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Abstract
An orthotropic adhesion model is proposed based on the bi-potential method to solve adhesive contact problems with
orthotropic interface properties between hyperelastic bodies. The model proposes a straightforward description of interface
adhesion with orthotropic adhesion stiffness, whose components are conveniently expressed according to the local coordinate
system. Based on this description, a set of extended unilateral and tangential contact laws has been formulated. Furthermore,
we use an element-wise scalar parameter β to characterize the strength of interface adhesive bonds, and the effects of damage.
Therefore, complete cycles of bonding and de-bonding of adhesive links with the account for orthotropic interface effects can
be modelled. The proposed model has been tested on cases involving both tangential and unilateral contact kinematics. The
test cases allowed emergence of orthotropic interface effects between elastomer bodies involving hyperelasticity. Meanwhile,
the model can be implemented with minimum effort, and provides inspiration for the modelling of adhesive interface effects
in areas of applications such as biomechanics.

Keywords Orthotropic adhesion · Bi-potential contact formulation · Hyperelastic materials

1 Introduction

Interface adhesion anisotropy is widely present in nature.
This phenomenon can be found for example in pads of lizards
and insects, which have been investigated both experimen-
tally and theoretically [1–3] by researchers in the area of
biomechanics, leading to numerous applications, such as
bio-mimetic adhesive materials [4,5]. Some of them incor-
porate anisotropic interface properties of adhesion [6–8]. In
the area of anisotropic friction modelling, recent contribu-
tions have led to numerous orthotropic interface models.
We cite in particular the development of orthotropic slip
functions [9–11], orthotropic dry interface model [12] and
elasto-plastic interface model [13]. Konyukhov et al. pro-
posed a series of contributions which implement anisotropic
interface adhesion based on covariant description of the inter-
face kinematics [14–16].
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In the field of numerical modelling, many efforts have
been exerted to develop adhesive contact algorithms [17–
19], however, literature onmodelling schemes accounting for
interface adhesion anisotropy is still in initial state [20,21].
Achieving suchmodels requires first, an appropriate descrip-
tion of the contact laws in both normal and tangential
directions with a proper account for adhesion anisotropy,
and secondly, a robust and stable resolution algorithm, that
can deal with the computational difficulties inherent to the
problem non-linearities. Furthermore, reversibility of the
interface adhesion should also be considered tomeet require-
ments of real applications. In this regard, both bonding and
de-bonding processes including the interplay between adhe-
sion forces and the state of damage of the adhesive bonds
must be taken care of. It has been demonstrated that numer-
ous factors during the bonding process may affect the final
state of adhesion anisotropy [22]. Therefore, properly mod-
elling the bonding and de-bonding processes becomes one
of our main focuses.

In this work, we simulate complex interface behaviours
with reversible adhesion orthotropy based on our extension
of the Raous–Cangémi–Cocu (RCC)model, which is a cohe-
sive interfacemodel incorporating adhesion within unilateral
and tangential contact scenarios [23–25]. It makes use of
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an adhesion intensity parameter β, which was presented for
the first time in the work of Frémond [26]. With its value
varying between 0 and 1, β indicates the level of dam-
age of the interface adhesion bonds (0 refers to complete
separation, while 1 refers to complete bonding). Then the
adhesive interface behaviour, evolving with β, derives from
a free surface energy and a pseudopotential of the surface
dissipation, which describes the reversible de-bonding and
bonding process as function of the geometrical configuration
of the contact interface [27]. Derivatives of the free surface
energy yields a straightforward description of the interface
adhesion orthotropy, whose stiffness components are conve-
niently expressed according to the local coordinate system.A
set of extended unilateral and tangential contact rules incor-
porating the interface adhesion orthotropy is then formulated.

Another difficulty lies in the inherently severe non-
linearities due to contact dynamics. In fact, the non-smooth
and multivalued nature of the orthotropic adhesive inter-
face law gives rise to significant challenges in numerical
resolution. It is thus necessary to adopt robust, and stable
algorithms to ensure iteration convergence, solution accu-
racy and balanced efficiency. Methods based on penalty
[28], Lagrange multiplier [29] approaches and augmented
Lagrangian method [30,31] are all general candidates for
numerical treatment of contact constraints. Here, we propose
a bi-potential theory based on the augmented Lagrangian
method for solving contact problems which was devel-
oped to deal with implicit standard materials (ISM) [32,33].
In comparison to the classical methods, the bi-potential
framework combines two variational inequalities of the uni-
lateral contact and friction law into a single displacement
based variational principle with a single inequality. First
introduced in the 1990s, it has recently been extended to
problems involving hyperelastic or elastic-plastic contact and
impact [34–37], and interface wear [38,39]. The bi-potential
contact algorithm implemented in this work, according to
the basic relations of contact geometry, belongs to the
category of “node-to-segment” (NTS) approaches. These
approaches represent a relatively balanced solution com-
bining implementation simplicity and resolution accuracy.
Comparative contact algorithms include sequential multi-
pass NTS approaches which also offer satisfactory accuracy,
and more recently, the virtual-slave-node-to-segment (VTS)
approach developed by Zavarise et al. [40–43], which opens
a new way to the accurate assessment of contact interface
forces requiring only single-pass scheme.

In this work, an orthotropic extension of the RCC surface
energy model is proposed. The extended tangential adhesive
law can be graphically interpreted by a cone with ellipti-
cal cross section. Then, we incorporate adhesion into the
classical unilateral law and Coulomb friction rule to form
a complete contact law. The problem of orthotropic adhe-
sive contact is then solved using bi-potential method. The

Fig. 1 Finite deformation contact

article is organized as follows: in Sect. 2, after a brief descrip-
tion of the contact kinematics, we present the complete
framework of the orthotropic adhesion model of contact,
which includes an extended formulation of the unilateral
and tangential rules of contact involving interface adhesion
orthotropy. Then, we present its implementation within the
bi-potential framework, and provide the formulation of the
hyperelastic material used to model soft bodies. In Sect. 3,
the complete finite element formulation, including the res-
olution algorithm, is provided. To validate the framework,
we present numerical examples in Sect. 4. In the end, a few
concluding remarks are drawn in Sect. 5.

