCuC .

Thus, the new system to be solved is:

KCuC � fCd + CT
CλC

λL + λC − kC (CLuL − CCuC ) � 0

KLuL � f Ld + CT
LλL

λL + λC + kL(CLuL − CCuC ) � 0

(19)

Similarly, as the standard global/localmethod, the problem in
the complementarymodel is generalized to the global model.
Therefore, the first equation of the system becomes as fol-
lows:

KGuG � fGd + CT
GλC + CT

GλA (20)

In addition, as uG and uC are equal on the interface Γ , Robin
conditions can also be written as:

λL + λC − kG(CLuL − CGuG) � 0

λL + λC + kL(CLuL − CGuG) � 0
(21)

with kG � kC .

Remark 2 λC is the reaction force of a problem in the com-
plementary domain. Therefore, it is preferable not to use the
notation λG in order to avoid a confusion on the nature of
λG .

The first equation of the Robin conditions allows to obtain
the expression of λC to incorporate it into the equilibrium of
the global model, which led to:

KGuG � fGd + CT
GλA − CT

G(λL − kGCLuL − kGCGuG)

(22)

The second equation of the Robin conditions allows to obtain
the expression of λL to incorporate it into the equilibrium of
the local model, which led to the following equation:

(
KL + CT

LkLCL

)
uL � f Ld + CT

L (kLCGuG − λC ) (23)

Similarly as the global/local method, a fixed-point algorithm
can be derived where an iteration consists of the following
steps:

1. Global problem: knowing
(
un
L ,λn

L ,λn
A

)
, find un+1

G solu-
tion of:

KGun+1
G � fGd + CT

G

(
λn
A−(

λn
L−kGCLu

n
L−kGCGu

n
G

))
︸ ︷︷ ︸

Pn

(24)

2. Auxiliary problems: computing the reaction forces on
ΩA and ΩC on the interface Γ :

λn+1
A � CA

(
KAuG |ΩA − f Ad

)

λn+1
C � CC

(
KCuG |ΩC − fCd

) (25)

3. Local problem: knowing
(
un+1
G ,λn+1

C

)
, find un+1

L solution
of:

(
KL + CT

LkLCL

)
un+1
L � f Ld + CT

L

(
kLCGun+1

G − λn+1C

)

(26)

Remark 3 As to preserve the global model without any
change, the contributionofuG is consideredon the right-hand
side of the previous equation with the term −CT

GkGCGun
G ,

due to the Robin parameter kG . In fact, the contribution of
Robin conditions leads to local changes of global stiffness
operators regarding the interface degrees of freedom. For
another framework of dealing with Robin conditions see [30]
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As mentioned in the previous section, auxiliary problems
are not needed if finite element codes can get reaction forces
on an immersed surface. Nevertheless, if this is not the case,
the auxiliary problem in ΩC is still not necessary. Indeed, it
can be computed fromknown and easy computationswithout
assembling the operator KC :

λn+1
C � CC

(
KCun+1

G |ΩC
− fCd

)

� CG

(
KGun+1

G − fGd −
(

KAun+1
G − f

A
d

))

� CGCT
GPn − λn+1

A

λn+1
C � Pn − λn+1A

(27)

The same relation as the standard global/local method is
given where Pn � λn+1

C + λn+1
A . In addition, since Pn �

λn
A − λn

L + kGCLun
L − kGCGun

G , Pn+1 can be written in
function of Pn , a new rest rn+1 will appear:

Pn+1 � λn+1A − λn+1
L + kGCLun+1

L − kGCGun+1
G

� Pn − λn+1
C − λn+1

L + kGCLun+1
L − kGCGun+1

G

� Pn −
[(

λn+1
C + λn+1

L

)
+ kG

(
CGun+1

G − CLun+1
L

)]

� Pn + rn+1

(28)

The new rest rn+1 now incorporates a mixed contribution of
the discontinuity of displacements and the disequilibrium of
forces:

rn+1 � −
(
λn+1
C +λn+1

L

)
︸ ︷︷ ︸
Disequilibrium

− kG

(
CGu

n+1
G −CLu

n+1
L

)
︸ ︷︷ ︸

discontinuity

(29)

3.2 Algorithm for global/local method with robin
parameters

The mixed global/local methodology with Robin conditions
can be located in Alg. 2.

The method error is calculated by using the same expres-
sion as for the primal-dual strategy presented in Eq. (16).
However, each residual term in Eq. (16) is calculated dif-
ferently for the mixed global/local analysis (it is estimated
as a combination of interface forces and displacements). It
could be interesting to take into consideration the error of
the results reached when using the global/local analysis with
mixed conditions and the results regarding the monolithic
computation. This error is calculated as the rule of displace-
ment difference on the interface between the global and the
monolithic model, as presented in Eq. (30).

