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Abstract
This study presents the formulation of the variable-order continuum mechanics theory and its application to the analysis
of nonlocal heterogeneous solids. The variable-order continuum theory enables a unique approach to model the response
of solids exhibiting position-dependent nonlocal behavior. The formulation also guarantees frame-invariance provided that
proper constraints on the functional definition of the variable-order are imposed. The study also presents a deep learning
approach to identify the variable-order distribution describing the behavior of the medium. This methodology presents a
very promising route for the practical application of the variable-order theory to real-world problems, especially when the
microstructure is not known a priori and must be inferred from the physical response of the medium. The capabilities of
the variable-order theory are illustrated by numerically simulating the static response of nonlocal beams having either a
porous or a functionally graded core. The reduced-order variable fractional model shows excellent accuracy and significant
computational efficiency when compared with a reference solution produced by a 3D finite element model that fully resolves
the beam geometry.

Keywords Variable-order fractional calculus · Nonlocal elasticity · Deep learning · Porous structures · Functionally graded
structures

1 Introduction

In recent years, fractional calculus has emerged as a power-
ful mathematical tool to model a variety of complex physical
phenomena. Fractional-order operators allow for differen-
tiating and integrating a function to any real or complex
order, are intrinsically multiscale, and provide a natural way
to account for several complex physical mechanisms in the
analysis of continua such as, for example, nonlocal effects,
mediumheterogeneity, andmemory effects. These character-
istics of fractional operators have led to a surge of interest in
fractional calculus and its application to the simulationof sev-
eral physical problems. Some of the areas that have seen the
largest number of applications includemodel-order reduction
[1,2], formulation of constitutive equations for viscoelastic

B Fabio Semperlotti
fsemperl@purdue.edu

Mehdi Jokar
mjokar@purdue.edu

1 School of Mechanical Engineering, Ray W. Herrick
Laboratories, Purdue University, West Lafayette, IN 47907,
USA

materials [3,4], modeling of anomalous and hybrid transport
in complex materials [5–10], modeling of nonlocal elasticity
and size-dependent effects [10–19], and homogenization of
heterogeneous structures [2,10,20]. These applications have
highlighted the ability of fractional calculus to capture and
accurately model the response of advanced materials. The
interested reader can find a detailed review focusing on the
application of fractional calculus to the characterization and
modeling of complex materials in [21].

The modeling of nonlocal and heterogeneous media is
one of the areas that has seen a significant acceleration in the
use of fractional-order operators. Several researchers have
demonstrated the advantages of using space-fractional con-
tinuum formulations in the modeling of nonlocal elasticity
[11–14] aswell as the homogenization of heterogenous struc-
tures [2,10,20]. In the context of nonlocal elasticity, fractional
calculus has enabled the formulation of self-adjoint, positive-
definite andwell-posed formulations enabling consistent pre-
dictions free fromboundary effects [11,12]. This latter aspect
contrasts with classical integral approaches to nonlocal elas-
ticity where it is not always possible to achieve a self-adjoint
formulation and additional constitutive boundary conditions
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are essential to ensure a well-posed form of the governing
equations [22,23]. More recently, fractional calculus has also
been used to combine selected characteristics of nonlocal
elasticity, typical of classical integral and gradient formu-
lations. The resulting formulation captures both stiffening
and softening effects in a unified and stable manner, free
from boundary effects [24]. Finally, space-fractional opera-
tors have been used to develop homogenization approaches
capable of modeling the dynamic behavior of periodic struc-
tures beyond the classical long-wavelength limit, and hence
capable of capturing the occurrence of frequency band-gaps
[20].

All the above mentioned applications have typically
used constant-order (CO) fractional models. Although the
constant-order fractional calculus (CO-FC) formalism is
capable of capturing several important physical mechanisms,
it does not apply to those classes of physical phenomena
whose order is variable and function of other physical param-
eters. An example of a system that is well described by
variable-order (VO) operators consists in the reaction kinet-
ics of proteins. This process was shown to exhibit relaxation
mechanisms that are properly described by a temperature-
dependent fractional-order [25]. Another relevant example,
includes the response of amorphous and viscoelastic materi-
als where it has been shown that the stress-strain constitutive
relation exhibits a fractional-order behaviour that could be
described accurately by using either a strain-dependent or
a time-dependent variable fractional-order [26–28]. These
examples represent a small subset of themany different phys-
ical phenomena that are characterized by evolving properties
and that can be described efficiently by VO fractional oper-
ators.

Variable-order operators can be seen as a natural extension
of CO operators and were defined by Samko et al. in 1993
[29]. In VO operators, the order can vary either as a func-
tion of dependent or independent variables of integration or
differentiation such as, time, space, or even of external vari-
ables (e.g. temperature or external forcing conditions). As the
variable-order fractional calculus (VO-FC) formalism allows
updating the system’s order depending on either its instan-
taneous or historical response, the corresponding model can
evolve seamlessly to describe widely dissimilar dynamics
without the need to modify the structure of the underlying
governing equations. Thus, a very significant feature of VO-
based physical models consists in their evolutionary nature,
which can play a critical role in the simulation of nonlin-
ear systems [30–32]. In recent years, many applications of
VO-FC to practical real-world problems have been explored
including, but not limited to, the response of nonlinear oscil-
lators with spatially varying constitutive law for damping
[31,32], complex nonlinear dynamics [31–34], andmodeling
of anomalous diffusion in complex structures with spatially
and temporally varying properties [35,36]. The interested

reader can find a comprehensive review of applications in
[37].

In the context of material modeling, several researchers
have leveraged the evolutionary property of VO operators
to model a variety of physical phenomena such as struc-
tural damage [38,39], viscoelasticity [26–28], and creep [40].
All of the above mentioned studies have focused on the use
of time-fractional VO operators to model different prob-
lems. A thorough review of the literature suggests that the
development of space-fractional VO continuum mechanics
formulations and their use for material modeling is still lack-
ing. Recall that one of the most significant application of
space-fractional operators is the modeling of nonlocal elas-
tic behavior. Building on the rapid progress made in the
modeling of nonlocal elasticity via CO fractional operators
[10–16], we explore in detail the additional modeling capa-
bilities enabled by the application of VO fractional operators.

1.1 Major contributions of the study

Broadly speaking, the present study provides fourmajor con-
tributions. The primary contribution consists in the develop-
ment of a variable-order space-fractional continuum model
capable of capturing heterogeneous nonlocality. The model
builds and extends from its CO counterpart presented in
[10]. Important aspects such as the acceptable functional
variations of the VO are analyzed from the perspective of
frame-invariance. We show that, the use of VO operators
with no order-memory ensures frame-invariance uncondi-
tionally, while the use of weak order-memory and strong
order-memory, more likely, renders the formulation non
frame-invariant. We merely note that, the use of weak order-
memory operators, particularly in dynamic systems, could
lead to a nonphysical ramping up or accumulation of the
system energy [30]. Further, we discuss the physical signifi-
cance of the spatially varying order and relate it to the varying
strength of long-range interactions in a nonlocal solid.

The second contribution of this study consists in using
the VO space-fractional continuum model to develop a VO
analogue of the Euler-Bernoulli beam theory. The VO gov-
erning equations for the nonlocal beam are derived in a strong
form using variational principles. More specifically, the gov-
erning equations are derived by minimization of the total
potential energy of the beam. Additionally, we show that the
VO modeling of the nonlocal beam results in a self-adjoint
system with a quadratic potential energy, irrespective of the
boundary conditions. Consequently, the VO governing equa-
tions are well-posed and admit a unique solution, free from
boundary effects. This result is in sharp contrast with classi-
cal integral nonlocal methods where it is not always possible
to achieve a well-posed formulation with quadratic potential
energy density.
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The third contribution of this work consists in the devel-
opment of a deep learning based methodology to identify
the spatial distribution of VO from the measured response
of the system. This approach is possible due to the well-
posed nature of the VO approach; a specific characteristic
of the fractional-order kinematic approach to nonlocality
[11]. We show that bidirectional recurrent neural networks
(BRNN) [41] provide an excellent basis to compute the vari-
able fractional-order starting from the deformation field of
the nonlocal beam. This approach leverages the computa-
tional efficiency of the trained neural network to overcome
the computational cost typical of identification approaches
that rely on iterative optimization algorithms and cumber-
some numerical simulations [42,43]. Among the various
neural network architectures, BRNNs were selected due to
their internal structure whichmakes them suitable for bound-
ary value problems. More specifically, a BRNN consists of
two sets of recurrent neural networks (RNN) that process the
sequential input in opposite directions and where each RNN
is capable of learning a sequential behavior corresponding
to an independent variable [44,45]. Hence, the BRNN out-
put accounts for the information from past (backward) and
future (forward) input states simultaneously, which is con-
sistent with the spatial and nonlocal nature of the problem
considered in this study. We will discuss this aspect in detail
in Sect. 4.2.

In regards to the above discussion,we note that researchers
have employed physics informed neural networks [46], that
are deep, fully connected, and feed forward networks, to
solve the inverse problem consisting in the determination of
the order characterising turbulent flows [47,48]. While this
solution technique achieves a high accuracy without requir-
ing a large training set, the price to pay is the computational
cost of training a network for every problem the network is
requested to solve. On the contrary, we will show that the our
proposedmethod can accurately solve problemswithVOpat-
terns inconsistent with the training data, that is the patterns
have never been presented to the network during the training
phase. Further, we also demonstrate the ability of the pro-
posed network to predict closely the trends in the VO, even
in the presence of noise in the measured response. Both the
aforementioned aspects demonstrate that BRNNs are highly
capable of learning the static response of the beam and are
generalized enough to solve similar complex and spatially
varying nonlocal inverse problems (both in theoretical and
in real-world settings).

The final major contribution of this work consists in
showing the practical advantages of the VO space-fractional
approach over classical integer-order (IO) approaches. Spe-
cific examples of significant practical relevance involves the
static structural response of either porous or functionally
graded beams. For the case of porous beams, we compare
the predictions obtained via the VO approach with either

the solution of a high fidelity 3D finite element model
(obtained via COMSOL Multiphysics) or of a traditional
integer-order (IO) beam model. For the case of functionally
graded beams, the predictions of the VO approach are only
compared with those of the finite element model. Indeed,
theoretical inconsistencies in existing IO approaches for
functionally graded beams prevent them to be used for com-
parison [11,49]. Results demonstrate that the VO approach
achieves superior accuracy when compared with classical IO
approaches, and significant computational efficiency when
compared with 3D finite element approaches.

1.2 Broader relevance of the study

The evolutionary nature of VO operators has drastically
expanded the range of opportunities to apply FC to material
modeling, particularly in those cases where the underly-
ing physical response of the material evolves significantly
in time, space, or as a function of an external stimulus.
Experiments have shown that properties of polymers, duc-
tile metals, and rocks evolve across strain hardening and
softening regimes depending on their internal microstruc-
ture and applied strain rates. In a series of papers, Meng et
al. [26,27] have shown that VO models can accurately cap-
ture these transitions in the response of polymers and metals.
VO-FC has also been used in the modeling of creep in rocks
[40], response of viscoelastic materials [28] and dynamics
of shape-memory polymers [50]. In all these works, it was
shown that VO-FC models admit fewer parameters than the
existing models, and the evolution of the mechanical prop-
erty is well captured by the VO. Patnaik et al. [32,33] have
also modeled these transitions in material response using a
physics-driven simulation strategy that leverages the pecu-
liar properties of the VO Riemann-Liouville derivative of
a constant. This approach was also extended to model the
propagation of edge dislocations in lattice structures [38]
and dynamic fracture mechanics [39]. All the aforemen-
tioned studies demonstrated how the evolution of the VO
operators in time, guided by either data-driven or physics-
driven VO laws of variation, provided an extremely powerful
approach to capture the rapidly changing physics of the
process.

While the above mentioned studies have produced excit-
ing results, as also mentioned previously in this intro-
duction, they have primarily focused on applications of
time-fractional VO operators to time-evolving systems. A
dual class of problems consists of systems whose response
and the underlying physics evolve with space. Consider, as
an example, the response of a nonlocal material exhibiting
a spatially varying strength of the long-range interactions
resulting, as an example, due to either spatial variations
in the microstructure or thermal gradients. Other exam-
ples can include materials with spatially varying energy
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dissipation mechanisms or materials subject to internal pro-
cesses (e.g. chemical) driven by spatial varying external loads
(e.g. thermal). The existing IO (classical) or CO (fractional)
approaches to nonlocal elasticity are unable to accurately
capture these phenomena, because the strength of the nonlo-
cal attenuation function in these formulations is constant in
space. This technical gap is addressed by the VO approach to
nonlocal elasticity which is expected to model the response
of nonlocal systems exhibiting a spatially varying strength
of long-range interactions. In the Sect. 2, we will develop
the underlying theory for VO approach to nonlocal elasticity
with a spatially varying order law, and we will discuss how
the spatially varying order law can be leveraged to account
for the spatially varying strength of long-range interactions
in complex materials.