2 Problem setting

2.1 Contact kinematics

We provide in this section geometric descriptions of the con-
tact kinematics and the relative notations. Let’s consider two
deformable bodies Bα, α = 1, 2 coming into contact. Defor-
mation of the two bodies is represented by ϕα , as shown
in Fig. 1, which maps the initial configuration to positions
of the current configuration. We assume that contact occurs
at the boundaries ϕ(�α

c ) in the current configuration where
�α
c ⊂ ∂Bα are possible contact surfaces of bodies Bα .
Contact conditions need to be developed according to the

current configuration. We note contact point P2 on B2 and
its projection point P1 on B1 in the current configuration, as
shown in Fig. 2.

By assuming that the contact boundary describes, at least
in the vicinity of the contact point, a convex region, we can
relate P2 to P1 by prescribing a minimum distance problem
[44]:

d
(
ξ1, ξ2

) =
∥∥∥x2 − x1(ξ)

∥∥∥ , (1)

where x2 and x1 are position vectors of the two points in
global Cartesian coordinates xyz. ξ = (ξ1, ξ2) denotes
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Fig. 2 The closest-point projection procedure and coordinate system

parametrization of the boundary ϕ(�1
c ) via the convective

coordinates [45–48]. d(ξ1, ξ2) can be used to define the gap
between the two bodies. To make Eq.(1) valid, x1 needs to
satisfy the following condition:

∂

∂ξα
d
(
ξ1, ξ2

) = x2 − x1
(
ξ1, ξ2

)
∥∥x2 − x1

(
ξ1, ξ2

)∥∥ · x1,α
(
ξ1, ξ2

) = 0,

withα = 1, 2, (2)

where x1,α(ξ1, ξ2) is the tangent vector aα . Be applying cross
product between tangent vectors, we can write the normal
vector n as follows:

n = a1 × a2
||a1 × a2|| , (3)

once the first term of Eq. (2) is aligned to the same direction
as n, we consider that P1 is the projection point of P2 on B1.
Therefore, the normal relative displacement or gap gn is:

gn =
(
x2 − x1

)
· n. (4)

In the of tangential movement, the path following which P2
slides on the contact surface of B1 is a priori unknown. We
know however the relative velocity vector on P2. Therefore,
the path of P2 can be obtained by integrating velocity over
time. The increment of tangential relative displacement, as
shown in Fig. 3, is:

dgt = aαdξα, (5)

with dξα = ξ̇ α , tangential relative displacement can be cal-
culated as:

gt =
(∫ t

t0
ξ̇ α dt

)
aα, (6)

where t0 refers to initial time, and t the current time.

Fig. 3 Increment of tangential path

Based on Eq. (5) and in order to obtain gt , we need to first
calculate ξ̇ α by using the following relation

∂

∂t

[
x2 − x1

(
ξ1, ξ2

)]
· aα =

[
v2 − v1 − aβ ξ̇β

]
· aα

+
[
x2 − x1

(
ξ1, ξ2

)]
· ȧα = 0, with ,fi = 1, 2, (7)

where vα = ẋα . We have ȧα = vα
,α + xα

,αβ ξ̇β , Eq. (7) can be

developed as an expression containing ξ̇ β :

(
aαβ − gnbαβ

)
ξ̇ β = [

v2 − v1
] · aα + gnn · vα

,α, (8)

with

⎧
⎨

⎩

gnn = x2 − x1

aαβ = aα · aβ

bαβ = xα
,αβ · n

, (9)

where aαβ and bαβ represent respectively the metric tensor
and curvature tensor. Substituting ξ̇ β from Eq. (8) into Eq.
(6), we can solve the tangential slip gt .

Then the contact force vector r is defined as a covariant
vector, which is expressed via the contravariant basis surface
vectors aα and n:

r = rt + rn = rα
t aα + rnn, α = 1, 2, (10)

where rt and rn are respectively tangential and normal com-
ponent of the contact force vector.

Let’s denote the local and global contact force vectorswith
respectively r andR. The relation between contact force vec-
tors expressed in local and global coordinate systems writes:

R = HT r, (11)

where H is the transition matrix. Here, due to the presence
of adhesion on the contact interface, contact reaction r is
composed of the cumulative effects due to both dry contact
and the interface adhesion, hence

r = r̄ + r̃, (12)
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in which we use r̄ to denote dry contact reactions, and r̃ con-
tact forces due to interface adhesion. Note that the above
relation can be projected to the local coordinate system
according to the normal and tangential directions:

{
rn = r̄n + r̃n
rt = r̄t + r̃t

. (13)

Generalization of the RCC model is described in Cartesian
coordinates.

2.2 RCC contact model with adhesion orthotropy

We develop an improved RCC contact model to describe
the effect of orthotropic adhesion between contact surfaces.
Introduced by Raous et al. [25], the original RCC model
accounts for unilateral contact, friction and adhesion, based
on an energy description of the contact interface, involving a
free surface energy Ψ and a pseudo-potential of the surface
dissipation Φ. Here, energy expressions Ψ and Φ are for-
mulated based on displacements that we project to the local
system (a1, a2,n), leading to tangential and normal compo-
nents gt1, gt2 and gn:

Ψ (gt1, gt2, gn, β) = Cn

2
g2nβ

2 + Ct1

2
g2t1β

2

+Ct2

2
g2t2β

2 − wβ +
⋃

�+
(gn) +

⋃

Q

(β) , (14)

Φ
(
ġt , gn, β̇

) = μ|rn − Cngnβ
2|||ġt || + b

2
|β̇|2 . (15)

In the above expressions, β is a scalar parameter that
measures the intensity of adhesion [26], with β ∈ [0, 1].
Specifically, β = 0 indicates the absence of adhesion, β = 1
refers to perfect adhesion. Hence, any β ∈ (0, 1) implies
partial adhesion between contact surfaces. Other parame-
ters in Eqs. (14, 15) include: Ct1, Ct2 and Cn : parameters
characterizing the initial adhesive stiffness when adhesion
is complete, w: decohesion energy threshold,

⋃
: indicator

function that assures unilateral contact (gn ≥ 0), and mean-
ingful values of the degree of adhesion. The subscript Q
indicates Q = {η | 0 ≤ η ≤ 1}, μ: friction coefficient, b:
surface viscosity.
Deriving the surface free energy Eq. (14), we obtain the
expression of the normal force of adhesion:

radn = Cngnβ
2 , (16)

and the tangential forces of adhesion:

{
radt1 = Ct1gt1β2

radt2 = Ct2gt2β2 .
(17)

Both adhesion forces are dependent on the degree of adhesion
β. Then deriving energy functions Eqs. (14) and (15) with
respect to β and β̇ yields the incremental expression of β

which gives its evolution in time:

⎧
⎪⎪⎨

⎪⎪⎩

bβ̇ ≥ 0 with β = 0

bβ̇ = w −
(
Cng2n + Ct1g2t1 + Ct2g2t2

)
β with 0 < β < 1

bβ̇ ≤ w −
(
Cng2n + Ct1g2t1 + Ct2g2t2

)
with β = 1 .