ηMono. � ‖(CGun+1
G − uMono.

)‖2
‖uMono.‖2 (30)

Fig. 3 Flowchart of the algorithm of the Global/Local Analysis with
Robin Parameters

Figure 3 shows a flowchart of the iterative method imple-
mentation of the global/local with Robin parameters.

4 Results for 2D structures using Global/local
analysis with robin parameters

4.1 Description of the two cases - definition
of the robin parameters

Code Aster [12] was used to implement the global/local algo-
rithm with Robin parameters as two A-36 steel structures
modelled with 2D plane stress formulation: a) an inverted T-
Shape with a 10mm initial crack and b) an inverted T-Shape
model with a circular cut to induce the plastic hardening
behaviour. The properties used for the analysis correspond
to: Yield stress of 250 (MPa), hardening ratio of 0.1 and 4
propagation steps with a maximum advance of 2 (mm) per
step. Geometrical properties are presented in Figure 4a and
Figure 4b.

The Robin parameter is chosen as the stiffness of an ele-
ment strip [33], as presented in Figure 5. Robin operators kL

and kG are determined independently: kL is the linear elastic
stiffness of the strip on the side of the complementary model
from the interface and kG is the linear elastic stiffness of
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(a) Inverted T-Shaped cracked problem.

(b) Inverted T-Shaped hardening problem.

Fig. 4 Geometry of analyzed models

the strip on the side of the local model from the interface. In
addition, Aitken’s δ2 dynamic relaxation is used to accelerate
the convergence in relation to a classical static relaxation.

Remark 4 In theCodeAster implementation, theRobin oper-
ator is calculated as follows: the strip of elements is applied
with a Young Modulus variable (αL EL ) for the local model,
modifying the stiffness and considering coupled degrees of
freedom on the interface. This strip of elements is connected
directly to the interface andwith fixed support boundary con-
ditions. On the other hand, the strip of elements is used to

Fig. 5 Element strip of elements used for the analysis

Table 1 Results for both models and non-linear/cracked behaviour,
using Aitken δ2 and the Initialized Robin Operator

Model Mono. Error Method Error Iter. for Conv.

Cracked 6.9E-06 4.7E-05 8

Hardening 6.0E-06 4.4E-05 8

compute the part on the right-hand side for the global model,
which corresponds to the Robin conditions in Eq. (28). It is
not assembled with the global stiffness. The strip of elements
considers a Poisson ratio of 0.3, a Young Modulus variable
(αGEG) and fixed boundary conditions on the opposite side
of the interface, as presented in Figure 5.

4.2 Results

It is clear that the global/local Analysis with Robin
parameters converges slower with respect to the primal-dual
Method (from 8 to 6 iterations compared to the primal-
dual for the cracked model). For the hardening problem, it
converges from 8 to 6 with respect to the primal-dual and
considering the number of iterations. The Aitken δ2 dynamic
relaxation converges both models rapidly, with a faster con-
vergence rate for the primal-dual Method.

The complete global/local analysis results with the initial
Robin operator are shown in Table 1 for non-linear/cracked
behaviour.

4.3 Summary of the results

As presented in Section 4, the mixed method converges
slower with respect to the primal-dual method. Regarding
computational times, these were 18 seconds for the cracked
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Fig. 6 Method error for Global/Local Analysis with Robin Parameters
and cracked domain with 4 propagation steps

Fig. 7 Method error for Global/Local Analysis with Robin Parameters
and plastic hardening domain

model and 10 seconds for the non-linear hardening problem.
However, these times are referential and can be improved by
optimizing the python code. Finally, as the analysis considers
an arbitrary strip of elements used to start the Robin opera-
tor, an optimization process is carried out with the intention
of reducing the number of iterations until convergence and
analysing the results for different Robin parameter values. In

addition, the strip of elements are very stiff and do not rep-
resent the neighbour structure, i.e., the theoretical optimum.

Remark 5 Is important to mention that non-linear plastic
behaviour or crack tip propagation are not being transferred
between the local and global models. The interfaces are con-
sidered far from the source of plasticity or the crack tip;
Therefore, based on St. Venant’s principle, only the effects of
these singularities are transmitted between models. In order
to study specific aspects of the non-linear behaviour, the local
model should be further analyzed. Finally, the “total” solu-
tion of the analysis should be considered as the superposition
of the global linear model and the local non-linear model.