The previous discussion highlighted different practical
cases that could give rise to a VO space-fractional for-
mulation. However, the order variation cannot always be
determined based on fundamental principles. Indeed, while
Patnaik et al. [32,33] showed that physics-based order
variations are possible and extremely powerful, Meng et
al. [26,27] used data fitting to recover the VO behavior from
experimental measurements. It is not hard to envision that
practical applications might require, and even benefit from,
a combination of these two approaches. In fact, bringing this
reasoning a step further, one could envision a two-pronged
procedure to enable physics-driven VO modeling of a mate-
rial during the design phase, and a data-driven update of
the VO laws (based on measurements) during the operat-
ing life. The data-driven approach could enable capturing
subtle aspects connected to the actual usage of the mate-
rial and their impact on its structural behavior. This general
perspective motivated us to explore the application of deep
learning techniques, in order to determine the feasibility
of extracting information relevant to the characterization
of the VO from available response data. Indeed, the deep
learning technique enabled a direct application of theVO the-
ory to the static analysis of porous and functionally graded
beams in Sect. 6. These examples illustrate the significant
potential of the VO theory to achieve accurate solutions for
complex structural problems in a computationally efficient
manner.

The remainder of the paper is structured as follows:
first, we present the VO space-fractional continuum model
for nonlocal solids. We use the VO model to develop
the fractional-order Euler-Bernoulli theory applicable to
the analysis of heterogeneously nonlocal beams. Next, we
describe the network-based order estimation procedure and
illustrate its accuracy by applying to the solution of a set of
sample problems. Finally, we present the application of the
VO model to the static analysis of porous and functionally
graded beams.

2 Variable-order nonlocal continuum theory

In this section, we develop the VO approach to nonlo-
cal elasticity by extending the CO fractional framework
[10–16]. For this purpose, we select the fractional-order
kinematic approach [10,24] as basis for the VO framework.
Although other choices would be possible (such as formula-
tions based on fractional-order stress-strain relations [13,14]
or fractional-order strain-displacement relations [15,17]),
this approach enables the development of positive-definite
and well-posed nonlocal models that are critical for practical
applications to systems with general geometry and bound-
ary conditions [11]. The detailed physical interpretation of
the fractional-order kinematic approach can be found in
[10,12,24].

In the fractional-order kinematic approach, nonlocality is
modeled using a fractional-order deformation gradient tensor
that relates the differential line elements within the deformed
and undeformed configurations. The constitutive modeling,
including the definition of strain and stress fields in the non-
local medium, are analogous to the constant fractional-order
kinematic approach to nonlocal elasticity, the details ofwhich
can be found in [10,12]. We emphasize that the key princi-
ples as well as the derivations conducted in [10,12] also hold
true for the VO formulation developed in this study. In other
terms, the CO studies conducted in [10,12] can be directly
extended to develop the VO formulation by replacing the CO
derivatives with the VO derivatives. Hence, in the following,
we will only present the key highlights of the VO approach
and refer the interested reader to [10,12] for more detailed
proofs as well as discussions.

In analogy with the classical strain measures, the nonlocal
strain in the fractional-order approach is definedusing the dif-
ference of the scalar product of the nonlocal fractional-order
differential line elements in the deformed and undeformed
configurations [10]. Following the detailed procedure out-
lined in [10], the expression for the VO infinitesimal strain
tensor is obtained as:

ε = 1

2

[
∇α(x)u + ∇α(x)uT

]
(1)

where u denotes the displacement field as illustrated in
Fig. 1a. In the above equation, ∇α(x)u is the VO frac-
tional gradient given by (∇α(x)u)i j = Dα(x)

x j ui . The VO

space-fractional derivative Dα(x)
x j ui is taken according to a

variable-order Riesz-Caputo (VO-RC) definition with order
α(x) ∈ (0, 1) defined on the interval x j ∈ (x−

j , x+
j ) ⊂ R

and is given by:

Dα(x)
x j ui = 1

2
�(2 − α(x))

[[
l− j (x)

]α(x)−1 C
x−
j
Dα(x)
x j ui

123



Computational Mechanics (2022) 69:267–298 271

− [
l+ j (x)

]α(x)−1 C
x j D

α(x)

x+
j

ui

]
(2)

where �(·) is the Gamma function, and C
x−
j
Dα(x)
x j ui and

C
x j D

α(x)

x+
j

ui are the left- and right-handed VO Caputo deriva-

tives of ui , respectively. Detailed expressions of the left-
and right-handed VO Caputo derivatives are provided in
Appendix A. The parameters l− j (x) and l+ j (x) are length
scales along the j th direction in the deformed configuration.
The index j in Eq. (2) is not a repeated index because the
length scales are scalar multipliers. In a general scenario, the
length scales could be envisioned to be position-dependent,
as indicated in Eq. (2). Detailed implications of this assump-
tion are presented later in this section where the physical
interpretation of the length scale parameters are discussed.
For the sake of brevity, the functional dependence of the
length scales on the spatial position will be implied unless
explicitly expressed to be a constant.

Further, the stress tensor in the nonlocal isotropic medium
is given, analogously to the local case, as:

σ = C : ε (3)

where C denotes the classical fourth-order elasticity tensor.
At first glance, the above stress-strain constitutive relation
might be deceiving since itmaintains the same formal appear-
ance as the classical local counterpart. Although this is a
correct statement in principle, in practice, it does not describe
the real nature of the relation. Recall that the strain tensor in
Eq. (1) was defined via fractional-order derivatives (which
are nonlocal in nature), hence the stress defined through the
Eq. (3) is nonlocal in nature. Adopting this fractional-order
kinematic approach leads to a positive-definite formulationof
nonlocal elasticity [11,12,24] which ensures that the result-
ing governing equations, obtained by minimization of the
potential energy, are self-adjoint and mathematically well-
posed. We will touch upon this aspect in detail in Sect. 3 by
exploring an application to slender beams. Note that all CO
fractional continuum relations are recovered when the VO is
set to be a constant α0 ∈ (0, 1), that is, α(x) = α0. Simi-
larly, all classical (local) continuum mechanics relations are
recovered when VO α(x) = 1,∀x.

Before proceeding further, we will first discuss in detail
the physical interpretation as well as the implications of the
spatially varying length scales and of the VO. From a gen-
eral perspective, the length scale parameters ensure both the
dimensional consistency and the frame-invariance of the for-
mulation. For a frame-invariant model, it is required that the
length scales l− j = x j−x−

j and l+ j = x+
j −x j (seeAppendix

B). Hence, it follows that the length scales, l− j and l+ j , phys-
ically denote the dimension of the horizon of nonlocality to
the left and to the right of a point x j along the j th direc-

tion. The length scales have been schematically illustrated
in Fig. 1b. The interval of the fractional derivative (x−

j , x+
j )

defines the horizon of nonlocality along the j th direction,
which is schematically shown in Fig. 1b for a generic point
x ∈ R2. The horizon defines the set of all points in the solid
that influence the elastic response at x or, equivalently, the
characteristic distance beyondwhich information of nonlocal
interactions is no longer accounted for in the VO fractional
derivative. With regards to the latter aspect, the spatially-
dependent length scales indicate a spatially varying horizon
of nonlocality. The spatial dependence of the horizon of non-
locality can depend on different factors such as, for example,
the underlying micro- or macro structure or spatially varying
thermal gradients.

Another key aspect of theVOspace-fractional formulation
in Eq. (2) consists in the introduction of the different length
scales (l− j and l+ j ) which enables the formulation to deal
with possible asymmetries in the horizon of nonlocality (e.g.
resulting from a truncation of the horizon when approaching
a boundary or an interface). More specifically, the different
length scales enable an accurate treatment of the frame invari-
ance and ensure a completeness of the kernel in the presence
of asymmetric horizons, material boundaries, and interfaces
(Fig. 1b). The detailed proof of the completeness of the ker-
nel can be found for a CO fractional formulation in [10]. The
same proof directly extends to the VO formulation. To sum-
marize, the asymmetric and spatially varying length scales
l− j and l+ j allow a definition of the horizon of nonlocality
that is capable of capturing the effects of both asymmetries
and anisotropies. All these possible cases have been illus-
trated in Fig. 1b. Clearly, a constant horizon of nonlocality,
similar to [10], can be recovered by setting the length scales
to be constant functions.

Apart from the spatially variable length scales, the
fractional-order formulation also admits the VO as a param-
eter. In this regard, note that at a given point x, the order α(x)

characterizes the strength of the nonlocal interaction on the
horizon of nonlocality [10]. The power-law kernel 1/|x|α(x)

embedded in the definition of the VO fractional derivative
is analogous to the attenuation function commonly used in
classical integral approaches to nonlocal elasticity. Thus, the
VO indicates that the attenuation of the long-range forces
and, consequently, the degree of nonlocality vary spatially
across the domain of the solid. As an example, consider two
points x1 and x2 such that α(x1) < α(x2). It follows that
the degree of nonlocality, (or, in other terms, the strength of
long-range interactions) at x1 is higher than that at x2. Note
that a higher value of the fractional-order indicates a lower
degree of nonlocality [12].

There exist different definitions for the functional varia-
tion of the variable fractional-order. These definitions differ
in the resulting order-memory characteristics of the specific
fractional-order operator [30]. The order-memory measures
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Fig. 1 a Schematic indicating the infinitesimal material and spatial line
elements in the nonlocal medium subject to the displacement field u.
b Horizon of nonlocality and length scales at three different material
points in a 2D domain. An isotropic horizon indicates that all the length
scales along the different directions are identical to each other. The

truncation of the horizon of nonlocality, that is a partial horizon, can
be achieved by either in a symmetric or asymmetric manner as indi-
cated in the figure. For the asymmetric case, that is at X = 0, we have
L∗−x

< L−x �= L+x , while for the symmetric horizon at X = L , we
have L−x = L+x = L∗

f

(a) (b) (c)

Fig. 2 Schematic illustration of the effect of the functional form of the
VO on the strength of the nonlocal interaction between a fixed point
x and points in its horizon of nonlocality. The slope indicated at var-
ious points corresponds to a logarithmic plot of the kernel of the VO

fractional derivative: κ(x, x ′) = 1/|x − x ′|α(x,x ′). The subscripts used
for the different orders indicate the point of evaluation of the VO, for
example, αx ′

1
indicates that the VO is evaluated at x ′

1

the memory retentiveness of the order history by the VO
operator and is different from operator-memory (also called
fading memory) that is a measure of the spatial nonlocal-
ity in the system. Detailed discussions on order-memory
can be found in [30,51]. In the most general approach, the
fractional-order at a specific point x, can be chosen as a func-
tion of the point x as well as a distant interacting point x′,
i.e., α � α(x, x′). More specifically, three different types
of VO can be defined: (a) Type-I where α(x, x′) � α(x);
(b) Type-II where α(x, x′) � α(x′); and (c) Type-III where
α(x, x′) � α(x−x′). In terms of the order-memory, the type-
I operator has no spatial order-memory, the type-II operator
has a weak spatial order-memory, and the type-III operator
has a strong spatial order-memory [30]. A brief discussion
on the differences in the definitions of the VO derivatives
for the three different order-memory cases is provided in the
Appendix A.

In the context of nonlocal elasticity, for the type-I opera-
tor, the degree of nonlocality at x depends solely on x and
remains unaffected by the points x′ in the horizon of nonlo-
cality. In other terms, the strength of interaction between the

point x and any other point x′ depends only on the spatial
position of x. Similarly, for the type-II operator, the degree
of nonlocality at x depends solely on the interacting point
x′ and for the type-III operator, the degree of nonlocality
depends on the spatial vector d = x − x′, connecting the
interacting point x′ with x. These different cases are illus-
trated in Fig. 2. The functional variation chosen in this study
corresponds to the case where α(x, x′) � α(x) (type-I). This
choice is due to the fact that it is not always possible to achieve
a frame-invariant formulation when employing type-II and
type-III definitions (see Appendix B for details). Further, in
those selected cases where a frame-invariant model could
be achieved (for either type-II or type-III), multiplying fac-
tors other than the length scales (l− j and l+ j ) would likely
be required within the definition of the VO-RC derivative in
Eq. (2). As shown in Appendix B, these factors would need
to be numerically evaluated for every point x in the domain
of the solid and for every VO. Further, these factors do not
admit the same physical interpretation as the length scales
introduced in Eq. (2). Hence, in this study, we have limited
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Fig. 3 Schematic of the beam
illustrating the different
geometric parameters. Note the
variable nature of the length
scales corresponding to the
horizon of nonlocality for
different points along the length
of the beam. The length scales at
points close to the boundary of
the beam (x1 and x3) are
truncated such that l∗− < l− and
l∗+ < l+

the formulation to the use of type-I VO that do not carry
spatial order-memory.

Finally, we emphasize that, although we focused only on
a spatially variable order, the formulation presented above
is very general in nature. The formulation could be directly
extended to cases where the order-variation depends also on
other internal as well as external variables such as, for exam-
ple, temperature (T ), time (t), material microstructure (c),
frequency (ω), strain and stress, or even their combination,
i.e., α � α(T , t, c, ω, ε, σ ).