(18)

In Eq. (18), we can see that two components may influ-
ence β: the decohesion energy w, and the elastic energy of
the interface

∑
i=n,t1,t2 Ci g2i . When interface elastic energy

prevails, β̇ becomes negative, which leads to decreasing β.
Otherwise, β̇ is positive, then β increases.

We can view Eq. (14) as a variant of the penalty func-
tion method. Both methods are based on spring models with
zero rest length, except that the two springs are stretched in
opposite directions.

Therefore, this adhesive model can be seen as being based
on a system of spring whose elasticity incorporates damage
and self-recoverability. In this regard, the value of β mea-
sures the degree of damage of the spring, whose stiffness is
adjustable based on β. Therefore, decrease of β corresponds
to the process of spring damage, leading to its rupture. On the
contrary, the inverse process results in the recovery of spring
stiffness.

2.3 Adhesive contact law and friction rule

2.3.1 Modified Signorini law with adhesion

We recall the unilateral contact law, also called Signorini law,
which for classical dry contact is characterized by conditions
of non-penetration and non adhesion. By using r̄α

n to denote
local normal contact force on the point α due to dry contact,
and the contact distance gn , we express the classical Signorini
law as:
{
gα
n = 0, r̄α

n ≥ 0
gα
n > 0, r̄α

n = 0
⇒ gα

n r̄
α
n = 0 . (19)

The first relation eliminates geometric penetration between
contact surfaces. The second inequality indicates the absence
of adhesion forces between dry contact surfaces once they are
separated. For adhesive contact, since contact forces result
from both the effects of dry contact and adhesion, the clas-
sical conditions of unilateral contact should be modified by
considering Eq. (12), hence

{
gα
n = 0, rα

n − r̃α
n ≥ 0

gα
n > 0, rα

n = r̃α
n

⇒ gα
n

(
rα
n − r̃α

n

)
= 0 . (20)
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Fig. 4 Modified Signorini lawwith adhesion: graphic representation of
normal adhesion forces and the level of damage evolving with contact
distance

Here, adhesive forces r̃α
n are zeros with surfaces in contact.

They will appear when contact surfaces start to separate (the
second relation), and r̃α

n will tend to maintain the contact sur-
faces together. By considering Eq. (16), a modified Signorini
condition with account for adhesion writes

{
gα
n = 0, rα

n − Cngα
n β2 ≥ 0

gα
n > 0, rα

n = Cngα
n β2 ⇒ gα

n

(
rα
n − Cng

α
n β2

)
= 0 .

(21)

The obtained unilateral contact law that incorporates the
effect of interface adhesion [Eq. (21)] can be graphically
represented by Fig. 4.

By assuming perfect adhesion (β = 1) at gn = 0, the
state of interface adhesion that evolves with gn can be dis-
tinguished by three major phases:

(1) Fully bonded adhesion Adhesion bonds remain intact
(β = 1), although minor interface detachment gn > 0 is
tolerable. Elastic energy due to gn does not exceed the
decohesion threshold w. Hence, linear relationship dom-
inates the adhesion force vs. displacement curve (light
green area in Fig. 4).

(2) Adhesion with damage β decreases as the decohesion
energy w is surpassed. Damage starts to accumulate on
the adhesion bonds. Adhesion force r̃α

n = Cngα
n β2 con-

tinues to rise with gn for a while since 0 � β < 1 during
the emergence of damage, before it decreases under the
effect of the quadratic term β2, with further reduced β

(light cyan area in Fig. 4).
(3) Separation β drops to zero, indicating completely broken

adhesion bonds.

Fig. 5 Modified Coulomb rule with adhesion: evolution of tangential
adhesive forces and the level of damage versus slip

2.3.2 Modified Coulomb slip rule with adhesion

Classically, tangential problems are studied using the
Coulomb model which is characterized by a set of rate-
independent slip rules. TheoriginalCoulombmodel describes
tangential force that evolves with normal forces:

{ ‖r̄α
t ‖ ≤ μr̄α

n ∀ ‖gα
t ‖ = 0 (sticking)

r̄α
t = −μr̄α

n
gα
t‖gα
t ‖ ∀ ‖gα

t ‖ �= 0 (sliding) .
(22)

Here, with the consideration of adhesion, both tangential and
normal forces are supplemented by contributions due to inter-
face adhesion as shown in Eq. (12), the above rules become

{ ‖rα
t ‖ ≤ μrα

n ∀ ‖gα
t ‖ = 0 (sticking)

rα
t = −μ(rα

n − r̃α
n )

gα
t‖gα
t ‖ + r̃α

t ∀ ‖gα
t ‖ �= 0 (sliding) ,

(23)

in which r̃α
t , the adhesive tangential force on the contact

point α can be calculated by considering Eq. (17), and the
orthotropic adhesive stiffness parametersCt1 andCt2 defined
in Eq. (14)

r̃α
t = −Ct1gα

t1β
2 − Ct2gα

t2β
2 =

{−Ct1gα
t1β

2

−Ct2gα
t2β

2

}
. (24)

With the consideration of interface adhesion, tangential
forces are contributed by two mechanisms. The first mecha-
nism is comparable to static friction by the classical Coulomb
model. It vanishes once slip occurs. The second, arising from
the effects of interface adhesion anddefinedbyEq. (24), gives
rise to adhesive tangential force r̃α

t which emerges with sur-
face slip.

The obtained rule of tangential contact with interface
adhesion [Eqs. (23, 24)] can be graphically interpreted by
Fig. 5.

