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Abstract
Non-uniform filling of dual-scale fibrous reinforcements is crucial in modelling and simulation of liquid composites molding 
processes since this poses several challenges at mesoscopic (void formation) and macroscopic scale (irregular global satura-
tion). This problem is tackled here using two lumped approaches: sink-term and effective-unsaturated permeability lumped 
functions are obtained from mesoscopic filling simulations, and introduced into Richards and equivalent Darcy equations 
to conduct macroscopic simulations. Boundary Element Techniques to solve governing equations, a fluid-front-tracking 
method, a Stokes-Darcy-based methodology to simulate intra-tow liquid absorption considering air compressibility and 
dissolution, flow-direction dependent capillary pressure, vacuum pressure and dynamic void evolution, are representative 
contributions of this work. Macroscopic results show that both sink-term and Richards approach are in acceptable agreement 
with experiments, with former approach providing more accurate results. BEM-based codes are used to study the influence 
of inlet pressure and flow rate, vacuum pressure, air compressibility and dissolution on the saturation behaviour.

Keywords Boundary element techniques · Multi-scale filling · Dual-scale porous media · Stokes-Darcy formulation · 
Richards approach · Sink term approach

1 Introduction

The processing of composites materials is an engineering 
area that has aroused a lot of interest in the scientific com-
munity. The development of new processing techniques and 
the improvement of the existing ones are tightly linked to the 
advancement of the simulation methods. In that area, one 
of the principal concerns is the dual-scale nature of some 
fibrous reinforcements that are used in the manufacturing of 
parts by Liquid Composite Molding (LCM), because such 
a nature supposes flow imbalances inside the Representa-
tive Unitary Cell (RUC), which in turn, cause uncontrolled 
defects (voids) and could considerably affect the global flow 

behavior during the filling of cavities, leading to non-uni-
form saturation fields.

In dual-scale fibrous reinforcements used in liquid com-
posites molding, there exist three well-differentiated sub-
domains at mesoscopic scale: channels, longitudinal tows 
and transverse tows, as can be observed in Fig. 1, where the 
yellow colour represents the fluid in the channels, whereas 
the green-grey colour, the fluid present inside the tows at 
certain time instant. The channels are considerably more 
permeable than the tows, leading to a non-uniform satura-
tion of the preform as the filling takes place. At the meso-
scopic level, differences between the fluid flows in these 
sub-domains depend on the relationship between the viscous 
and capillary forces. These differences significantly affect 
the pressure and velocity fields at the macroscopic level. 
For instance, in unidirectional injections, pressure reduction 
is linear along the mold length in single-scale fibrous rein-
forcements. In contrast, this reduction is almost parabolic 
for the unsaturated zone in dual-scale fibrous reinforcements 
[1]. On the other hand, in unidirectional constant flow rate 
injections, the inlet pressure increment with time is linear for 
single-scale fibrous reinforcements. Conversely, a pressure 
drooping occurs for dual-scale fibrous reinforcements [1, 2].
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The simulations of filling of dual-scale fibrous reinforce-
ments can be classified into two main categories: meso-
scopic and macroscopic simulations. Mesoscopic simula-
tions consist of the filling of the Representative Unitary 
Cell (RUC). They can be carried out to: (1) determine the 
effective properties of the porous medium, such as the effec-
tive unsaturated and saturated permeabilities, and the con-
stitutive relationships of these properties [3–5, 13]–[12], (2) 
compute the coupling terms between the mesoscopic and 
macroscopic governing equations to deduce lumped func-
tions in terms of volume-averaged quantities [2, 14]–[18].

On the other hand, macroscopic simulations refer to 
those carried out in cavities, where the porous medium is 
initially dry. Then a liquid pass throughout it, driven by 
positive pressure, gravity and/or capillary pressure. Dur-
ing the filling, dual-scale reinforcement is not uniformly 
impregnated because of the differences between the channel 
and tow permeabilities, which originates partial saturation 
effects. Two strategies can be considered to determine the 
influence of such effects on the macroscopic variables (pres-
sure, velocity, saturation, etc.). In the first one, simultaneous 
and iterative-corrected simulations are conducted at both 
scales (macroscopic and mesoscopic) [19]–[22], whereas in 
the second one, which is less rigorous but computationally 
cheaper, lumped functions for the effective properties or the 
coupling terms are obtained by running several mesoscopic 
simulations of the RUC filling, and those functions can be 
used afterwards in the macroscopic equations [2, 3, 23]–[4, 
25]–[6, 12, 14]–[17]. This second strategy, in turn, can be 
divided into two main approaches. In the first approach, 
some constitutive relationships for permeability vs. satura-
tion are obtained at the mesoscopic scale, and then, Richards 
equation is solved using these constitutive equations [3]–[5]. 
In the second approach, sink functions, Sg , are obtained by 
running several mesoscopic simulations and these functions 
are used afterwards in the solution of a Poisson type equa-
tion, which is obtained from the mass conservation equation 
and the Darcy law with an equivalent channel permeability, 
Kg [2, 6, 14]–[17, 23]–[25].