3 Variable-order model of nonlocal beams

In this section, we develop the constitutive model for a
slender nonlocal beam by using the VO continuum formula-
tion developed above. A schematic of the undeformed beam
along with the chosen Cartesian reference frame is illus-
trated in Fig. 3. The top surface of the beam is identified as
z = h/2, while the bottom surface is identified as z = −h/2.
The width of the beam is denoted as b. The domain cor-
responding to the symmetry axis of the mid-plane of the
beam (i.e., z = 0) is denoted as �, such that � = [0, L]
where L is the length of the beam. It follows that the 3D
domain of the beam can be specified as the tensor product
� ⊗ [−b/2, b/2] ⊗ [−h/2, h/2]. For the chosen coordinate
system, the axial and transverse components of the displace-
ment field, denoted by u(x, y, z, t) and w(x, y, z, t) at any
spatial location x(x, y, z), are related to the mid-plane dis-
placements of the beam according to the Euler-Bernoulli
assumptions:

u(x, y, z, t) = u0(x, t) − zD1
xw0(x, t) (4a)

w(x, y, z, t) = w0(x, t) (4b)

where u0 and w0 are the mid-plane axial and transverse dis-
placements of the beam. D1

x (·) denotes the first IO derivative
with respect to the axial spatial variable x . In the following,
for a compact notation, the functional dependence of the dis-
placement fields on the spatial and the temporal variableswill
be implied unless explicitly expressed to be constant. Based

on the above described displacement field, the axial strain in
the beam is evaluated using Eq. (1) as:

εxx = Dα(x)
x u0 − zDα(x)

x

[
D1
xw0

]
(5)

The axial stress σxx corresponding to the axial strain εxx
is determined using the linear stress-strain relation given in
Eq. (3). Note that, for the displacement field given in Eq. (4),
a non-zero transverse shear strainwould be obtained on using
the definition for the nonlocal strain in Eq. (1). However, for
the slender beam the rigidity to transverse shear forces is
much higher when compared to the bending rigidity. Hence,
the contribution of the transverse shear deformation towards
the deformation energy of the beam can be neglected [12,17].

By using the above VO fractional constitutive formula-
tion for the nonlocal beam, the total potential energy, in the
absence of body forces, is obtained as:

	 = 1

2

∫

�

σxxεxxdV
︸ ︷︷ ︸
Deformation energy

−
∫

L
u0Fadx

︸ ︷︷ ︸
Work done by
axial forces

−
∫

L
w0Ftdx

︸ ︷︷ ︸
Work done by

transverse forces

(6)

where the first integral corresponds to the deformation energy
of the beam and the remaining two integrals correspond to
the work done by axial Fa and transverse Ft forces, which
are applied externally and on the plane perpendicular to the
mid-plane of the beam.

Note that by substituting the stress-strain constitutive rela-
tion (given in Eq. (3)) within the deformation energy, the
fractional-order approach to nonlocality leads to a quadratic
and hence, a positive-definite formulation. This convexity
ensures that the governing equations, derived in Sect. 3.1
by minimization of the potential energy, are mathematically
well-posed and free from boundary effects [12]. This is a
key advantage over classical integral approaches to non-
local elasticity where it is not always possible to achieve
a positive-definite formulation, and where additional con-
stitutive boundary conditions are essential to guarantee the
well-posed nature of the governing equations [22,23].
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3.1 Governing equations

Using the constitutive model presented above, the governing
differential equations and the associated boundary conditions
are obtained by minimizing the total potential energy of the
nonlocal beam given in Eq. (6). The minimization is per-
formed according to variational principles. The quasi-static
elastic response of the nonlocal beam modeled by the VO
approach is obtained by solving the following system of VO
differential equations:

Dα(x ′)
x Nxx + Fa = 0 (7a)

D1
x

[
Dα(x ′)

x Mxx

]
+ Ft = 0 (7b)

and subject to the boundary conditions:

I 1−α(x ′)
x Nxx = 0 or δu0 = 0 (8a)

I 1−α(x ′)
x Mxx = 0 or δD1

xw0 = 0 (8b)

Dα(x ′)
x Mxx = 0 or δw0 = 0 (8c)

In the above equations, Nxx and Mxx are the axial and bend-
ing stress resultants defined as:

{Nxx , Mxx } =
∫ b/2

−b/2

∫ h/2

−h/2
{σxx , zσxx }dzdy (9)

The detailed derivation of the above governing equations is
provided in Appendix C.

In the Eqs. (7,8), I 1−α(x ′)
x (·) is a VO Riesz fractional inte-

gral defined as:

I 1−α(x ′)
x φ = 1

2

[ ∫ x

x−l+
lα(x ′)−1
+

�(2 − α(x ′))
�(1 − α(x ′))

φ

(x − x ′)α(x ′) dx
′

︸ ︷︷ ︸
VO left-handed fractional integral

+
∫ x+l−

x
lα(x ′)−1
−

�(2 − α(x ′))
�(1 − α(x ′))

φ

(x ′ − x)α(x ′) dx
′

︸ ︷︷ ︸
VO right-handed fractional integral

]

(10)

In the above equation l− and l+ denote the length scales on
the left- and right-hand side of a point on the beam along

the x direction (see Fig. 3). Dα(x ′)
x (·) is a Riesz Riemann-

Liouville (R-RL) derivative with VO α(x ′) defined as the
first IO derivative of the VO Riesz integral defined above:

Dα(x ′)
x φ = D1

x

[
I 1−α(x ′)
x φ

]
(11)

Note that the VO fractional derivative Dα(x ′)
x (·) and the VO

fractional integral I 1−α(x ′)
x (·) are defined over the interval

(x− l+, x+ l−) unlike the VO-RC derivative Dα(x)
x (·)which

is defined over the interval (x − l−, x + l+). Further, these
operators possess weak order-memory (type-II) unlike the
VO-RC derivative which possesses no order-memory (see
discussion in Sect. 2 or Appendix A). This change in the
terminals of the interval and memory characteristic of the
R-RL fractional integral and derivative follows from simpli-
fications during the variational process (see Appendix C).
In fact, this process shows that the adjoint operator for the
VO-RC fractional derivative, present in the definition of the
VO strain, is the VO R-RL fractional derivative defined in
Eq. (11).

The VO beam governing equations and boundary condi-
tions given in Eqs. (7, 8) can be expressed in terms of the
displacement field variables by using the constitutive stress-
strain relations of the beam. Here below, we provide the
governing differential equations in terms of the displacement
field variables for an isotropic beam:

E0bhD
α(x ′)
x

[
Dα(x)
x u0

]
+ Fa = 0 (12a)

− 1

12
E0bh

3D1
x

[
Dα(x ′)

x

[
Dα(x)
x

(
D1
xw0

)]]
+Ft =0 (12b)

where E0 denotes the modulus of elasticity of the isotropic
beam. The corresponding boundary conditions are obtained
as:

E0bhI
1−α(x ′)
x

[
Dα(x)
x u0

]
= 0 or δu0 = 0 (13a)

E0bh
3 I 1−α(x ′)

x

[
Dα(x)
x

(
D1
xw0

)]
= 0 or δD1

xw0 = 0

(13b)

E0bh
3Dα(x ′)

x

[
Dα(x)
x

(
D1
xw0

)]
= 0 or δw0 = 0 (13c)

Note that the governing equations for the axial and transverse
displacements are uncoupled, similar to what is seen in the
classical (local) Euler-Bernoulli beam formulation. Further,
as expected, the classical Euler-Bernoulli beam governing
equations and boundary conditions are recovered for α = 1
throughout the domain.

Assuming that the deformation process of the nonlocal
beam is continuous and invertible, it follows that the dis-
placement field u(x) belongs to a classψ of all kinematically
admissible displacement fields such that every u(x) ∈ ψ is
continuous and differentiable everywhere within the solid,
apart from satisfying the displacement boundary conditions.
With this condition on the admissible displacement fields we
prove the following:

Theorem 1 The set of linear operators describing the gov-
erning VO differential Eqs. (12, 13) of the beam are self-
adjoint.
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Proof First, we present the proof for the self-adjointness of
the VO differential operator of the governing equation rep-
resenting axial motion of the isotropic beam:

L̃(·) = Dα(x ′)
x

[
Dα(x)
x (·)

]
(14)

Note that the fractional operator L̃(·) is linear in nature [30].
We consider the inner-product 〈L̃(u0), v0〉 such that u0 and
v0 satisfy the boundary conditions given in Eq. (13):

〈L̃(u0), v0〉 =
∫ L

0
v0 D

α(x ′)
x

[
Dα(x)
x u0

]
dx (15)

Using the definition of the VO R-RL derivative given in
Eq. (11) the above integration is expressed as:

〈L̃(u0), v0〉 =
∫ L

0
v0

d

dx

⎡
⎢⎣

∫ x

x−l+
1

2
lα(x ′)−1
+

�(2 − α(x ′))
�(1 − α(x ′))

Dα(x ′)
x ′ u0

(x − x ′)α(x ′) dx
′
⎤
⎥⎦ dx+

∫ L

0
v0

d

dx

⎡
⎢⎣

∫ x+l−
x

1

2
lα(x ′)−1
−

�(2 − α(x ′))
�(1 − α(x ′))

Dα(x ′)
x ′ u0

(x ′ − x)α(x ′) dx
′
⎤
⎥⎦ dx

(16)

We further evaluate the above integrals using integration by
parts to obtain the following:

〈L̃(u0), v0〉 = v0 I
1−α(x ′)
x

[
Dα(x)
x u0

]∣∣∣
L

0

−
∫ L

0

dv0
dx

[∫ x

x−l+

1

2
lα(x ′)−1
+

�(2 − α(x ′))
�(1 − α(x ′))

Dα(x ′)
x ′ u0

(x − x ′)α(x ′) dx
′ +

∫ x+l−

x

1

2
lα(x ′)−1
−

�(2 − α(x ′))
�(1 − α(x ′))

Dα(x ′)
x ′ u0

(x ′ − x)α(x ′) dx
′
]
dx

(17)

We exchange the order of integration in the above integrals
and further, use the boundary conditions in Eq. (13) to obtain
the following expression:

〈L̃(u0), v0〉 =
∫ L

0

1

2

�(2 − α(x ′))
�(1 − α(x ′))

Dα(x ′)
x ′ u0

[
lα(x ′)−1
+

∫ x ′+l+

x ′
D1
xv0

(x − x ′)α(x ′) dx

+ lα(x ′)−1
−

∫ x ′

x ′−l−

D1
xv0

(x ′ − x)α(x ′) dx

]
dx ′

(18)

Using the definition of theVO-RC derivative given in Eq. (2),
the above integral is simplified as:

〈L̃(u0), v0〉 =
∫ L

0
Dα(x ′)
x ′ u0 Dα(x ′)

x ′ v0 dx
′

≡
∫ L

0
Dα(x)
x u0 Dα(x)

x v0 dx (19)

By exploiting the symmetry in the above expression, we can
write the following:

〈u0, L̃(v0)〉 =
∫ L

0
Dα(x)
x u0 Dα(x)

x v0 dx (20)

ComparingEq. (19) andEq. (20), theVOdifferential operator
L̃(·) is evidently self-adjoint. By retracing the steps outlined
above, it can be similarly shown that the operator describing
the transverse governing equation of the beam is also self-
adjoint in nature. For the sake of brevity, we skip the proof
here. This demonstration establishes the claim in Theorem
1.

Recall that the quadratic nature of the deformation energy
density was used to emphasize that the system is positive-
definite in nature. The same claim is also established from
the self-adjoint nature of the governing equations presented
in Eqs. (19, 20). This can be easily verified by consider-
ing 〈L̃(u0), u0〉 in the Eq. (19), which results in a quadratic
form within the integral. Note that the self-adjointness and
positive-definiteness of the system hold independently of the
boundary conditions. This is a particularly remarkable result
because, as established in the literature, it is not always possi-
ble to define a self-adjoint quadratic potential energy for the
classical integral approach to nonlocal elasticity [22,23]. As
discussed previously, this characteristic leads to well-posed
governing equations and consistent predictions regardless of
the boundary conditions [12,24] as well as it enables the for-
mulationoffinite element based approaches for the numerical
simulation of the complex nonlocal governing equations. �
Theorem 2 The displacement field u(x) which solves the set
of governing equations and boundary conditions in Eqs. (7–
8) (if it exists) is unique in the class ψ . Further, the strain
and stress fields ε(x) and σ (x) corresponding to the solution
u(x) are also unique.

Proof The proof of the above theorem follows exactly the
proof provided for the CO formulation [12] and it is not
repeated here for the sake of brevity. �

4 Fractional model parameter estimation:
methodology

A critical issue in the use of fractional-order models is
the determination of the order parameter, either in its con-
stant or variable form. The strategy to determine the order
can vary depending on the underlying source of the frac-
tional behavior. In other terms, we could classify the use
of fractional-order models based on their main application
or, equivalently, on the reason that induces the fractional
nature of the system. Froma high level perspective, fractional
models can be employed to: (P1) simplify models while
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maintaining accuracy (e.g. fractional homogenization and
model-order reduction), (P2) model complex nonlinear and
evolutionary behavior (e.g. contacts, dislocations, dynamic
fracture), and (P3) to capture physical mechanisms that
are intrinsically fractional and, as such, not fully described
by IO operators (e.g. anomalous and hybrid transport pro-
cesses). Depending on the particular class the problem at
hand belongs to, the strategy to determine the appropriate
order can vary significantly.