By assuming perfect adhesion (β = 1) at gt = 0, the
state of interface adhesion that evolves with gt can be dis-
tinguished, similar to the normal scenario described in the
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previous section, by three major phases: (1) fully bonded
adhesion, (2) adhesion with damage, and (3) separation.
Here, since both the slip vector gα

t and the tangential adhesion
force vector r̃α

t lie in the local plane (a1, a2), their projection
in the local system gives rise to expressions of tangential
displacement and forces according to axis a1 and a2. Fur-
thermore, in orthotropic adhesion, distinct adhesion stiffness
parameters Ct1 and Ct2 can be defined in the two principal
axes. Hence, the critical tangential forces are:

r̃ cri tt1 = −Ct1gt1β
2 and r̃cri tt2 = −Ct2gt2β

2 . (25)

The two critical forces are at the extreme points of the tan-
gential forces ellipse, given by the equation:

(r̃α
t1)

2

(Ct1β2gt )
2 + (r̃α

t2)
2

(Ct2β2gt )
2 = 1 . (26)

The ellipse intersects the x-axis atCt1β
2gt and−Ct1β

2gt . It
intersects the y-axis at Ct2β

2gt and −Ct2β
2gt . To represent

the adhesion orthotropy, any vector of adhesion force can
be indicated on the ellipse, pointing from its centre to one
point on the periphery. Then for any given slip value gt , one
distinct ellipse can be drawn, which graphically gives a conic
representation of the adhesion force by swiping gt from 0 to
+∞ as shown in Fig. 5.

2.3.3 Complete contact law with adhesion

By combining the modified Signorini law and Coulomb rule,
we obtain the complete contact lawwith the account for inter-
face adhesion as follows:

Separation : gα
n > 0, rα = r̃α

Sticking : gα
n = 0 and ‖gt‖ = 0, rα = r̄α

Sliding : gα
n = 0 and ‖gt‖ > 0, rα

n = r̄α
n

rα
t = −μr̄α

n
gα
t‖gα
t ‖

−Ct1gα
t1β

2 − Ct2gα
t2β

2,

(27)

in which r̄α
n refers to the normal contact force on point α

when surfaces are in contact. In the Sticking situation, since
no relativemotion occurs, adhesive forces are absent, contact
force vector r̄α lies in the classicalCoulombconeKμ, defined
by

Kμ =
{
r̄α ∈ R

3 | rα
n ≥ 0, ‖rα

t ‖ − μrα
n ≤ 0

}
. (28)

However, with the appearance of relative motion, either
following the normal direction (Separation case), or the tan-
gential direction (Sliding case), the contact force vector rα

exceeds the boundary of the classical Coulomb coneKμ due

to the adhesive forces r̃α . Contrary to the classical Coulomb
model for dry friction, the resultant contact force rα will not
remain on the boundary of the Coulomb Cone since the rela-
tion between ‖rα

t ‖ and rα
n is no longer linear, but subject to

variations due to evolving β, gα
t and gα

n . We cannot conclude
an explicit expression relating r to g. A unified superpotential
for adhesive contact law does not exist. However, adhesive
contact laws obeying Eq. (27) can be perfectly handled by
extending the augmented Lagrangian method to the bipoten-
tial framework [33].

2.4 Contact lawwithin the bipotential method

The classical penalty functionmethod is a commonalgorithm
for solving constrained optimization problems. However,
contact boundary conditions and friction laws represent
significant numerical difficulty, then it is tricky for the
user to choose appropriate penalty factor. The method
may become unstable with numerical oscillations when the
system approaches the state of contact. In contrary, the
Augmented Lagrangian Method is a convenient variant that
overcomes the aforementioned disadvantages of the penalty
method. The Augmented Lagrangian Method was first intro-
duced to deal with constrainedminimization problems. Since
friction problems are not aminimization problem, themethod
has been extended by Alart and Curnier [30], Simo and
Laursen [31] to suit for problems of contact and friction. Then
based on augmented Lagrangian method, the bi-potential
method has been developed to deal with contact and friction
problems using a reduced system and a predictor-corrector
Uzawa algorithm. For unilateral frictional contact, compared
to classical methods that requires resolution of twominimum
problems or variational inequalities: the first for unilateral
contact and the second for friction, the bi-potential reso-
lution unifies unilateral contact and friction, thus requires
one single, unique inequality. From the perspective of con-
tact geometry relations, the bi-potential algorithm can be
attributed to the category of “node-to-segment” (NTS) con-
tact algorithms. Comparative algorithms include sequential
multi-passNTS approaches, andmore recently, the improved
virtual-slave-node-to-segment (VTS) approach [40], which
guarantees accurate assessment of contact interface pressure
requiring only a single-pass scheme. Comparison of the pre-
sented bi-potential method with other contact algorithms is
provided in “Appendix” section.

Here, the bipotential fuction and inequality of contact law
is as follows:

bc
( − gα, rα

) =
⋃

�−

( − gα
n

) +
⋃

Kμ

(
rα

) + μrα
n || − gα

t ||

(29)
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bc
( − gα, r′α) − bc

( − gα, rα
) ≥ −gα · (

r′α − rα
)
,∀ r′α ∈ Kμ ,

(30)

where
⋃

is indicator function.�− andKμ represent respec-
tively the negative real numbers and Coulomb cone.

The indicator functions become null when the variables
−gα and rα comply with the restraining conditions.

We multiply both sides of the inequality (30) a parame-
ter ρ, which is used to ensure numerical convergence, and
substitute (29) into (30):

ρμ
(
r ′α
n − rα

n

)|| − gα
t || + [

rα − (
rα − ρgα

)] · (
r′α − rα

) ≥ 0 .

(31)

Taking into account the decomposition g = gt + gnn, the
following inequality has to be satisfied:

(
rα − r∗α

) · (
r′α − rα

) ≥ 0, ∀ r′α ∈ Kμ , (32)

where the modified augmented contact force r∗α is defined
by:

r∗α = rα − ρ
(
g + μ|| − gα

t ||n)
, (33)

rα is the projection of r∗α onto the closed convex Coulomb
cone:

rα = Proj
(
r∗α,Kμ

)
. (34)

According to the three different contact states, the projection
procedure becomes:

if μ||r∗α
t || < −r∗α

n then rα = 0 separating
elseif ||r∗α

t || ≤ μr∗α
n then rα = r∗α sticking

else rα = rα∗ −
( ||rα∗

t ||−μrα∗
n

1+μ2

) (
rα∗
t

||rα∗
t || + μn

)
sliding.