5 Optimization of the robin parameter
Global/local analysis with robin conditions
in 2D plane stress

5.1 Description of the optimization process

As presented in [25], the convergence of the global/local
analysis with mixed conditions can be assured for a certain
range of values for the Robin parameters. Within this range,
an optimum that minimizes the number of iterations can be
found. However, as presented in [13, 34], the value depends
on the problem type, the applied loads, the boundary condi-
tions and the form of the Robin operator used in the analysis.
Therefore, in order to find the Robin operator that guaran-
tees convergence and alsominimizes the number of iterations
until convergence, an optimization process is performed for
the different problems presented. Optimization algorithms
have been used widely in engineering problems and other
scientific areas, such as the Basin-Hopping Algorithm [24,
29], already distributed within Scipy library [36].

Remark 6 The values of the Robin operator assuring the con-
vergence of the non-intrusive method with Robin conditions
can be estimated analytically for simple examples with few
degrees of freedom. For industrial/real structures, the range
of the values are not easily found directly, so these values
are found by iterative methods as presented in [13, 20] or by
using two scale strategies as shown in [15, 27].

For this article, the Basin-Hopping algorithm is used
in the optimization process, allowing the specification of
an initial “guess” of the problem within the search space
and stochastically start the refinement of the solution until
finding the best possible solution. The Basin-Hopping algo-
rithm is based on the transformation of the “potential energy
landscape” of an objective function, finding local min-
ima using the Limited-Memory Broyden-Fletcher-Goldfarb-
Shanno method (L-BFGS) [9]. This potential energy surface
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Table 2 Optimized α results for
initial cracked and perforated
linear model

Model (αG , αL ) Mono. Error Method Error Iter. Conv.

Init. cracked (1.167,4.353) 6.1E-06 9.8E-05 5

Init. perforated (0.515,1.676) 3.4E-06 8.7E-05 7

is being explored by means of random jumps for each eval-
uation based on the Boltzmann probability distribution. The
number of random jumps is defined by a variable N, in
which the probabilities for finding the best local minimum
are increased for larger values of N. Therefore, the Basin-
Hopping algorithm has been used successfully to find a
minimumusingN=110or larger [37]. This parameter is also a
measurement of the computational cost, because it is a direct
measurement of the amount of random jumps between each
solution. For our work, N has been defined as the default
option provided in Scipy, with a value of N equal to 100.
Finally, the L-BFGS method has a computational complex-
ity ofO(n2) andmust be repeatedN times in accordancewith
the number of random jumps [8].

Nevertheless, a global optimumcannot be assured inmeta-
heuristics, due to the non-convex nature of the problem.
However, a good approximation of a global minimum solu-
tion can be found. This is due to the internal behaviour of the
optimization process: it is stopped through an internal con-
vergence criterion and not by founding a global minimum
[3]. More information and applications on the different opti-
mization algorithms can be seen in [2, 7, 10, 21, 22, 26, 35,
40], among others. Therefore, considering that the conver-
gence of the method depends on the Robin parameters as
presented in [25], the initial Robin parameter (calculated as
the condensed stiffness on the interface estimated from an
initial strip of elements and presented in Figure 5) can be
modified by means of two factors: αG for the global model
and αL for the local fine model, as shown in Eq. (31):

kL � αLkL
init kG � αGkG

init (31)

The optimization algorithm will be used to find an optimum
value for αG,L that minimizes the number of iterations until
convergence.

It is important to note that the search space for the values
ofαG,L to be used in the optimization process are constrained
between 0 and 100 in order to find an overall optimum that
minimizes the number of iterations, starting with the initial
search direction kini t

G,L , i.e., αG � 1 and αL � 1.
The optimization problem is carried out using the initial

configuration of the domains and considering the initialized
Robin conditions andmultiplied by the α factor. The analysis
contemplates linear elasticity behaviour for both problems
for all optimization trials. Finally, the results for the optimum
αG,L will be used for non-linear problems (all propagation
steps and post-yielding hardening).

The following procedure is applied to perform the opti-
mization of the Robin parameter, using the Basin-Hopping
[29] algorithm, as well as for linear elastic initializedmodels,
i.e., without plasticity or crack propagation:

– Choose global and localmodels to be analysed considering
the elastic linear behaviour, as presented in Figure 4a and
Figure 4b.

– Perform the analysis on themodel considering the iterative
non-intrusive scheme with αL � 1 and αG � 1 (Initial
guess or initial trial for the Robin parameter).