In the first class of problems (P1), wherein fractional cal-
culus is applied with the intent of simplifying the model, the
fractional-order could be determined by a direct matching
technique based on selected properties of the solids such as,
for example, attenuation and dispersion behavior [1,2,10,20]
or scattering fields [8,9]. In the case of evolutionary non-
linear problems (P2), such as contact dynamics, viscoelastic
mechanics, motion of dislocations in lattice structures, and
dynamic fracture, physics-driven laws could be defined and
embedded in the VO definition so to determine the order
variation based on the instantaneous response of the sys-
tem. Examples include physical laws to detect transitions
across different physical states such as the status of a contact
[32,33], the formation and annihilation of pairwise inter-
particle bonds [38], the state of damage [39], and the order
of viscoelastic damping [31,32].

While the order characterizing the first two classes of
applications (P1 and P2) can be obtained via well estab-
lished analytical (deterministic) methods described above,
there is no specific strategy to obtain the fractional-order for
the third class of applications (P3). Although, in this lat-
ter class, the occurrence of the fractional behavior can be
connected to certain underlying physical mechanisms (e.g.
nonlocal behavior associated with porous media, multiple
scattering in periodic or disordered media), in general there
is no unique approach to identify the order. These problems
often resort to datafitting selected characteristics of fractional
models against experimentally obtained data using standard
regression techniques [5–7,26,27,40,50,52]. As an example,
consider the static response of a porous solid with unknown
porosity. In this scenario, it is not possible to obtain an ana-
lytical expression of the fractional-order describing the static
response of the solid. The elliptic nature of the problem and
the intricate geometry further complicate this task.More gen-
erally speaking, it is typically not possible to obtain analytical
closed-form expressions for key physical quantities (such as,
for example, the potential energy) that would provide the
foundation for an analytical order determination technique
similar to P1 and P2. Hence, in this class of problems, a strat-
egy to determine the fractional-order characteristics based on
the measured experimental response of the system becomes
an indispensable tool.

In this study, we focus on problems belonging to the
third class. In particular, we consider nonlocal elasticity

problems described by the VO formulation presented above
and for which only the physical response of the system is
assumed available. The geometric and material properties of
the beam are also assumed to be known or otherwise obtain-
able via standard methods. It follows that the VO variation
that characterizes the response of the nonlocal medium rep-
resents the main unknown in this problem. We propose and
develop a deep learning technique to extract the fractional-
order variation describing the response of a nonlocal beam
from available response data (or measurements). Although
the response data is generated numerically in this study, we
emphasize that it plays an equivalent role to experimen-
tal measurements. While in this study we focus on static
problems, we emphasize that the presented deep learning
technique is very general and applicable to a much broader
class of problems, including dynamical ones. We also high-
light that the development of the inverse solution technique
is made possible due to the mathematically well-posed and
physically consistent nature of the fractional-order nonlocal
model.

In the following, we first formulate the inverse problem
which consists in identifying theVOα(x) describing a nonlo-
cal beam, from available response data. Then, we present the
architecture of the neural network used to solve the inverse
problem, and we discuss dataset generation, network train-
ing, and numerical predictions.

4.1 Problem definition

Consider a benchmark problemconsisting in a nonlocal beam
clamped at both its ends and subject to a uniformly dis-
tributed transverse load (UDTL) of magnitude 1N/m. Given
the transverse displacement w0 and rotation θ0 of the mid-
plane of the beam, the objective is to characterize the VO
α(x) using a deep bidirectional recurrent neural network
(BRNN). Recall that, for an Euler-Bernoulli, the rotation is
approximated as the first IO derivative of the beamdeflection,
that is, θ0 = D1

xw0. Note that we focus only on the trans-
verse response of the beam. The methodology outlined in
the following extends directly to an inverse problem involv-
ing either axial or both axial and transverse deformations.
Without the loss of generality, we assumed that the beam is
isotropic and has a uniform cross section along its length.
The material properties and dimensions of the beam used in
this study are provided in Table 1. Further, the horizon of
nonlocality was assumed to be isotropic such that the length
scales l− and l+ are equal to a constant l f for points suffi-
ciently within the domain of the beam. These length scales
are truncated for points close to the beam boundaries as dis-
cussed in Sect. 2 (see Fig. 3). Note that the length scales
can also be determined by using the network architecture
presented below. In this regard, note that the length scale is
typically known a priori from geometric considerations such
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Table 1 Beam dimensions and material properties

Property E0 (MPa) ν L (m) h (m) b (m) l f (m)

Value 30 0.3 1.0 0.02 0.02 0.2

as presence of specific geometric features and intentionally
designed long range connections [53], and in fact, is fixed to
be the entire length of the solid in amajority of the approaches
(classical as well as fractional) [20,53,54].

Before proceeding further, we make some remarks on the
macroscale nature of the chosen problem. First we emphasize
that the formulation presented in this study is highly gen-
eral and applicable irrespective of the specific spatial scale
and material properties. Further, note that nonlocal effects
are observed in different classes of materials irrespective
of the spatial scale. A detailed investigation of literature
suggests the role of nonlocal effects have been primarily
investigated in nano- and micro-structures, and applications
to macrostructures are limited. This is not surprising since
nonlocal effects, that are typically attributed to long-range
forces, are prominent in nano- and micro-structures as Van
derWaals, surface forces or nonlocal atomic interactions [54–
56]. The contribution of these interactions are insignificant
in macrostructures where nonlocal effects typically originate
from material heterogeneities [10,20] (as we will demon-
strate in Sect. 6) and even intentionally nonlocal designs
[53,57]. While interactions between dissimilar material cells
(e.g. periodicmedia) or layers (e.g. functionally gradedmate-
rials) occur naturally in heterogeneous materials [10,20],
these are induced artificially via specially designed short
and/or long range connectors in the intentional nonlocal
designs [53,57].

4.2 Network architecture

This section describes the network architecture used to
predict the fractional-model parameters. The network archi-
tecture used to extract the VO α(x) contains a combination
of fully connected layers and a bidirectional recurrent neural
network (BRNN), as illustrated in Fig. 4 [41].

In order to determine the appropriate structure of the net-
work to solve the inverse problem, we started from two
popular types of neural network, 1D convolutional neural
networks [45] and convolutional long short term memory
deep neural network (CLDNN) [58]. We selected the con-
volutional network since it can locally extract and combine
features from its input in order to predict the output. How-
ever, results showed that the convolutional network could not
accurately solve the inverse problem, evenwhen using a large
number of trainable parameters. In an effort to increase the
performance of the network, we employed a CLDNN which
includes recurrent long-short termmemory layers capable of

learning memory effects in a system. While recurrent neu-
ral networks have proven to be highly accurate in several
classes of problems [44], witnessing poor prediction perfor-
mance of CLDDN motivated us to use BRNN, which is an
extension of recurrent neural network, to solve the inverse
problem. The choice of BRNN in the development of the
network architecture is further justified by the finite nature
of the quasi-static nonlocal problem. Recall that recurrent
cells have the capacity to learn the recursive logic relating
a sequential parameter to a sequential input and are effec-
tive for time-dependent signals. The recurrent cells process
the input sequence in a preferential direction starting from
the first member of the sequence (forward) and hence, do
not consider the effect of the cells in the reverse direction
on the current output. This characteristic is perfectly suitable
for physical systems characterized by a preferential direction
of propagation of information. However, for finite systems
(either local or nonlocal), the response at a point is influenced
by the boundary conditions. Additionally, for nonlocal sys-
tems, the responseof a point is influenced alsoby the response
of a collection of points within a fixed length scale. Hence,
a unidirectional (either forward or backward) flow of infor-
mation is expected to cause insensitivity of the predictions,
hence reducing the network accuracy. This limitation is over-
come by BRNN,where two sets of recurrent cells process the
input data sequence in two opposite directions: (1) forward
that processes the input starting from its first member, and (2)
backward that starts from the last member of the sequence.
The output of the recurrent cells in each direction is then
combined in either a linear or nonlinear fashion to calcu-
late the output corresponding to each member of the input
sequence. A detailed description of the recurrent and bidirec-
tional neural networks can be found in [41,45]. In addition
to the BRNN layer, we also used fully connected layers to
increase the the number of trainable parameters of the net-
work and to enhance the learning capacity of the network.

A schematic of the network used in this study is provided
in Fig. 4. The input to the network consists of a sequence of
nodal beam deflections and rotations. This input is obtained
by simulating the response of the beam to a UDTL via the
fractional-order finite element method (f-FEM) [12] (per-
formed via an in-house finite element model code) or it could
be an experimentally acquired response. The f-FEM builds
on the algorithm proposed in [12], that was initially devel-
oped for CO fractional differential equations describing the
response of nonlocal beams with a fixed strength (CO) of
nonlocality. However, the same numerical algorithm extends
to the VO model directly, with the only provision that the
CO is replaced by the point-wise (spatially) varying value
of the VO. More specifically, the CO used in the numerical
integration of the stiffness matrix of the nonlocal beam at
the Gauss quadrature points, is replaced by the local value of
the VO at the same point. The remaining formulation remain
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Fig. 4 Schematic of the network architecture used to identify the VO
α(x). The network consists of both fully connected layers and a bidirec-
tional recurrent neural network (BRNN). The BRNN includes two sets

of recurrent networks to process the input sequence in both the forward
(RNNF ) and the backward (RNNB ) directions. Given the sequence of
nodal w0 and θ0 the network predicts α at each node

Table 2 Specific details of the different layers within the network architecture. The network input is a sequence of the nodal displacement w0 and
rotations θ0 having a cumulative size of [201×2]. The output is an array of nodal fractional-order α(x) of size [201×1]
Layer # Layer type Size Layer # Layer type Size

1 fully connected 100 6 fully connected 50

2 fully connected 100 7 fully connected 100

3 fully connected 100 8 fully connected 100

4 fully connected 100 9 fully connected 100

5 bidirectional 100 10 fully connected 100

unchanged, and hence, for the sake of brevity, we do not
provide the details of the finite element formulation. The
interested reader is referred to [12] for the complete mathe-
matical treatment.

For each sample problem, 200 uniform elements (corre-
sponding to N = 201 equally spaced nodes) were used to
discretize the beam and to numerically calculate its deforma-
tion field. Hence, the size of the network input sequences is
[201×2] consisting of the nodal transverse displacement w0

and rotation θ0. The input is passed to 5 fully connected lay-
ers with 100 neurons in each layer and a hyperbolic tangent
activation function. The input layer is followed by a bidirec-
tional layer,with 100 long-short-term-memory (LSTM)units
[59] in both the forward and backward directions. The output
of the bidirectional layer is then passed to 5 fully connected
layers with a rectified linear unit (ReLU) activation function
connected to the output layer [45]. The network output layer
has one node and a linear activation function. The output
layer returns a sequence of the VO α(x) whose members
correspond to the input sequence members; in other terms,
the nodal values of the VO. Table 2 summarizes the above
mentioned details of the network architecture. The number
of nodes in different layers of the network architecture was
obtained via a trial and error procedure while monitoring the
accuracy of the prediction.

4.3 Dataset generation and network training

To generate the training dataset, sample distributions of α(x)
were defined and the corresponding responses of the beam
were obtained via the f-FEM. For each case (i.e. for each
VO distribution), the beam was subjected to a UDTL. For
each simulation, the transverse displacementw0, rotation θ0,
and the fractional-order α of all the nodes were recorded.
The VO of the sample problems was chosen to be either ran-
dom or a predefined function. In the case of random VO,
the value of the fractional-order at each nodal location along
the length was chosen randomly from a uniform distribution
within the range [0.7, 1]. Additionally, three different func-
tions were used to generate deterministic distribution of VO:
(1) linear, (2) sinusoidal, and (3) polynomial. These functions
were defined as:

Linear : αl(x) = (a1 − a0)x + a0 0.7 ≤ a0, a1 ≤ 1.0

Sinusoidal : αs(x) = b0 + 0.1

∣∣∣∣sin
(
b1x

L

)

+ cos

(
b2x

L

)∣∣∣∣ 0.7 ≤ b0 ≤ 0.8,

0 ≤ b1, b2 ≤ 1.0

Polynomial : αp(x) = c10x
10 + c9x

9 + ...

+ c1x + c0 0.7 ≤ α3(x) ≤ 1.0

(21)
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Fig. 5 Samples of the four fractional-order types in the generated dataset and their corresponding beam response: a variable fractional-order α(x),
b rotation θ0(x), and c deflection w0(x)

The random distribution, along with the above definitions
for the VO law, ensure that the network is exposed to dif-
ferent patterns of α(x) during the training procedure. This
approach allows the trained network to solve problems with
a variety of α(x) distributions, including those never seen by
the network during the training process. More specifically,
in Sect. 5 we have shown that the trained network accurately
predicts the α(x) distributions consisting of Bessel functions
and hyperbolic tangent functions that did not belong to the
training dataset. In each case, the variation was chosen such
that 0.7 ≤ α(x) ≤ 1. While the structure of the network is
insensitive to the specific range of α(x) and could be applied
to any arbitrary interval, the selected VO range was chosen to
avoid physical instabilities that are known to occur for very
small values of the fractional-order [12,24] (i.e. for extreme
level of nonlocality). Samples of α(x) distribution along the
beam length are provided in Fig. 5a. For each distribution of
α(x), 4×104 samples were generated and solved. Hence, the
dataset contains 1.6 × 105 samples. Out of the total sample
cases, 85% were used for training and the remaining 15%
were used for validation.