(35)

2.5 Blatz-Ko hyperelastic model for soft materials

Blatz-Ko hyperelastic model [49] is widely used to describe
behaviours of compressible foam type softmaterials. In prac-
tical situations, such materials undergo large deformations.
To deal with the geometrical transformationwith large defor-
mation, we use the deformation gradient tensor F for the soft
bodies in contact:

F = I + ∇u, (36)

where I is the unity tensor and u the displacement vector. The
right Cauchy-Green deformation tensor C is defined as C =
FTF, and the Green-Lagrange strain tensorE = 1

2 (C−I). In

the case of hyperelastic law, there exists a strain energy den-
sity functionW which is a scale function of one of the strain
tensors, whose derivative with respect to a strain component
determines the corresponding stress component. This can be
expressed by

S = 2
∂W

∂C
, (37)

where S is the second Piola-Kirchhoff stress tensor. In the
particular case of isotropic hyperelasticity [50], Eq. (37) can
be written by

S = 2

[
I3

∂W

∂ I3
C−1 +

(
∂W

∂ I1
+ I1

∂W

∂ I2

)
I − ∂W

∂ I2
C

]
, (38)

where Ii denotes the three invariants of the right Cauchy-
Green deformation tensor C:

I1 = Cii ; I2 = (I21 − Ci jCi j )/2; I3 = det(C). (39)

The Blatz-Ko strain energy density function is given as fol-
lows:

W = G

2

(
I2
I3

+ 2
√
I3 − 5

)
, (40)

whereG is the shear modulus. By deriving the energy density
(40) with respect to the three invariants, we obtain

∂W

∂ I1
= 0; ∂W

∂ I2
= G

2I3
; ∂W

∂ I3
= G

2

(

− I2
I 23

+ 1√
I3

)

. (41)

Reporting the result in the second Piola-Kirchhoff stress ten-
sor (38) gives

S = G
(
JC−1 − C−2

)
, (42)

where J = det(F). The Cauchy stress tensor σ is calculated
from the second Piola-Kirchhoff stress tensor as follows:

σ = 1

J
FSFT . (43)

3 Numerical implementation

3.1 Finite element formulation of the nonlinear
problem

Since contact between soft bodies involves treatment of
nonlinear kinematic relations and hyperelastic constitutive
models (Sect. 2.5), we formulate the nonlinear finite element
problem within the framework of large deformations. In this
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work, we use Green-Lagrange strain tensor E which com-
prises both linear and nonlinear terms, as function of nodal
displacements u:

E =
(
BL + 1

2
BNL(u)

)
u, (44)

whereBL is the matrix relating the linear strain term to nodal
displacements, and BNL(u), relates the nonlinear strain term
to nodal displacements. From Eq. (44), the incremental form
of the strain-displacement relationship can be written as:

δE = (
BL + BNL(u)

)
δu. (45)

Using the principle of virtual displacement, we can write the
virtual work δU of the problem as:

δU = δuTMü + δuTAu̇

+
∫

V0
δETS dV − δuTFext − δuTR = 0, (46)

where the second Piola–Kirchhoff stress tensor S, in the case
of Blatz-Ko material model is given in Sect. 2.5 by Eq. (42).
The vector of contact reaction force R is expressed in the
global coordinate system. It is obtained by considering Eqs.
(11, 12) and includes in particular contributions due to adhe-
sion:

R = HT (r̄ + r̃), (47)

with r̄ and r̃ determined according to the contact and friction
rules given in Sect. 2.3. Other notations in Eq. (46) include
V0, volume of the initial configuration; Fext , vector of exter-
nal loads; M, mass matrix; A, damping matrix; u̇, vector of
velocity, and ü, vector of acceleration. Substituting δE from
Eq. (45) into Eq. (46) results in

δU = δuTMü + δuTAu̇ + δuT
∫

V0

(
BL + BNL (u)

)T S dV

−δuTFext − δuTR = 0. (48)

We can identify in Eq. (48) the vector of internal force:

Fint =
∫

V0

(
BL + BNL(u)

)TSdV . (49)

Since δu is arbitrary, a set of nonlinear equations can be
obtained as

Mü + Au̇ + Fint − Fext − R = 0. (50)

It is noted that the stiffness effect is taken into account by the
internal force vector Fint . Eq. (50) can be transformed into

Mü = F + R, where F = Fext − Fint − Au̇, (51)

with the initial conditions at t = 0

u̇ = u̇0 and u = u0. (52)

Taking the derivative of Fint with respect to the nodal dis-
placements u gives the tangent stiffness matrix as

K = ∂Fint
∂u

=
∫

V0

[(
BL + BNL (u)

)T ∂S
∂u

+ ∂BT
NL (u)

∂u
S
]
dV .

(53)

In addition, by considering Eqs. (45, 42), the tangent stiffness
matrix can bewritten as the sum of the elastic stiffnessmatrix
Ke, the geometric stiffness (or initial stress stiffness) matrix
Kσ and the initial displacement stiffness matrix Ku :

K = Ke + Kσ + Ku, (54)

with

Ke =
∫

V0
BT
LDBL dV

Kσ =
∫

V0

∂BT
NL

∂u
S dV

Ku =
∫

V0

(
BT
LDBNL + BT

NLDBL + BT
NLDBNL

)
dV .

(55)

3.2 Numerical integration algorithm

Nowwe need to integrate Eq. (51) between consecutive time
configuration t and t + �t . The Newmark method is the
most common method which is based on a second order
algorithm. However, higher order approximation does not
necessarily mean better accuracy and may even be redundant
in impact problems. When the contact conditions suddenly
change (impact, release of contact), the velocity and acceler-
ation are not continuous, and excessive regularity constraints
may lead to serious errors. For this reason, Jean [51] has pro-
posed a first order algorithm which is used in this work, Eq.
(51) can be transformed into:

M du̇ = F dt + R dt . (56)

This algorithm is based on the following approximations:

∫ t+�t

t
M du̇ = M

(
u̇t+�t − u̇t

)
(57)

∫ t+�t

t
F dt = �t

(
(1 − ξ)Ft + ξ Ft+�t) (58)

∫ t+�t

t
R dt = �t Rt+�t (59)
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ut+�t − ut = �t
[
(1 − θ) u̇t + θ u̇t+�t ] , (60)

where 0 ≤ ξ ≤ 1; 0 ≤ θ ≤ 1. In the iterative solution
procedure, all the values at time t + �t are replaced by the
values of the current iteration i + 1; for example, Ft+�t =
Fi+1. A standard approximation of Fi+1 gives

Fi+1 = Fi
int + ∂F

∂u
(ui+1 − ui ) + ∂F

∂u̇
(u̇i+1 − u̇i )

= Fi
int − Ki �u − Ai �u̇ . (61)

Finally, we obtain the recursive form of (56) in terms of
displacements:

K̄i �u = F̄i + F̄i
acc + Ri+1

ui+1 = ui + �u ,
(62)

where the so-called effective terms are given by

K̄i = ξ Ki + ξ

θ �t
Ai + 1

θ �t2
Mi (63)

F̄i
acc = − 1

θ�t2
Mi

(
ui − ut − �t u̇t

)
(64)

F̄i = (1 − ξ)
(
Ft
int + Ft

ext

) + ξ
(
Fi
int + Ft+�t

ext

)
. (65)

At the end of each time step, the velocity is updated by

u̇t+�t =
(
1 − 1

θ

)
u̇t + 1

θ �t

(
ut+�t − ut

)
. (66)

By setting θ = 1
2 , this scheme is then called the implicit

trapezoidal rule and it is equivalent to the Tamma–Namburu
method in which the acceleration need not be computed [52].