1. Choose new values of αL and αG found in the local
neighbourhood of the initial guess.

2. Perform the non-intrusive analysis usingRobin param-
eters and recover the number of iterations until the
analysis converges for each αL and αG in the neigh-
bourhood of the current trial.

3. Study the convergence values of the previous neigh-
bourhood and select random values in the best direc-
tion (gradient) found in the neighbour to proceed with
updated αG,L trial.

– When the optimization algorithm converges and the best
solution for the linear model is obtained, the best factors
α
opt
L and α

opt
G are recovered.

– Apply α
opt
L and α

opt
G to the non-linear model (hardening

or cracked model) and study the convergence.

5.2 Results

For the 2D cases, the optimization results are presented sum-
marized in Table 2 for both models.

The optimized α found for the linear cases are used
directly as an input for the non-linear cases. These results,
regarding the evolution of the method error with respect to
iterations, are introduced in Figure 8 for the cracked case
and in Figure 9 for the plastic hardening case.

Figure 8 and Figure 9 show that the number of iterations
are reduced by 25% for the cracked case and 12.5% for the
plastic hardening case respecting the non-optimized solu-
tion (initial guess of the Robin parameter). However, with
regard to the primal-dual solution, the cracked optimized
model equals the performance in terms of the number of
iterations. For the non-linear hardening case, the optimized
model with Robin parameters performs slower with respect
to the primal-dual method. The results for the cracked model
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Fig. 8 Method error for Global/Local Analysis with Optimized Robin
Parameters and cracked domain

Fig. 9 Method error for Global/Local Analysis with Optimized Robin
Parameters and plastic hardening domain

and non-linear hardening, using the optimized αG,L factors,
are presented in Table 3.

5.3 Summary of the results

When optimizing the linear elastic analysis of each model
(including the initial configuration of the local geometry)
using the Basin-Hopping algorithm, the convergence of non-

Table 3 Results for optimized α, cracked behaviour (4 propagation
steps) and post-yielding hardening

Model (αG , αL ) Mono.
Error

Method
Error

Iter. Conv

Cracked (1.167 ,
4.353)

4.3E-06 6.6E-05 6

Hardening (0.515 ,
1.676)

2.4E-06 8.3E-05 7

Fig. 10 3D cantilever cracked and non-linear hardening beam

Table 4 Results for the optimization for 3D model with initial condi-
tions and linear behaviour

Model (αG , αL ) Mono. Error Method Error Iter.Conv.

Cracked (1 , 1) 0.437 5.19E-05 10

Hardening (1 , 1) 0.371 4.53E-05 10

Table 5 Results for the 3D cracked models 3 propagation steps

Model (αG , αL ) Mono.
Error

Method
Error

Iter. Conv.

Cracked (1.39 , 2.31) 0.727 3.34E-05 9

Hardening (0.386 ,
1.840)

0.311 6.96E-05 8

linear models is improved as expected. The optimized α
opt
L

andα
opt
G used for the non-linear problemsobtain better results

with respect to the non-optimized problems, similar to the
performance of the primal-dual method. This approximation
using the linear elastic optimized model works for localized
patches with non-linearities. However, the solution found
with the Basin-Hopping algorithm for the linear models may
not be the actual optimum for the non-linear models. Finally,
as the Code Aster code with the python interface was imple-
mented, the optimization times are elevated in comparison
with the non-optimized α case. However, these times can be
optimized by using better coding practices and more effi-
ciency in computing resources.
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Fig. 11 Method error for Global/Local Analysis Robin Parameters for
3D cracked domain and optimized αG,L

6 Global/local analysis with robin conditions
for 3D structures

As presented in Section 5, the same approach will be applied
in two models: a cantilever beam with an initial crack near
the fixed support and a beam with two 50 (mm) perforations
and non-linear hardening behaviour. The properties are the
same as the previous case but including different lengths,
loads applied and crack size, as shown in Figure 10. The
crack propagates for the 3D case, including 3 propagation
steps and 10 (mm) for maximum crack advance per step for
the cracked domain.

As the discretization carried out in the global and local
3D models are geometrically complex, incompatible meshes
were generated. The incompatibility is managed by Code
Aster projecting the fields between the models and the inter-
face. The initial Robin parameter will be used in order to
find the results for the non-optimized αG,L for both models,
which are summarized in Table 4.

Results using the optimized Robin parameter, following
the same procedure as shown in Sec. 5, are summarized in
Table 5 and presented in Figure 11 for the cracked case and
in Figure 12 for the plastic hardening case.