The network is trained using a mean square error loss
function defined as:

L [N (w0, θ0;W)] = 1

Nb

Nb∑
i=1

|N (w0, θ0;W) − αtrue|2

(22)

where N is the network, W is a vector that includes all the
network’s trainable parameters (network layers weights and
biases), Nb is the batch size, andαtrue is the vector containing
true values of nodal α corresponding to the network inputw0

and θ0 obtained from the training dataset. The optimal order
prediction is obtained by minimizing the loss for network
parameters W∗ as follows:

W
∗ = argmin

W

L[N (w0, θ0;W)] (23)

The network was built using Python Keras and Tensorflow
packages. We used Xavier initialization method [60] for
the layers weights and zero initialization for the biases. We
trained the network using the Adam [61] algorithm for 7000
epochswith a batch size of 2048 and the loss function defined
in Eq. 22. The initial learning rate (LR) was set to .001 and
we used a LR scheduler that divides the LR by a factor of 2
every 3000 epochs. The dataset and network training hyper
parameters are summarized in Table 3.

FromFig. 5,weobserve that the trendof the static response
of the beam (particularly the transverse displacement) does
not drastically change for the different VO α(x) laws. We
emphasize that this behavior is a direct outcome of the nature
of the loading (UDTL) and of the prescribed boundary con-
ditions (clamped at both ends). In fact, nonlocal beams with
a CO (that is, α(x) = α0) generate a maximum displacement
at the mid-point when subject to a UDTL under the pre-
scribed boundary condition. The deformed shape of the beam
remains unchanged irrespective of the specific value of α0.
Increasing the degree of nonlocality by decreasing α0 deter-
mines a softening of the beam, which merely increases the
maximum transverse displacement [12,17]. Consequently,
the only major effect of the VO α(x) consists in shifting
the location on the beam where the maximum transverse dis-
placement occurs. More specifically, for VO laws that are
asymmetric about the mid-point of the beam, the maximum
transverse displacement no longer occurs at the mid-point
of the beam. This aspect is more evident from the results
demonstrating the response of different heterogeneous beams
in Sect. 6.

5 Variable-order identification: numerical
results

In this section, we present and discuss the application of
the trained network to solve the inverse problem consisting
in determining the spatial variation of fractional-order in a
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Table 3 Training dataset and network training hyper-parameters. Learning rate scheduler step refers to the number of epochs after which the LR
scheduler divides the learning rate by the division factor

Parameter Training Validation Training Initial LR scheduler LR scheduler
dataset size dataset size epoch learning rate step division factor

Value 1.36 × 105 2.4 × 104 7000 0.001 3000 2

nonlocal beam given its response to an externally applied
load.Weconsider seven sample test cases to show the efficacy
of the inverse approach. The difference between these sample
cases consists in the functional distribution of the VO α(x)
along the beam length. Test cases 1 to 4 are randomly selected
from the test dataset and have (1) random, (2) linear, (3)
sinusoidal, and (4) polynomial VO, respectively. For cases 5
and 6, the VO α(x) was defined using Bessel and hyperbolic
tangent functions, respectively. The test case 7 contains a
problem with CO α. The objective in the first four cases is
to demonstrate that the network can accurately identify the
VO α(x) in problems that have the same type of VO α(x)
as the samples in the training dataset. Cases 5, 6, and 7 are
defined and solved to further evaluate the performance of the
network in situations where the VO α(x) patterns were never
seen by the network during the training phase. This class of
data are referred to be inconsistent with the training dataset.
Further, we also analyzed the performance of the network in
the presence of noisy input, for the test cases 1 to 4. Each
sample case, irrespective of the presence or absence of noise,
considers the response of the beam with the properties and
loading conditions defined in Sect. 4.1. In the following, we
first present the network training results and then discuss the
network predictions for the different sample cases.

Before proceeding further, we make a few remarks on
the selection of the number of measurement points used to
determine the VO α(x). First, the number of measurement
points needed for a given scenario depends on the rate of
change of the VO α(x) or, in a more general case, on the
rate of change of both the length scale (l f ) and the VO α(x).
From a general perspective, the measurement points should
be dense enough to avoid any spatial aliasing of themeasured
displacement field. The importance of having a sufficient
number of measurements can be better seen from the random
α(x) case (see Fig. 5a and Fig. 7a). In this case, the sharp
spatial rate of change in the VO α, results in a non-smooth
profile of the rotation degree of freedom (see Fig. 5c and
Fig. 8a). In such cases, a drastic reduction in the number of
measurement points tends to alias the displacement field (the
network input) and renders the inverse problem (leading to
the distribution of α(x)) ill-conditioned. On the other hand,
the number of measurement points can be reduced following
any a priori knowledge on a low spatial rate of change in VO
α(x) (such as the cases shown in Fig. 7b–d), and the network
can still be trained to accurately predict the VO α(x) from

the corresponding measurements. In the above discussion,
we have implicitly assumed that the number of measurement
points is equal to the number of data points used to sample
the VO α(x).

Finally,when the number ofmeasurement points is greater
than the data points used to sample the VO α(x), appropriate
interpolation techniques must be used to predict the α(x).
In fact, we used cubic spline interpolation in this study in
the modeling of porous beams (Sect. 6) to predict α(x) for
regions where some pores overlap with the symmetry axis of
the beam. These regions can be directly identified from the
3D finite element simulations presented in Figs. 15c–19c.
As evident from the results presented in Figs. 15c–19c, this
interpolation does not affect the predicted VO response in the
remaining parts of the porous beam, and the overall accuracy
of the approach is excellent (which we will discuss in detail
in Sect. 6). In this regard, we emphasize that the efficiency
of the interpolation of α(x) is directly related to the abil-
ity of the chosen set of interpolation points (or measurement
points) in capturing the response at different scales within the
structure. In other terms, the set of measurement and inter-
polation points must be chosen such that they capture the
deformed shape properly, without aliasing the response. As
an example, the set of points chosen in the case of porous
beams were able to capture the rotation, which as evident
from Fig. 15c–19c is localized on a shorter scale (in compar-
ison to the size of the beam) due to the random distribution of
pores. Thus, when the variation of the response (not necessar-
ily the underlying geometric or material features) occurs on
certain characteristic scales, the interpolation and grid points
should be fine enough not to alias the response at these scales.
We note that these considerations on the spatial discretiza-
tion are standard practice in most structural simulations or
experiments and are not related or influenced by the specific
features of the VO formulation.

5.1 Network training

The network is trained using the hyper-parameters presented
in Sect. 4.3. Figure 6 shows the trend of the loss function
versus the epoch number during the network training. It is
seen that the loss function for both the training and validation
data sets converge to similar values, indicating that the trained
network is not over-fitted on the training dataset. The mean
relative prediction percentage error of the trained network
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Fig. 6 Loss function versus the epoch number for the training and test
data sets. Loss function value at the last epoch is 0.00160 for the training
dataset and 0.00191 for the test dataset

over the test dataset is 0.26%. The error corresponding to a
given dataset is defined as:

Er = 1

N

N∑
i=1

∣∣∣∣
αnet (xi ) − αtrue(xi )

αtrue(xi )

∣∣∣∣ × 100 (24)

where N denotes the number of nodes in the f-FEM mesh
used to simulate the VO beam, xi denotes the nodal coordi-
nate, αtrue is the actual value of the fractional-order and αnet

is the network prediction. |(·)| denotes that absolute values
of the nodal error (that is, the L1 norm) are used to calcu-
late the mean error. An important aspect to highlight is that,
although there is a small difference between the response of
the beam for different distributions of α(x), as evident from
the sample problems presented in Fig. 5, the network suc-
cessfully distinguishes between the different closely-valued
beam responses and accurately predicts the α(x).

5.2 Identification of the fractional-order based on
consistent VO distributions

We discuss the performance of the network in terms of iden-
tification of the VO α(x) consistent with the training dataset,
containing the test cases 1 to 4. The network predictions for
the test cases 1-4 are compared with the actual value of the
VO α(x) in Fig. 7. The mean nodal percentage prediction
error is obtained as 0.85%, 0.03%, 0.12%, and 0.06% for the
cases 1–4, respectively. The extremely low prediction errors
prove that the trained network can accurately identify the
variable fractional-order irrespective of its functional type,
given the beam deformation. Using the predicted VO α(x),
the response of the beam was re-calculated via the f-FEM
and compared with the beam deformation obtained using the
exact VO, in Fig. 8. As expected, the accurate predictions
of the VO α(x) lead to an excellent match between the two
deformation results.

5.3 Identification of the fractional-order based on
inconsistent VO distributions

In order to establish the efficacy of the architecture in pre-
dicting the VO, we tested the performance of the network
for different order variations that were not available to the
network during training (that is, for order variations incon-
sistent with the training dataset). The order variations for the
cases 5 to 7 are assumed as:

Bessel: α5(x) = 0.428 J5(10x) + 0.820

Hyperbolic tangent: α6(x) = 0.102 tanh(6x − 2) + 0.848

Constant: α7(x) = 0.9

(25)

where J5(·) denotes the fifth-order Bessel function of the
first kind. Figure 9 compares the network predictions and the
actual distributions of theVOα(x). Themean relative predic-
tion percentage error for the cases 5–7 were 0.22%, 0.50%,
and 0.03%, respectively. The accurate predictions demon-
strate that the network is highly capable of identifying theVO
α(x) corresponding to problems with VO α(x) distributions
unseen by the network in the training process. This is critical
for the successful application of the network to real-world
problems (similar to those considered in Sect. 6), where the
VO describing the system response are inconsistent with the
order variations assumed in the training dataset.

5.4 Identification of the fractional-order from noisy
data

In this section, we assessed the performance of the network
in the presence of noisy input data, corresponding to the test
cases 1–4 in Sect. 5.2. For this purpose, we added numeri-
cally generated noise to the nodal values of w0 and θ0. We
assumed the noise has a Gaussian distribution with the fol-
lowing probability density function:

p̃(z) = c0e
− (z−μ0)2

2s20 (26)

whereμ0 = 0 is the mean value, s0 is the standard deviation,
and c0 is a scaling factor. s0 is expressed as:

sw0 = c0s̃w0

sθ0 = c0s̃θ0
(27)

where sw0 and sθ0 are the standard deviations of the noise
added to w0 and θ0 degrees of freedom, respectively (see
Eq. 26). s̃� is the standard deviation of w0 or θ0 calculated
over absolute values of all the samples in the training dataset.
We assessed the performance of the network for three differ-
ent values of c0, c0 = {0.25, 0.5, 0.75}. For each case, we
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Fig. 7 VO α(x) distributions
predicted by the network αnet ,
compared with their
corresponding actual values
αtrue for four different
distribution types: a Case 1:
randomly varying α(x), b Case
2: linear α(x), c Case 3:
sinusoidal α(x), and d Case 4:
polynomial α(x). As evident,
the spatial variation of the VO
α(x) is predicted very
accurately by the network

Fig. 8 Comparison of the actual
beam displacement w0true and
beam rotation θ0true with the
response calculated by using the
VO αnet distribution predicted
by the network within the
f-FEM. Four different variations
of α(x) are considered: a
random, b linear, c sinusoidal,
and d polynomial

Fig. 9 Network predicted VO (αnet ) distribution along beam axis for sample problems 5–7 compared with actual fractional-order distribution αtrue:
a Bessel α(x), b hyperbolic tangent α(x), c constant α(x)

obtained the results from Ns = {5, 10, 20} sets of measure-
ments. Each set of measurements was obtained by taking
samples from the noise probability density functions of w0

and θ0, and then adding them to the nodal values of the cor-
responding fields. The results for this analysis are presented
in Figs. 10–13. In each case, we present the mean value of
network predictions (labeled as αnet ), calculated over the
measurements, as well as the 95% confidence bands (repre-
sented by the shaded green regions).

Results indicate that the network can closely predict the
trend in the VO profile and exhibits significant tolerance to
the noise added to the input. The accuracy of the prediction
decreases as the amplitude and standard deviation of the noise
probability density function are increased. Further, the over-
all accuracy of the predictions increases proportionally with
the number of measurements. In each case, the largest error
in the VO prediction always occurs for the random variation
(see Fig. 10). This is not surprising because the network is
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Fig. 10 The mean VO predicted by the network (αnet ) using noisy data is compared to the true value (αtrue). Results are obtained for the random
variation of αtrue , with different number of measurement samples (Ns ) and different values of c0. The green shaded area shows the 95% confidence
bands

Fig. 11 The mean VO predicted by the network (αnet ) using noisy data is compared to the true value (αtrue). Results are obtained for the linear
variation of αtrue , with different number of measurement samples (Ns ) and different values of c0. The green shaded area shows the 95% confidence
bands
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Fig. 12 The mean VO predicted by the network (αnet ) using noisy data is compared to the true value (αtrue). Results are obtained for the sinusoidal
variation of αtrue , with different number of measurement samples (Ns ) and different values of c0. The green shaded area shows the 95% confidence
bands

Fig. 13 Themean VO predicted by the network (αnet ) using noisy data is compared to the true value (αtrue). Results are obtained for the polynomial
variation of αtrue , with different number of measurement samples (Ns ) and different values of c0. The green shaded area shows the 95% confidence
bands
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not provided any specific information to distinguish whether
the fluctuations in the response fields are due to measure-
ment noise or due to random changes in VO. In this regard,
some additional aspects should be noted in order to put the
results into perspective. First, the random distribution of VO
does not necessarily reflect a practical scenario and it was
chosen to illustrate the flexibility of the network. In fact, we
have shown in Sect. 6 that the VO profile that characterizes
the response of beams with random distributions in porosity
or modulus of elasticity, are not random in nature. Second,
if additional information about the system was available a
priori, better performance of the network in the presence of
noise could still be possible. A possible example includes
the case in which the order follows a distinct distribution
different from that of the noise; in this latter case, the net-
work could be trained to recognize and separate the effect of
different distributions.