It is noted that Eq. (62) is strongly non-linear, because of
large rotations and large displacements of solid, for instance
in multibody contact/impact problems. Besides, as men-
tioned above, the constitutive law of contact with friction is
usually represented by inequalities and the contact potential
is even non differentiable. Instead of solving this equation
in consideration of all nonlinearities at the same time, Feng
[53] has proposed a solution strategy which consists in sepa-
rating the nonlinearities in order to overcome the complexity
of calculation and to improve the numerical stability. As �u
and R are both unknown, Eq. (62) cannot be directly solved.
First, the vector R is determined by the bi-potential method
and the adhesive model in a reduced system, which only con-
cerns contact nodes. Then, the vector �u can be computed
in the whole structure, using adhesive contact reactions as
external loading.

The iterative solution procedure involving contact model-
ing is written as Fig. 6.

Fig. 6 The iterative solution procedure

4 Numerical results

The algorithm presented above has been implemented within
the in-house finite element code FER/Contact. In this sec-
tion, three numerical examples based on contact simulations
are presented to show orthotropic behaviours of the adhesive
contact interface.

4.1 Orthotropic adhesion under compression

In this first example, we investigate the orthotropic interface
adhesion of a hyperelastic soft body submitted to compres-
sive load against a rigid surface. As shown in Fig. 7, a vertical
displacement is constantly prescribed on the upper surface
of the soft body, pressing it against a fixed, rigid plate. The
test scenario allows observing consecutively two phenom-
ena: first, the bonding process on the adhesive interface that
takes place when contact is set up, then, initiation of the
de-bonding process on the contact interface where sliding
occurs due to compression induced section expansion of the
soft body. We investigate how the de-bonding area evolves
with the compressive load, and how the evolution is affected
by the interface adhesion orthotropy. Characteristics of the
system are described in the following. The soft body is 6mm
high with a square section of 10 × 10 mm. It is modelled
by Blatz-Ko hyperelastic material with a shear modulus of
G = 2.1×105 MPa. Adhesive interface parameters are:w =
100 Jm−2,Ctx = 1×1011 Nm−3,Cty = 1×1010 Nm−3 and
b = 0.1 N sm−1. Therefore, interface adhesive behaviour is
orthotropic, with adhesive stiffness along x direction signif-
icantly stronger than that along y direction. We suppose that
the system does not involve initial adhesion on the interface
(adhesion strength parameter β = 0 at time 0).

As soon as the twobodies are in contact, adhesive bonds on
the contact interface begin to form. Figure 8 depicts evolution
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Fig. 7 Orthotropic adhesion of a soft body under compression on a
rigid surface

of the adhesion strength parameter β, calculated on 6 nodes
on the contact interface, along the diagonal from the centre
to the periphery. At time = 0.0015 s, β increases to 1.0,
indicating the achievement of complete bonding (Zone 1 in
Fig. 8) of the adhesive interface. In Zone 2, as we continue to
apply compression on the soft body, its section increases due
to incompressible volume. The section expansion produces
tangential interface effects involving shear stresses, which
tend to weaken the interface adhesion. However, since the
adhesives bonds are undamaged on this stage (β = 1.0), the
soft body and the rigid surface remain stuck together, and we
do not observe effective sliding on the contact interface. As
the load increases, the effect of adhesion damages becomes
noticeable starting from t = 0.011 s, which corresponds to
Zone 3 in Fig. 8. On this stage, tangential effects have been
sufficiently accumulated, leading to initiation of damages to
the adhesive bonds. As a result, β significantly decreases,
especially on remote nodes with respect to the centre, on
which β falls back to 0, indicating rupture of the adhesive
bonds. We also find contours of β plotted on the contact
surface in Fig. 8, where the effect of adhesion orthotropy can
be distinguished. Since the adhesion stiffness in x axis Ctx

is 10 times stronger than in y axis, significant resistance to
interface sliding can be expected in x axis. Therefore, rupture
of the adhesive bonds first appears on the upper and lower
peripheries of the contact interface, and gradually propagates
towards the centre area.Meanwhile, peripheral areas near the
left and right edges remain adhered due to stronger adhesion
stiffness Ctx in x axis.

Similar effects of adhesion orthotropy can be observed in
Fig. 9, which shows the distribution of the Euclidean norm of
tangential adhesive forces on the contact surface and its evo-
lution with time.We note that within areas where de-bonding
is initiated, particularly near the upper and lower edges, the
adhesion forces decrease quickly to zero. On the contrary, we
observe important adhesion forces in areas near the left and
right edges since the adhesion orthotropy results in stronger

(a)

(b)

Fig. 8 Orthotropic adhesion under compression: a Evolution of β cal-
culated on 6 nodes on the contact interface, along the diagonal from the
centre to the periphery. b Evolution of β on the contact interface and
variation in the shape of the contact surface in debonding process. In
each square area, the colour progresses from dark red to blue, which
represents the damage of the adhesive strength β from perfect adhesion
(β = 1) to complete separation (β = 0). (Color figure online)

resistance to sliding motions along the x axis. In conformity
with the contours of β given in Fig. 8, distribution of the
adhesion forces in Fig. 9 reflects identical effects of adhe-
sion orthotropy, demonstrating better resistance to tangential
interface effects in x axis compared to y axis.