The use of the optimized αG,L implies a reduction on
the number of iterations from 10 to 9 for the cracked case
with 3 propagation steps, meaning a 18% faster respect to
the primal-dual and a 10% improvement in relation to the
global/local with non-optimized Robin conditions. For the
hardening problem, the optimized αG,L reduces the num-
ber of iterations from 10 to 8, which corresponds to an

Fig. 12 Method error for Global/Local Analysis Robin Parameters for
3D hardening domain and optimized αG,L

Fig. 13 Deformed shape of the 3Dbeam forGlobal/LocalAnalysiswith
Optimized Robin Parameters and cracked domain

Fig. 14 Deformed shape of the 3Dbeam forGlobal/LocalAnalysiswith
Optimized Robin Parameters and hardening domain

improvement of 20% with respect to the non-optimized
Robin conditions and 11% improvement in comparison to
the primal-dual solution. The complete results for the 3D
analysis are presented in Table 5.

The final deformed shape for the cracked model is pre-
sented in Figure 13 for the Global/Local 3D model with
Robin conditions (optimized) and in Figure 14 for the hard-
ening case.
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6.1 Summary of the results

As in Section 5, the optimization improves the convergence
with respect to the initialized Robin parameter.

The optimization process, when applied to the 3D cracked
model, improves the convergence rate, resulting in better per-
formances, considering the number of iterations with respect
to the primal-dual methodology.

7 Discussion

In this article, the global/local non-intrusive analysis with
Robin parameters was implemented in 2D and 3D problems
with cracked and plastic hardening behaviour. Subsequently,
results were optimized using the Basin-Hopping algorithm
and compared to a primal-dual non-intrusive analysis.

The method presented in this study has a good con-
vergence rate for 2D and 3D non-linear plastic hardening
behaviour and cracked models. However, as for any mixed
method, the selection of the Robin parameters is crucial for
convergence.Our initial choice is based on studying the effect
of a simple element strip, but it may not be very efficient com-
pared to the primal-dual approach.

The optimization of the mixed global/local method was
performed using the Basin-Hopping algorithm, allowing an
improvement in the performance of the global/local analy-
sis with Robin parameters. The optimized α is different for
each case, which is consistent with results presented in [34],
indicating that the values of α are specific to each model
(geometry, behaviour, etc.), loads and boundary conditions.

Nevertheless, the optimization does not guarantee that the
mixed global/local analysis works better with respect to the
primal-dual non-intrusive analysis, although a local mini-
mum could improve the mixed analysis results.

8 Future research

The Robin parameter and the flexibility added to the struc-
ture are a great advantage of themixedmodel, as presented in
[20]. Therefore, the non-intrusive analysiswithRobin param-
eters can be studied for structures with geometric non-linear
behaviour and large displacements.

Another topic to be studied further is to extend the analysis
to larger structures, associated with multiple domains and
with multiple stiffeners or variable cross sections. This is
useful to study the convergence of the method in structures
with strong modifications in the stiffness. Consequently, the
original approximation of the Robin parameter may not be
the best for each interface and these factors could be different
for each analysis direction, as presented in [13].

Different crack propagation techniques must be consid-
ered in future studies, for example, the Cohesive ZoneModel
(CZM) and the Virtual Closing-Crack Technique (VCCT) to
study the effectiveness of the global/local methodwith Robin
parameters using this type of analysis. The feasibility of cou-
pling the global/local method with phase field approaches to
deal with crack propagation has been studied successfully in
[17, 28].

The studied strategies for solving the global/local prob-
lem, i.e., primal-dual and with Robin conditions, work
without problems for incompatible patches. Nevertheless, a
sensitivity analysis can be performed to study the effect of
incompatible meshes for different structures and behaviours,
and the error that can be induced due the interpolation of
forces and displacements in the different interfaces.

Basin-Hopping is a meta-heuristic that can be easily
implemented, but as presented in [5], it may not be the fastest
to obtain convergence. Therefore, a more efficient way to
optimize the Robin parameters and reduce computational
timesmust be studied and applied, such as the Particle Swarm
Optimization [39] and exploiting the ability to evaluatemulti-
ple trials with parallel architecture. In addition, the efficiency
of the algorithm on larger cases will be studied. For now, due
to the small problems we studied, the iterative algorithm can-
not compete with a full-scale computation. We expect that
larger problems may reverse this trend.

Finally, the effect of the discretization for the 2D and 3D
models, the degree of the shape functions used for the FEM
method elements and also the coupling between 2D global
models and 3D local non-linear models must be analyzed,
in order to study the convergence of these elements and how
affects the response.
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