Note that, in generating the above predictions, raw unpro-
cessed data was input to the network and, more importantly,
the network was not trained a priori with noisy data. Param-
eter estimations based on traditional inverse techniques, not
conditioned a priori on noisy data, generally diverge when
provided raw unprocessed signals as input data (since the
resulting inverse problems tend to be ill-posed) [62,63].
In this regard, our network exhibits reasonably good per-
formance, since it captures the VO trend accurately with
significant confidence. Certainly, the performance of the
network can still be improved by leveraging recent develop-
ments in network based inverse techniques (e.g. by casting
the inverse problem within a Bayesian framework [63,64]).
However, in order to limit the focus of this study to the for-
mulation, physical interpretation, and applications of the VO
approach to nonlocal elasticity, we avoided these additional
investigations and merely established that the presence of
noise does not corrupt or impede the prediction of the devel-
oped network.

6 Practical applications of variable-order
continuum theory

As discussed in Sect. 2, the VO fractional continuum model
is particularly well suited to model complex systems exhibit-
ing position-dependent behavior. In the present study, where
particular emphasis is given to modeling nonlocality, the VO
α(x) captures the position-dependent strength of the nonlo-
cal behavior. In order to further emphasize this aspect, we
used the VO formulation and the neural network approach
to show the potential of the method for applications to the
static response of two different types of heterogeneous beams
with spatially varying properties: (1) porous beams with spa-
tially varying degree of porosity, and (2) functionally graded
beams with spatially varying modulus of elasticity. Results

show that the VO approach can accurately capture this com-
plex system behavior.

6.1 Static analysis of porous beams

In this section, we show how the VO formulation can be
instrumental in the accurate and computationally efficient
analysis of porous structures (in this case beams) with spa-
tially varying degree of porosity. Indeed, the spatially varying
degree of porosity induces a spatially varying degree of non-
locality which can be effectively captured by the VO α(x)
formulation.Asmentioned previously in the introduction,we
will establish this capability of theVO framework concretely,
by using either a direct comparison of the VO predictions
against a full 3D finite element solution or predictions made
via a commonly adopted classical (integer-order) homoge-
nization scheme.

Before presenting the response of the porous beams
obtained via the aforementioned techniques, we first discuss
the algorithm adopted for the generation of the porous beam:

1. First, the volumeof dimensions L×b×h (seeTable 1)was
divided into a 3D array consisting of Nx ×Ny×Nz points.
Then, a numerical value in the range [0, 1] was randomly
extracted from a Gaussian distribution and assigned to
each physical point. Finally, a Gaussian filter with a pre-
defined standard deviation was applied to the 3D array
and all points with values above a pre-defined and fixed
constant (say, p0) were identified as points that make up
the porous beam. In other terms, the 3D array of random
numbers in the range [0, 1] (obtained after the applica-
tion of the Gaussian filter) was converted into a binary
array with the points identified by the value 1 forming the
porous beam. It immediately follows that the fixed con-
stant p0 is equal to the net porosity of the beam. Note also
that the standard deviation of the Gaussian filter, applied
previously, determines the size of the pores in the beam.
The porous beam generated from the above steps can be
visualized as a level-set of grid-points assigned with the
value 1 (see, for example, Fig. 14).

2. The porous beam, generated at the previous step, was
included in a rectangular shell as illustrated in Fig. 14
and labeled “outer shell”. Numerically, this is achieved
by padding the 3D array, obtained at the end of the pre-
vious step, by layer of 1, at the desired locations. For all
the porous beams considered in this study, the thickness
of the rectangular shell was set at 5 mm, and its introduc-
tion results in a decrease in the net porosity of the beam
by 0.04 units. From a practical perspective, this process
results in the formation of a sandwiched beam structure
with a porous core. The outer flat surfaces provide ease of
application of the external loads andboundary constraints,
regardless of a numerical or an experimental setting.
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Fig. 14 Schematics of the sandwich beamwith porous core used as benchmark structure to test the VO approach. The beam is obtained by enclosing
a porous core in a rectangular outer shell. The flat outer shell also simplifies the application of external loads and boundary conditions

Different examples of porous beams having a net porosity
increasing from p0 = 0.18 to p0 = 0.24 in steps of �p0 =
0.02, can be found in Figs. 15a–19a. In each figure, we have
presented only the porous core for better visualization of
the spatial distribution of pores. It appears also that each
beam can be seen as a collection of sections perpendicular
to the mid-plane (or mid-axis), such that the porosity of each
section is a random number within the interval [0, 1]. More
specifically, the porosity of these planes perpendicular to the
mid-plane of the beam can be identified as a function p0(x).
The complement of the porosity function, that is p(x) =
1 − p0(x), is used to characterize each beam as shown in
Figs. 15b–19b. The function p(x) determines the amount of
material present within each plane perpendicular to the mid-
plane of the beam, and it is a key quantity to be used in the
integer-order (IO) homogenization scheme described in the
following.

The static responses of the porous beamswere obtained by
applying a UDTL and clamped boundary conditions at both
their ends. Note that the loading conditions are identical to
that assumed previously in the problem definition (in Sect.
4.1). Three different approaches were adopted in order to
obtain the static response:

• 3D finite element analysis (FEA) – was performed by
using the commercial finite element software COMSOL
Multiphysics. In order to perform the 3D FEA in
COMSOL, the 3D binary array describing the porous
geometry (generated at the end of the previously out-
lined algorithm) was converted into a stereolithography
(STL) file, using the standard marching cubes algo-
rithm [65,66]. COMSOL functionalities were then used
to extract the geometry, mesh the solid, and perform the
FEA.

• VO nonlocal elasticity framework – the neural network
methodology was used to predict the VO α(x) charac-
terising the static responses of the porous beams. The
VO α(x) corresponding to the different porous beams
are presented in the Fig. 15b - Fig. 19b. The VO α(x)
was used within the VO f-FEM (see Sect 4.2) to simulate
the responses of the porous beams.

• Integer-order homogenization – the porous beam was
modeled as a solid (that is p(x) = 1) anisotropic beam
with a spatially varying modulus of elasticity given as
E(x) = [(1− p0(x)]E0 ≡ p(x)E0, where E0 is themod-
ulus of elasticity of the solid used to construct the porous
beam (see Table 1). The spatially varying E(x) was then
used within the classical IO Euler-Bernoulli beam for-
mulation to simulate the response of the porous beams.
We merely note that, the aforementioned approach is
commonly adopted in classical literature to model the
response of porous structures [67,68].

In order to enable a comprehensive assessment of the
results, it is essential to discuss the factors leading to the
selection of the three different models presented above
as well as the key highlights of each model. The static
deformation of the sandwich porous beam is affected by
two key physical mechanisms: (1) the nonlocal interaction
between different pores during deformation, and (2) the rela-
tion between the strength of this interaction and the spatial
distribution of porosity. This position-dependent nonlocal
phenomenon results in a position-dependent softening of the
beam structure, that is directly related to the distribution and
shape of the pores. Consequently, the degree of accuracy of
the static response predicted for the porous beams, using the
three different approaches enlisted above, is dependent on
how each approach accounts for the distribution and shapes
of pores in the 3D sandwiched beam.

Following from the above discussion, the 3D FEA will be
used as reference solution to assess the performance of the
VO and IO approaches.While still being a numerical approx-
imate solution, FEA fully accounts for the 3D distribution of
porosity within the beam and hence, within the chosen level
of spatial discretization, it can be considered as a reliable
approximation of the detailed 3D continuous porous geom-
etry. In the VO approach, the 3D distribution of porosity is
captured by the VO α(x), hence providing a homogenized
representation of the initial 3D system. From a geometri-
cal perspective, the information on the spatial distribution
of porosity is lost in this 1D abstraction. However, from a
physical perspective, the underlying position-dependent non-
locality resulting from the interaction between the pores and
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(a) (b) (c)

Fig. 15 a Example of porous core with net porosity 0.18. b The spatial distribution of the sectional porosity and of the VO across the length of the
beam. c The static response of the beam obtained by employing the three different methods: 3D FEA, VO formulation, and the IO homogenization
method

(a) (b) (c)

Fig. 16 a Example of porous core with net porosity 0.2. b The spatial distribution of the sectional porosity and of the VO across the length of the
beam. c The static response of the beam obtained by employing the three different methods: 3D FEA, VO formulation, and the IO homogenization
method

their spatial distribution, is captured by the differ-integral
and position-dependent nature of the VO fractional oper-
ators. We will show, by means of numerical results, that
the VO approach combines the computational efficiency of
a reduced-order model with a high-level accuracy close to
a full size 3D continuum model. Finally, note that the IO
homogenization approach merely accounts for the presence
and spatial distribution of pores by locally softening the beam
via the spatially varying modulus of elasticity E(x). Due to
the use of IO operators, the IO approach does not capture the
underlying nonlocal phenomenon (and hence, its position-
dependent strength as well) resulting from the interaction

between the spatially distributed pores. Hence, a significant
part of the information available in the original 3D repre-
sentation of the system is lost when modeling the porous
beam by using the IO approach. In fact, the IO approach was
chosen to contrast and further highlight the advantage of VO
fractional mechanics, over classical IOmechanics, in model-
ing systems with complex heterogeneous features that result
in non-classicalmanifestations of localmicrostructural infor-
mation at the continuum level.With the above understanding,
we proceed to compare the predictions of the three different
approaches.
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(a) (b) (c)

Fig. 17 a Example of porous core with net porosity 0.22. b The spatial distribution of the sectional porosity and of the VO across the length of the
beam. c The static response of the beam obtained by employing the three different methods: 3D FEA, VO formulation, and the IO homogenization
method

(a) (b) (c)

Fig. 18 a Example of porous core with net porosity 0.24. b The spatial distribution of the sectional porosity and of the VO across the length of the
beam. c The static response of the beam obtained by employing the three different methods: 3D FEA, VO formulation, and the IO homogenization
method

The static responses of the porous beams, in terms of
the transverse displacement (w0(x)) and rotation of the
transverse normals θ0(x) of the symmetry axis of the geo-
metric mid-plane (∀x ∪ {y, z} = 0), via the above described
approaches are compared in Figs. 15c–19c. The apparent
discontinuity in the response of porous beams predicted via
3D FEA (except for the porous beam with p0 = 0.22) is
due to the fact that some pores overlap with the symme-
try axis of the beam, hence a nodal displacement cannot
be directly extracted. The total number of degrees of free-
dom and the run-time taken by each simulation to achieve
a fully converged solution are summarized in Table 4. We
selected a convergence criterion based on the difference of

both the displacement and the rotation fields between suc-
cessive refinements; an arbitrary threshold of 2%was chosen
for this parameter. Further, the time consumed in each case
is taken as the average of 3 successive runs for the 3D FEA
and as the average of 10 successive runs for the VO and
IO homogenized approaches. Note that the total time pre-
sented for the VO and IO approaches also includes the time
employed to generate the VO α(x) by the trained network,
and the homogenized modulus of elasticity E(x), respec-
tively. All the simulations were run on a personal computer
equipped with an Intel(R) Core(TM) i7-1065G7 processor
and 8.00 GB RAM.
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(a) (b) (c)

Fig. 19 a Example of porous core with net porosity 0.26. b The spatial distribution of the sectional porosity and of the VO across the length of the
beam. c The static response of the beam obtained by employing the three different methods: 3D FEA, VO formulation, and the IO homogenization
method

Table 4 Comparison of the total
number of degrees of freedom
(NDOF ) and average
computational time (Ts )
required to achieve a converged
static response with the three
different modeling approaches
and for different levels of
porosity p0

p0 0.18 0.20 0.22 0.24 0.26

NDOF FEA 1.67 × 106 1.58 × 106 1.64 × 106 2.04 × 106 1.98 × 106

VO 6 × 102 6 × 102 6 × 102 6 × 102 6 × 102

IO 6 × 102 6 × 102 6 × 102 6 × 102 6 × 102

Ts [s] FEA 1800 1260 1320 1860 1980

VO 4.0 4.0 4.0 4.0 4.0

IO 2.0 2.0 2.0 2.0 2.0

The results presented in Figs. 15c–19c andTable 4 demon-
strate the accuracy and superior computational efficiency of
the VO framework. The spatial error distribution along the
coordinate x for the VO and IO approaches is defined as:

Er(x) = w�(x) − w3D(x)

w3D(x)
× 100 (28)