4.2 Orthotropic adhesion in shear sliding

We investigate in this example behaviours of orthotropic
adhesion in a test scenario involving shear sliding along vary-
ing orientations. Similar experimental setup which demon-
strates microstructure based orthotropic adhesion has been
explored in [54]. Here, we model the interface adhesion
orthotropy by considering distinctive tangential adhesive
stiffnesses Ctx and Cty , in x and y axis. The tested sys-
tem is composed of an elastomer cylinder that slides on a
rigid surface under tangential load, which is oriented along
varying orientations on each test. As shown in Fig. 10,
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Fig. 9 Orthotropic adhesion under compression: Distribution of the

Euclidean norm of tangential adhesive forces
∥
∥
∥R̃t

∥
∥
∥ on the contact sur-

face and its evolutionwith time in the debonding process. In each square
area, the colour progresses from dark red to blue, which represents the
variation of the Euclidean norm of tangential adhesion from maximum
to zero. (Color figure online)

the elastomer cylinder is 2 mm high, and has a radius of
5 mm. The elastomer is modelled by Blatz-Ko material with
shear modulus G = 2.1 × 105 MPa. The adhesive interface
parameters are: w = 100 Jm−2, Ctx = 5 × 109 Nm−3,
Cty = 1×1010 Nm−3 and b = 0.1 N sm−1. The simulation
scenario involves 2 stages. On the first stage, we prescribe a
slight compression on the elastomer by descending its upper
surface by 0.1 mm after contact. The compression activates
the bonding process which leads to complete bonding on the
adhesive interface. On the second stage, a lateral motion at
the velocity of 0.1 m/s is applied on the cylinder’s upper
surface. Under the tangential effect on the contact interface,
de-bonding is initiated and progresses until the rupture of
adhesive bonds, which allows the cylinder to slide on the
support surface. A group of 10 tests have been performed.
On each test, we align the lateral motion to a new direction
whose angle with respect to x axis, θ , increases from 0◦ to
90◦ by increments of 10◦.

Figure 11 presents the evolution of adhesion parameters
calculated on the centre node that belongs to the contact
surface of the elastomer cylinder, for the 10 calculations per-
formed with θ ranging from 0◦ to 90◦. Positions of the centre
node at the moment of adhesion rupture are reported in Fig.
11a. Blue circles represent results based on orthotropic adhe-
sion properties with Ctx = 0.5Cty . Red circles are obtained
considering the assumption of isotropic adhesion. For the
isotropic cases, all the red circles are arranged at the same
distance from the initial position, which conforms to expec-
tations since the problem becomes perfectly symmetric with
isotropic interface properties. For the cases with orthotropic
interface adhesion, directions presenting stronger adhesive

stiffness lead to increased resistance to sliding.Consequently,
distance travelled by the centre node before de-bonding is the
lowest in the case of 90◦ sliding (along y axis), and highest
in the 0◦ case (along x axis). Intermediate cases can be con-
sidered based on adhesion whose stiffness results from the
combination of Ctx and Cty . Norms of the maximum adhe-
sion forces ||R̃max

t || at the onset of de-bonding initiation for
the 10 test cases are reported in Fig. 11b. Here, Monotonous
trend can be observed for the adhesion forces as function
of the sliding orientation angle θ . This observation is within
our expectations because as the sliding motion approaches y
axis, adhesion force increases sinceCty is significantly higher
compared to Ctx . We underline 4 of the tested cases, corre-
sponding to sliding angles θ = 0◦, 30◦, 60◦ and 90◦, and
we report for the underlined cases evolutions of the adhesion
damage parameter β (Fig. 11c) and adhesion forces ||R̃t ||
(Fig. 11d) for a complete load cycle involving bonding and
de-bonding. In Fig. 11c, we note indistinguishable time his-
tory of β during the stage of adhesion bonding. However,
initiation of de-bonding does not take place simultaneously
for all the cases. It arises first in the case of sliding along x
axis, in which direction the adhesion stiffness is the lowest.
For the same reason, this scenario also exhibits the low-
est adhesion force at the onset of de-bonding process (blue
curve in Fig. 11d). Comparatively, with the sliding direction
approaching y axis, stronger adhesion stiffness is involved.
We observe accordingly retarded initiation of de-bonding,
accompanied by increased adhesion forces (red, yellow and
purple curves in Fig. 11d).

4.3 Orthotropic adhesive twisting

In this example, we investigate the evolution of interface
behaviours of a 3D twist tribosystem (Fig. 12) by consid-
ering both isotropic and orthotropic adhesions. The system
is composed of an elastomer block that slides on a rigid
surface under twisting load. The elastomer block is 3 mm
high, and has a 10× 10 mm square section. For the isotropic
case, the tangential adhesive stiffness Ct = 1×1010 Nm−3,
and for the orthotropic case Ctx = 5 × 1010 Nm−3, Cty =
1×1010 Nm−3. The other adhesive interface parameters are:
w = 100 Jm−2, b = 0.1 N sm−1. The simulation scenario
involves 2 stages. On the first stage, we slightly compress the
elastomer by lowering its upper surface by 0.1 mm. Then, on
the second stage, a twisting motion is applied to the upper
surface at a rate of 20 rad/s, driving the compressed elas-
tomer block to twist clockwise. Blatz-Ko material is used to
model the elastomer. To prevent excessive shear deformation
of the elastomer body during the twist, we apply a significant
shear modulus G = 2.1 × 105 MPa.

We begin by investigating the effect of interface adhesion
by comparing cases with and without the interface adhesion
orthotropy. Figures 13 and 14 compare respectively the evo-
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Fig. 10 Orthotropic adhesion in
shear sliding: Problem setup and
loading sequence (Step 1,
compression and adhesion
process; Step 2, sliding and
de-bonding process), where θ

represents angle between sliding
direction and x axis

Fig. 11 Orthotropic adhesion in
shear sliding: a Final positions
of center contact point in
isotropic/orthotropic cases with
sliding angle θ = 0◦ to 90◦
respectively. b Maximum
tangential adhesion norms
||R̃max

t || of center contact point
with sliding angle θ = 0◦ to 90◦
respectively. c β evolutions of
center contact point with 4
different θ (0◦, 30◦, 60◦, 90◦). d
Tangential adhesion force
evolutions of center contact
point with 4 different θ

(a) (b)

(c) (d)

lution of adhesion damage parameter β, and the tangential

adhesion forces
∥∥∥R̃t

∥∥∥, between the isotropic and orthotropic
cases during the twisting process. For each group of compar-
ison, 5 frames of result are extracted in chronological order to
represent the evolving twist process. This allows us to high-
light for each time instant, differences between the isotropic

and orthotropic cases in terms of β and
∥∥∥R̃t

∥∥∥ distributions. In

Fig. 13, we use dark red colour to indicate complete bonding
of the interface adhesives. As we apply twist kinematics to
the elastomer body, tangential interface effects start to appear
on the contact interface. They become first noticeable on the
outskirts of the contact area where interface sliding is most
significant. Damage to the adhesive bonds is thus initiated
with decreasingβ emerging at the corners of the contact inter-
face, where also the first de-bonded area is observed. Then
with the increasing load, de-bonding propagates from the
outskirt area towards the centre, whereas the bonded region

gradually shrinks until complete disappearance. During the
process, the bonded region appears within a round area in
the isotropic case. However, when adhesion orthotropy is
involved, since stronger resistance to de-bonding is encoun-
tered in the x axis where tangential adhesive stiffness is more
significant, delayed de-bonding is observed following the x
axis, leading to an elliptical bonded region.