In the above equation, Er(x) denotes the error at point x ,
w�(� ∈ VO, IO) denotes the transverse displacement at
point x obtained by using either the VO or IO approach, and
w3D denotes the benchmark solution obtained via 3D FEA.
The error in the predictions obtained from the VO and IO
approaches, with respect to the benchmark 3D FEA solu-
tion, is presented in Fig. 20. While the IO approach leads to
an error as high as 15% in predicting the maximum trans-
verse displacement of the porous beams, the corresponding
error in the VO solution is less than 2% in all the cases.
In fact, the VO approach is highly accurate when compared
to the IO approach for points (x) farther from the bound-
aries (x ∈ [0.2L, 0.8L]). For points close to the boundary
(x ∈ (0, 0.05L] ∪ [0.95L, L)), a large error is observed for
both the approaches due to very small values of the displace-

ment and the difference in the significant digits used in VO
f-FEM, IOFEM, andCOMSOL simulations. It follows that the
error fraction defined in Eq. (28) is very ill-conditioned close
to the boundaries. Note that, rounding-off the displacement
values obtained via the three different approaches, to a com-
mon number of significant digits, leads to an artificial zero
error near the boundaries. From a practical perspective, the
large error localized near the boundaries does not hold much
relevance, since themaximumdisplacement valuewithin this
region is significantly small (at least 20 times smaller that
the maximum displacement of the beam) to drastically alter
outcomes in a real-world scenario. Apart from being highly
accurate, the VO framework enables a significantly faster
approach when compared to 3D FEA. More specifically, the
VO approach is at least 315 times faster than the 3D FEA
approach, as observed for the porous beam with p0 = 0.20.
Further, the ability of the VO approach to achieve an accurate
and converged solution with significantly lower number of
degrees of freedom,when compared to the fully 3Dfinite ele-
ment approach, also suggests a conspicuous reduction in the
computational complexity upon adopting the VO approach.
This latter aspect also highlights the unique potential of the
VO approach in achieving reduced-order models or well-
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(a) (b)

(c) (d)

(e)

Fig. 20 Error in the predictions of the VO and IO approaches with
respect to the 3D FEA prediction for the porous beams with net poros-
ity: a p0 = 0.18, b p0 = 0.20, c p0 = 0.22, d p0 = 0.24, and e
p0 = 0.26. The three horizontal dashed-dotted lines denote Er = 2%,
Er = 5%, and Er = 10%. As evident, the VO approach is highly

accurate when compared to the IO approach for points (x) farther from
the boundaries (x ∈ [0.2L, 0.8L]). For points close to the boundary,
a large error (see the insets within each sub-figure) is observed due to
very small values of displacement and difference in the significant digits
used in VO f-FEM, IO FEM and COMSOL simulations
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posed homogenization approaches, for describing the effect
of microstructural inhomogeneities present within complex
solids, on a global scale. In this regard, although we consid-
ered a relatively simple beam structure in this study, it can be
envisioned that theVO framework has significant potential in
reducing the typically high computational costs incurred in
the simulation of complex porous structures as well as their
assemblies.

6.2 Static analysis of functionally graded beams

In order to illustrate further possible applications of the VO
nonlocal elasticity framework, we apply the methodology
to model the static response of functionally graded beams.
Contrary to the modeling of porous beams, which offered a
very direct and practical interpretation, the simulations pre-
sented here below will be tackled from a more numerical
perspective. This choice was made to illustrate the flexibility
of the method and its possible application to classes of con-
tinuum mechanics problems characterized by functionally
graded properties. Nonetheless, all the results will confirm
the same underlying property of the VO framework that is
its ability to accurately capture position-dependent nonlocal
behavior.

From a broad perspective, the spatially varying elastic
properties in functionally graded beams result in a spatially-
dependent nonlocal effect which can be encoded into the VO
α(x). In order to demonstrate this aspect, we consider two
different heterogeneous beams with: (1) a random gradation,
and (2) a linear gradation in the modulus of elasticity across
the length of the beam. The variation of the modulus of elas-
ticity in these different beams is schematically illustrated in
Figs. 21b and 22b. The figures also present the variation of
the modulus of elasticity (E(x)) non-dimensionalized with
respect to the modulus of elasticity of the isotropic beam
(with E0 = 30 MPa, see Table 1). For the random gradation,
E(x) was extracted from a uniform distribution within the
interval [0.8, 1]. The linear gradation was set as:

E(x) = 0.8 + 0.2x (29)

Note that the position-dependent variation in the elastic prop-
erties could result from several underlying physical mech-
anisms such as, for example, material heterogeneity, and
the presence of thermal gradients, as also mentioned previ-
ously. In fact, the nucleation and evolution of microstructural
damage can also lead to functional gradations in the mate-
rial elastic properties. As an example, in the linearly graded
beam, one can envision a pre-existing damage resulting in a
progressive softening of the beam towards the boundary at
x = 0.

As for the porous beams, the functionally graded beams
were clamped at both ends and subjected to a UDTL. The

responses of the functionally graded beams are obtained via
the classical FEA and the VO beam theory. While the classi-
cal FEA accounts for the spatially varying elastic modulus,
the VO beam theory uses an isotropic (homogenized) beam
with elastic modulus E0 = 30 MPa. The VO α(x) charac-
terizing the responses of the functionally graded beams was
obtained via the trained network and presented in Figs. 21b
and 22b. The response obtained for each beam, following the
two different approaches, are compared in Figs. 21c and 22c.
As expected, the match between the FEA and VO results is
excellent. Note that, unlike the analysis of porous beams,
we do not model the responses of the functionally graded
beams using an IO homogenization approach. Indeed, func-
tionally graded beams are typically analyzed in literature
via classical IO approaches to nonlocal elasticity. Recall
that a key limitation of the classical nonlocal approaches
consists in their inability to yield a positive-definite strain
energy density. In order to achieve a positive-definite total
strain energy, the classical IO approaches require a symmet-
ric nonlocal kernel [11,54]. This latter condition prevents the
application of the resulting theory to the analysis of struc-
tures exhibiting asymmetric long-range interactions resulting
from, as an example, material heterogeneity, thermal gra-
dients, structural porosity, microstructural damage or even
due to asymmetric engineered nonlocality [20,53,69–71]. In
fact, the misuse of classical nonlocal approaches to model
structuresmade from functionally gradedmaterialswas high-
lighted very recently in [49]. Consequently, we did notmodel
the functionally graded beams by any classical IO approach.

7 Conclusions

The key contributions of this study are four-fold. First,
we developed the variable-order (VO) approach to nonlo-
cal elasticity. Second, we specialized this formulation to
the static analysis of nonlocal slender beams. Next, we
developed a deep learning strategy to extract the VO pat-
tern in cases when only the response of the nonlocal solid
is available. Finally, we presented the application of the
developed VO framework to the static analysis of porous
and functionally graded beams. The VO approach to elas-
ticity captures a spatially-dependent degree of nonlocality
across the nonlocal solid and provides the flexibility to
account for either spatially varying horizon of nonlocality
or possible asymmetry in the horizon. The VO formulation
adopts a physically consistent fractional-order kinematics
that ensures a positive-definite and self-adjoint system. These
characteristics guarantee well-posedness of the governing
equations derived via variational minimization of the poten-
tial energy. Consequently, the VO formulation is free from
inconsistent predictions, characteristic of classical nonlocal
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(a) (b) (c)

Fig. 21 a Schematic of a heterogenous beam with a random gradation in the modulus of elasticity. b The spatial distribution of the modulus of
elasticity and of the VO across the length of the beam. c The static response of the beam obtained from 3D FEA and the VO formulation

(a) (b) (c)

Fig. 22 a Schematic of a heterogenous beamwith linear gradation in the modulus of elasticity. b The spatial distribution of the modulus of elasticity
and of the VO across the length of the beam. c The static response of the beam obtained from 3D FEA and the VO formulation

integral formulations under certain boundary and loading
conditions.

The well-posed nonlocal formulation enables the devel-
opment of a deep learning based technique to address the
inverse problem consisting in the determination of the VO
distribution describing the response of a nonlocal beam.
This latter contribution of our study addresses a major chal-
lenge in the promotion and diversification of the applications
of fractional calculus to the modeling of physical systems,
that is the determination of the fractional-model parameters.
The proposed method leverages the outstanding compu-
tational efficiency of trained neural networks to estimate
the VO distribution of a nonlocal solid medium based on
its measured response. Accurate solutions to this complex

form of inverse problem were achieved by exploiting the
unique features of deep bidirectional recurrent neural net-
works (BRNN). Different VO patterns, either consistent or
inconsistent with the training data, were simulated and suc-
cessfully identified. Finally, the proposed framework was
applied to the simulation of the static response of porous
and functionally graded beams with complex spatial dis-
tributions of the corresponding material properties. These
applications concretely established the ability of the VO
framework to perform reduced-order multiscale predictions
with accuracy comparable to high-fidelity 3D finite element
models, albeit requiring significantly smaller computational
resources. While the present framework was developed and
validated for the case of nonlocal beams, the methodology
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is general and can be easily extended to higher dimensional
problems. In conclusion, the physically consistent and well-
posed VO approach to nonlocal continua combined with
deep learning techniques for fractional parameter estima-
tion provide a critical step to further establish and extend
fractional-order continuummechanics approaches to model-
ing the response of real-world complex structures.
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Appendix

A: Definitions of variable-order fractional
derivatives

Variable-order fractional operators were first conceptualized
by Samko et al. [29] in 1993 as a natural extension of CO
fractional operators. Over time, researchers have presented
several definitions of VO fractional derivatives. The most
significant discriminant factor, between the different defini-
tions, consisted in the memory behavior of the operator. A
detailed review of the different definitions, properties, and
their applications can be found in [37,72]. Here below, we
report the definitions of the type-I and type-II VO Caputo
operators that have been used in this work.
Type-I: If f (x) and α(x) are continuous real-valued func-
tions on (a, b), the left- and right-handed VO Caputo
derivative to the order α(x) > 0 with no order-memory are
defined as:

Left-handed derivative: Ca D
α(x)
x f (x)

= 1

�(n − α(x))

∫ x

a

Dn
x ′ f (x ′)

(x − x ′)1+α(x)−n
dx ′ (30a)

Right-handed derivative: Cx D
α(x)
b f (x)

= (−1)n

�(n − α(x))

∫ b

x

Dn
x ′ f (x ′)

(x ′ − x)1+α(x)−n
dx ′ (30b)

where n = �α(x)� is the upper integer bound on α(x) at
the spatial location x , �(·) is the Gamma function, and x ′
is a dummy spatial variable of integration. As discussed in
Sect. 2 α(x) ∈ (0, 1) throughout this work. Under this latter

condition, the expressions in Eq. (30) can be simplified as:

Left-handed derivative: Ca D
α(x)
x f (x)

= 1

�(1 − α(x))

∫ x

a

D1
x ′ f (x ′)

(x − x ′)α(x)
dx ′ (31a)

Right-handed derivative: Cx D
α(x)
b f (x)

= −1

�(1 − α(x))

∫ b

x

D1
x ′ f (x ′)

(x ′ − x)α(x)
dx ′ (31b)

Analogous expressions can be obtained for the Type-II and
Type-III operators presented in the following when α(x) ∈
(0, 1). We do not provide them here for the sake of brevity.

Type-II: If f (x) and α(x) are continuous real-valued func-
tions on (a, b), the left- and right-handed VO Caputo
derivative to the order α(x) > 0 with weak order-memory
are defined as:

Left-handed derivative: Ca D
α(x ′)
x f (x)

=
∫ x

a

1

�(n − α(x ′))

[
Dn
x ′ f (x ′)

(x − x ′)1+α(x ′)−n

]
dx ′ (32a)

Right-handed derivative: Cx D
α(x ′)
b f (x)

=
∫ b

x

(−1)n

�(n − α(x ′))

[
Dn
x ′ f (x ′)

(x ′ − x)1+α(x ′)−n

]
dx ′ (32b)

Type-III: If f (x) and α(x) are continuous real-valued
functions on (a, b), the left- and right-handed VO Caputo
derivative to the order α(x) > 0 with weak order-memory
are defined as:

Left-handed derivative: Ca D
α(x−x ′)
x f (x)

=
∫ x

a

1

�(n − α(x − x ′))

[
Dn
x ′ f (x ′)

(x − x ′)1+α(x−x ′)−n

]
dx ′

(33a)

Right-handed derivative: Cx D
α(x−x ′)
b f (x)

=
∫ b

x

(−1)n

�(n − α(x − x ′))

[
Dn
x ′ f (x ′)

(x ′ − x)1+α(x−x ′)−n

]
dx ′

(33b)

Note the differences within the definitions of the different
VO derivatives. While the strength of the power-law kernel,
that is the exponent of the denominator, is fixed for the point
x for the type-I derivative, the strength of the type-II kernel
is a function of the dummy variable x ′ and the strength of the
type-III kernel a function of the relative separation between
x and x ′. This is exactly the reason which leads to difference
in the memory characteristics of the different definitions.
Detailed discussions on the properties of these derivatives,
including linearity, time invariance, memory characteristics
(both operator- and order-memory), Laplace transforms, and
physical realization using switches can be found in [30].
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B: Frame-invariance of the VO continuummodel -
Type-I v/s Type-II v/s Type-III operators

In the following, we will analyze the frame-invariance of the
variable-order continuum formulation resulting from the use
of either type-I or type-II or type-III VO Caputo derivatives.
Consider a rigid-body motion superimposed on a general
point X (see Fig. 1a) of the reference configuration of the
body as:

�(X, t) = c(t) + Q(t)X, (34)

whereQ(t) is a proper orthogonal tensor denoting a rotation
and c(t) is a spatially constant term representing a translation.
Under this rigid-bodymotion, the fractional deformation gra-

dient tensor denoted as F̃
�

X should be an orthogonal tensor

such that F̃
�T
X F̃

�

X = I.More specifically, the fractional defor-

mation gradient tensor should transform as F̃
�

X = Q (similar
to the classical continuum case where F� = Q) such that
the strain measures are null. As discussed in detail in [10],

the fractional deformation gradient tensor F̃
�

X is defined as
the fractional-order derivative of the motion � with respect

to the reference coordinates, that is, F̃
�

X = Dα(X,X ′)
X �.

Type-I derivative:Consider the formulation involving type-
I VO derivatives. Recalling the definition of the type-I VO-
RC derivative from Eqs. (2,30) it follows that:

F̃
�

Xi j
= 1

2
�(2 − α(X))

⎡
⎣ Lα(X)−1

− j

�(1 − α(X))

∫ X j

X− j

D1
X ′

j
�i (X ′, t)

(X j − X ′
j )

α(X)
dX ′

j

+ Lα(X)−1
+ j

�(1 − α(X))

∫ X+ j

X j

D1
X ′

j
�i (X ′, t)

(X ′
j − X j )α(X)

dX ′
j

⎤
⎦ (35)

where X ′ is the dummy vector representing the spatial vari-
able, and L− j and L+ j are the length scales corresponding
to the horizon of nonlocality in the reference configuration.
D1

X ′
j
�i (X ′, t) simplifies as:

D1
X ′

j
�i (X ′, t) = d�i (X ′, t)

dX ′
j

= d

dX ′
j
(ci + Qik X

′
k) (36)

Noting that dci (t)
dX ′

j
= 0 and Q = Q(t) it follows that:

D1
X ′

j
�i (X ′, t) = Qik X

′
k, j = Qikδk j = Qi j (37)

Thus, under the rigid body motion �:

F̃
�

Xi j
= 1

2
�(2 − α(X))Qi j

⎡
⎣ Lα(X)−1

− j

�(1 − α(X))

∫ X j

X− j

1

(X j − X ′
j )

α(X)
dX ′

j

+ Lα(X)−1
+ j

�(1 − α(X))

∫ X+ j

X j

1

(X ′
j − X j )α(X)

dX ′
j

⎤
⎦ (38)

Since the exponent of the power-law kernel α(X) is indepen-
dent of the integrating variable X ′, the above expression can
be easily simplified (by treating X as a constant within the
integration) as:

F̃
�

Xi j
= 1

2

[
Lα(X)−1

− j
(X j − X− j )

1−α(X)

+Lα(X)−1
+ j

(X+ j − X j )
1−α(X)

]
Qi j (39)

In the above simplificationswe have used the following prop-
erty of the �(·) function: �(2 − α) = (1 − α)�(1 − α). As
highlighted in §2, the length scales L− j and L+ j are taken
such that: L− j = X j − X− j and L+ j = X+ j − X j . This
has also been illustrated schematically in Fig. 1b. By sub-

stituting these relations in Eq. (39), it follows that F̃
�

X = Q
at all times. We also emphasize that the nonlocal formula-
tion allows for an exact treatment of frame invariance in the
presence of asymmetric horizons which occur at points close
to material boundaries and interfaces. The different horizon
lengths L− j and L+ j enables the truncation of the horizon at
points close to or on the boundary in order to exactly satisfy
frame-invariance.

Type-II derivative: We consider a general formulation
involving the left- and right-handed type-II VO Caputo
derivatives. More specifically, we replace the length scale
factors introduced in Eq. (2) with general multiplying fac-
tors c1 and c2, and then find expressions for c1 and c2 such
that the resulting formulation is frame-invariant. Using the
definition of the type-II VOCaputo derivatives from Eq. (32)
it follows that:

F̃
�

Xi j
= c1

∫ X j

X− j

1

�(1 − α(X ′))

⎡
⎣

D1
X ′

j
�i (X ′, t)

(X j − X ′
j )

α(X ′)

⎤
⎦ dX ′

j

+ c2

∫ X+ j

X j

1

�(1 − α(X ′))

⎡
⎣

D1
X ′

j
�i (X ′, t)

(X ′
j − X j )α(X ′)

⎤
⎦ dX ′

j

(40)

Retracing the steps in Eqs. (36,37), under the rigid body
motion �, we obtain:

F̃
�

Xi j
= Qi j

[
c1

∫ X j

X− j

(X j − X ′
j )

−α(X ′)

�(1 − α(X ′))
dX ′

j
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+c2

∫ X+ j

X j

(X ′
j − X j )

−α(X ′)

�(1 − α(X ′))
dX ′

j

]
(41)

For frame-invariance, it is necessary that F̃
�

Xi j
= Qi j at

all times and for all points within the nonlocal solid. More
specifically, we obtain the following equation:

c1

∫ X j

X− j

(X j − X ′
j )

−α(X ′)

�(1 − α(X ′))
dX ′

j

︸ ︷︷ ︸
Cannot be simplified further

+c2

∫ X+ j

X j

(X ′
j − X j )

−α(X ′)

�(1 − α(X ′))
dX ′

j

︸ ︷︷ ︸
Cannot be simplified further

= 1 (42)

To ensure that the above relation holds true for all points
X , at all time instants, and for every order distribution, it is
essential to evaluate the integrals highlighted in the equation
above. However, given the functional variation of the VO, it
is not straightforward to analytically evaluate the integrals. In
fact, the possibility to obtain an analytical expression of the
solution depends on the specific functional variation of the
fractional-order. For the specific cases, where the analytical
solution does not exist, it might not be possible to achieve a
frame-invariant formulation. While the integrals could cer-
tainly be numerically evaluated, the numerical route poses
additional computational challenges. The latter comment
stems from the fact that the values of the specific integrals
highlighted above depend on the position X as well as the
specific functional variation of the order. Further, contrary
to the type-I case where these factors turn out as the dimen-
sions of the horizon of nonlocality, no physical interpretation
can be conclusively drawn for the factors when using type-II
derivatives.

Type-III derivative: By using the definition of the type-
III derivatives and the arguments presented for the type-II
derivative, Eq. (41) can be modified for a formulation using
type-III derivatives as:

F̃
�

Xi j
= Qi j

[
c1

∫ X j

X− j

(X j − X ′
j )

−α(X−X ′)

�(1 − α(X − X ′))
dX ′

j

︸ ︷︷ ︸
Cannot be simplified further

+c2

∫ X+ j

X j

(X ′
j − X j )

−α(X−X ′)

�(1 − α(X − X ′))
dX ′

j

︸ ︷︷ ︸
Cannot be simplified further

]
(43)

Given the specific form of the VO, similar to type-II deriva-
tives, it is not always possible to obtain a closed form
expression for the factors c1 and c2. It immediately follows

that the remarks made above for type-II also hold true for
type-III derivatives.

To summarize, the use of type-II and type-III VO deriva-
tives is more likely to lead to non frame-invariant formu-
lations. For cases, where a frame-invariant formulation can
be achieved, the procedure to obtain the different factors is
not general because frame-invariance must be re-valuated
for every VO and at every point in the nonlocal solid. This
makes the formulation computationally intensive and addi-
tionally, the obtained factors do not admit clear physical
interpretations, unlike the length scale factors used in type-I
derivatives.

C: Derivation of the governing equations

Theorem: The displacement field u(x) ∈ ψ , a class of all
kinematically admissible displacement fields, which solves
the Eqs. (7, 8) minimizes the total potential energy functional
given in Eq. (6) in the class ψ . Conversely, the displace-
ment field minimizing the total potential energy functional
in Eq. (6) solves the fractional-order nonlocal beam govern-
ing Eqs. (7, 8).

Proof Let u∗ ∈ ψ be the unique solution to the system
of Eqs. (7,8). Next, we assume u = u∗ + δu is another
kinematically admissible field such that δu ∈ ψ∗. The class
ψ∗ is similar to the class ψ except for the boundary points
x ∈ {0, L}, where the displacement degrees of freedom
{u0, w0, D1

xw0} = 0 in context of Eqs. (7,8). In the fol-
lowing, all quantities with the superscript �∗ correspond to
the displacement field u∗. Under the above conditions, fol-
lowing the principles of variational calculus, Eq. (6) can be
expressed as:

	[u] = 	[u∗] + δ	 + 1

2
δ2	 (44)

where δ	 and δ2	 are the first and second variations of 	

from u∗. Using the Eqs. (5, 6, 9), the first variation δ	 is
obtained as:

δ	 =
∫ L

0
N∗
xx

[
Dα(x)
x δu0

]
dx

︸ ︷︷ ︸
I1

−
∫ L

0
M∗

xx

[
Dα(x)
x

(
D1
xδw0

)]
dx

︸ ︷︷ ︸
I2

−
∫ L

0
Faδu0dx −

∫ L

0
Ftδw0dx (45)

�

Simpli f ication of I1: We first simplify the term indicated
as I1. Using the definition of theVO-RC fractional derivative
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given in Eq. (2), we obtain:

I1 = 1

2

[ ∫ L

0
N∗
xx

[
lα(x)−1
− �(2 − α(x))Cx−l− D

α(x)
x δu0

]
dx

︸ ︷︷ ︸
I11

−
∫ L

0
N∗
xx

[
lα(x)−1
+ �(2 − α(x))Cx D

α(x)
x+l+δu0

]
dx

︸ ︷︷ ︸
I12

]

(46)

From the definitions for theVO left- and right-handedCaputo
derivatives given in Eq. (30) we obtain:

I11 =
∫ L

0
N∗
xx l

α(x)−1
−

�(2 − α(x))

�(1 − α(x))[∫ x

x−l−

(
x − x ′)−α(x)

(
D1
x ′δu0

)
dx ′

]
dx (47a)

I12 = −
∫ L

0
N∗
xx l

α(x)−1
+

�(2 − α(x))

�(1 − α(x))[∫ x+l+

x

(
x ′ − x

)−α(x)
(
D1
x ′δu0

)
dx ′

]
dx (47b)

By changing the order of integration in the above equation,
we obtain:

I11 =
∫ L

0
D1
x ′δu0

[∫ x ′+l−

x ′
lα(x)−1
−

�(2 − α(x))

�(1 − α(x))

(
x − x ′)−α(x)

N∗
xxdx

]
dx ′

(48a)

I12 = −
∫ L

0
D1
x ′δu0

[∫ x ′

x ′−l+
lα(x)−1
+

�(2 − α(x))

�(1 − α(x))

(
x ′ − x

)−α(x)
N∗
xxdx

]
dx ′

(48b)

Substituting the above expressions within Eq. (46) and using
the definition of the VO Riesz integral given in Eq. (10), we
obtain:

I1 =
∫ L

0

[
D1
x ′δu0

] [
I 1−α(x)
x ′ N∗

xx

]
dx ′

≡
∫ L

0

[
D1
xδu0

] [
I 1−α(x ′)
x N∗

xx

]
dx (49)

The above integrals are further evaluated using integration by
parts in order to transfer the derivative from the independent
the variable (axial displacement) to the secondary variable

(stress resultant):

I1 = δu0
[
I 1−α(x ′)
x N∗

xx

] ∣∣∣∣
L

0
−

∫ L

0
δu0D

1
x

[
I 1−α(x ′)
x N∗

xx

]
dx

(50)

Now by using the definition of the VOR-RL derivative given
in Eq. (11), we obtain:

I1 = δu0
[
I 1−α(x ′)
x N∗

xx

] ∣∣∣∣
L

0
−

∫ L

0
δu0

[
Dα(x ′)

x N∗
xx

]
dx (51)

Simpli f ication of I2: By retracing the steps through Eqs.
(46-51), it can be similarly shown that:

I2 =
(
δD1

xw0

) [
I 1−α(x ′)
x M∗

xx

] ∣∣∣∣
L

0
− δw0

[
Dα(x ′)

x M∗
xx

] ∣∣∣∣
L

0

+
∫ L

0
δw0D

1
x

[
Dα(x ′)

x N∗
xx

]
dx (52)

Now by using the variational simplifications in Eqs. (45,51,
52) and the governing equations in Eq. (7,8) it can be shown
that δ	 = 0. Additionally, the second variation δ2	 is given
as:

δ2	 =
∫

�

E0δ[εxx ]δ[εxx ]dV (53)

For any nontrivial δu ∈ ψ∗ we have from the above equation
δ2	 > 0, which leads us to the inequality:

	[u] = 	[u∗] + 1

2
δ2	 ≥ 	[u∗] ∀ u ∈ ψ (54)

It follows that the equality holds iff u = u∗ ∀ x ∈ �. It fol-
lows immediately that, as claimed in the Theorem above, the
displacement field u∗ which solves the system of equations
in Eqs. (7, 8) minimizes the functional 	 in the class ψ .

Conversely, let u∗ be the unique solution to the minimiza-
tion problem:min(	[u]) such that u ∈ ψ . Theminimization
implies that for any variation δu ∈ ψ∗, δ	 evaluated at
u∗ must be identically zero. The δ	 is evaluated through
Eqs. (45,51, 52)where u∗, minimizes the functional	. It fol-
lows that the stress field corresponding to the displacement
field u∗ uniquely satisfies the equilibriumEqs. (7,8), and thus
the set of fields {u∗, ε∗, σ ∗} solve the variable fractional-
order Euler-Bernoulli beam equations.
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