We also investigate the evolution of tangential forces
on the same setup. In Fig. 14, Euclidean norms of tan-
gential forces are depicted, allowing us to observe the
evolving intensity of tangential forces on the contact inter-
face. Chronologically, at the beginning of load, tangential
forces are most significant on the outskirts of the contact area
since linear velocity is higher. This is also where de-bonding
is initiated and propagates towards the centre. Consequently,
the peak of tangential forces appears in the form of an evolv-
ing circular band, whose radius decreases with the twist load,
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Fig. 12 Comparison between isotropic and orthotropic adhesive twist-
ing: Problem setup and loading sequence (Step 1, compression and
adhesion process; Step 2, twisting and de-bonding process)

Fig. 13 Comparison between isotropic and orthotropic adhesive twist-
ing: Evolution of the adhesion intensity β in isotropic case and
orthotropic case during the debonding process and their shape variation
of the contact surface. In each square area, the colour progresses from
dark red to blue, which represents the damage of the adhesive strength β

from perfect adhesion (β = 1) to complete separation (β = 0). (Color
figure online)

Fig. 14 Comparison between isotropic and orthotropic adhesive twist-

ing: Evolution of tangential adhesion forces
∥∥
∥R̃t

∥∥
∥ in two cases during

the debonding process. In each square area, the colour progresses from
dark red to blue, which represents the variation of the Euclidean norm
of tangential adhesion from maximum to zero. (Color figure online)

until gradually disappears in the centre of rotation, leading
to complete de-bonding of the interface adhesives. In the
case of orthotropic adhesion, the circular band appears in the
form of an ellipse since stronger tangential adhesive stiffness
is involved in x axis, following which de-bonding requires
more efforts. This observation is in accordance with the evo-
lution of β during the simulation.

5 Conclusions

In this work, we proposed an orthotropic adhesion model to
dealwith problemsof adhesive contactwith orthotropic inter-
face properties between hyperelastic bodies. This model has
been implemented within the bi-potential method, based on
a set of extended unilateral and tangential contact laws. The
behaviour of orthotropic adhesion is described by adhesion
stiffness, whose components can be expressed according to
the local coordinate system. In this model, the strength of
interface adhesive bonds and the effect of interfacial dam-
age are characterized by a scalar parameter β, therefore
an entire bonding and debonding process of the adhesive
links with the account for orthotropic interface effects can be
modelled. The proposed approach has been tested on cases
involving both tangential and unilateral contact kinematics,
which allowed emergence of orthotropic interface effects
between soft bodies. Owing to the straightforward descrip-
tion of the contact rules, the presented approach can be easily
implemented. Therefore, immediate implementation of this
orthotropic adhesion model within a third-party software can
be suggested for direct application on real problems.

Appendix

To solve the orthotropic adhesive interface law between
hyperelastic bodies, a contact algorithmbased on bi-potential
theory is used. This algorithm, according to its description
of contact kinematics, can be attributed to the category of
“node-to-segment” approaches and, with regard to the reso-
lution technique that enforces the contact geometry, belongs
to the class of augmented Lagrangian methods. Let us refer
to the present contact algorithm with “NTS-AL” (mean-
ing “node-to-segment” contact using augmented Lagrangian
resolution), and compare it with other established contact
algorithms using alternative schemes of contact kinematics
and resolution. In this regard, we consider thewidely adopted
contact patch test introduced by Taylor and Papodopoulos
[55] and compare our results with those reported in [40].
The contact patch test investigates the capacity of a contact
algorithm to correctly evaluate the normal contact stresses
on contact interface, regardless of its discretization.

As depicted in Fig. 15a, the test case under consideration
consists of two surfaces discretized with non-conforming
meshes put into normal contact. A homogeneous pressure
is prescribed on the upper side of elements that define the
slave surface. We investigate both the geometrical configu-
ration of the contact surfaces (see Fig. 15b–f), and the normal
pressure distribution on the contact interface (see Fig. 16).

As has been extensively studied by Zavarise et al. [40]
and recalled in Fig. 16, classical NTS contact algorithms,
especially those using one-pass approaches introduce signif-
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(a) (b)

(c) (d)

(e) (f)

Fig. 15 Magnified contact interface configuration with and with-
out surface penetration: comparison of the present contact algorithm
(“NTS-AL”) to other algorithms based on results reported in [40].
Here, “NTS” refers to “node-to-segment” contact; “AR” to the tech-
nique of area regularization; “ME” to moment equilibrium; “AL” to
augmented Lagrangian and “VTS” to the “ Virtual-slave-node-To-
Segment” approach

Fig. 16 Contact patch test: comparison of several contact algorithms
regarding the interface normal stresses. “NTS” refers to “node-to-
segment” contact; “AR” to the technique of area regularization; “ME” to
moment equilibrium; “AL” to augmentedLagrangian and “VTS” to the “
Virtual-slave-node-To-Segment” approach. The comparison highlights
our result (“NTS-AL”) among existing established methods, based on
results reported in [40]

icant errors to contact stresses evaluation on non-conforming
meshes. To obtain acceptable behaviours using classical NTS
description, it is necessary to implement two-pass sequential
schemes in conjunction with Lagrangian multiplier method,
or, develop improvedone-pass schemes, for example theVTS
(“virtual-node-to-segment”) method. VTS method extends
the classical NTS approach by considering additional virtual
slave nodes on the slave surface, leading to augmented slave
segments.

In Figs. 15b–f and 16, we confront the presented NTS-AL
approach to existing methods, which include one- or two-

pass classical NTS approaches with or without contact area
regularization (“AR”), and the improved VTS method pro-
posed by the work of Zavarise et al. We observed satisfactory
contact geometry in Fig. 15f and the same level of accu-
racy as VTS method in Fig. 16 which confirm the capacity
of augmented Lagrangian methods in enforcing geometrical
relations of contact surfaces and improving the computa-
tional accuracy.
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