In the present work, the Boundary Element Method 
(BEM) is applied for the filling simulation of dual-scale 
fibrous reinforcements used in the manufacturing of com-
posite materials. A Stokes-Darcy formulation is used for 
the mesoscopic simulations, whereas the abovementioned 
lumped approaches (Richards and equivalent Darcy) are 
deemed for the macroscopic simulations. Some previous 
representative researches and the principal contributions of 
the present work can be summarized as follows:

• The problem of multiscale filling of dual-scale fibrous 
reinforcements has been tackled mostly using domain 
mesh techniques. For instance, the Finite Element/Con-
trol Volume (FEM/CV) conforming method was used 
in [24] by introducing ‘slave’ elements into the original 
nodes of the FEM mesh, with the purpose to simulate 
the delayed saturation of the tows as the macroscopic 
fluid front progresses. On the other hand, Park et al. [26] 
used a modified FEM-CV method to predict void content 
and saturation changes along the mold length; such work 
introduced an improvement of the original void forma-
tion model proposed by Kang and Lee [27], namely, a 
more accurate consideration of the micro-architecture of 
the fabric. It is important to highlight that for the mac-
roscopic unidirectional simulations carried out in Park 
et al. [26], the fluid front refinement technique proposed 
by Kang and Lee [28] was used. In such a technique, the 
mesh in the neighbourhood of the fluid front is adaptively 
refined by using floating imaginary nodes that are placed 
in the contour of the FEM elements taking into account 
the fill factor; a smoother fluid front is achieved regard-
ing the traditional FEM/CV methods but at the expense 
of the increase of computational cost. The change of the 
saturation at both mesoscopic (tows) and macroscopic 
(cavity) levels and the drooping of pressure in constant 
flow rate injections were studied in [2] using FEM to 
solve the governing equations and the nodal saturation 
method to track the fluid front [29]. The FEM/CV con-
forming method was also used in coupled multiscale 

Fig. 1  Scheme of the meso-
scopic problem assuming full-
filled channels
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simulations of unsaturated flow for isothermal [19], non-
isothermal [20], and reactive [30] conditions, where two 
FEM meshes and the corresponding CV meshes were 
required since the mesoscopic (filling of tows) and 
macroscopic (filling of the cavity) simulations were 
run simultaneously, which entails a high computational 
cost. The FEM/CV method was employed in [18] to con-
duct filling simulations of tows, including the effects of 
capillary pressure, void pressure and non-uniform fiber 
volume fraction distribution. This method was used in 
[17] to study the influence of intra-tow resin release in 
reactive injection conditions of high-speed reactive RTM 
processes. On the other hand, an Algebraic Sub-Grid 
Scale (ASGS) FEM approach was used in [10] to study 
the effective permeability of 2D and 3D fibrous media 
based on the Stokes-Darcy formulation. In the present 
work, the use of BEM techniques implies reducing the 
mesh requirements in one dimension, which is conveni-
ent when dealing with moving boundary problems where 
the domain changes with the time as the process evolves. 
In our numerical scheme, direct integration of the kin-
ematic condition interface is used to advance the fluid 
front (Euler method). Smoothing and re-meshing algo-
rithms are implemented, assuring a higher-order accu-
racy of the fluid front shape regarding FEM/CV tech-
niques. In this sense, the fluid front position is directly 
obtained from the moving interface velocity field without 
using interface capturing schemes for its reconstruction. 
Some works that use BEM techniques have also dealt 
with simulations of unsaturated flow in porous media 
[31]–[34], but the partial saturation effects were taken 
into account by using experimental constitutive laws for 
the permeability. In the present work, as demanded by 
Richards approach, constitutive relationships for the per-
meability in terms of the saturation are obtained from the 
results of mesoscopic simulations.

• Another contribution of the present work is referred to 
as the problem of considering the partial saturation of 
the RUC’s in the behaviour of some macroscopic vari-
ables during the filling of the cavity. As it was mentioned 
before, there are two main numerical strategies to tackle 
this problem: (1) to carry out simultaneous and iterative-
corrected simulations at both scales or (2) to conduct 
several simulations at the mesoscopic scale for obtaining 
lumped functions to be used at the macroscopic scale. 
The second strategy is employed in the present work 
because it implies a lower computational cost. Still, it is 
introduced an important modification in the methodology 
to simulate the liquid absorption into the tows. This mod-
ification is motivated by some physical incongruences 
between numerical [2, 15, 24, 35] and experimental 
results [36]–[43]. When it is assumed that the channels 
are filled with liquid before any infiltration of the tows 

can take place, it is usually supposed that the tows satu-
ration rate inside the RUC, Ṡt , is function of the uniform 
pressure of the liquid contained in the channels, 

⟨
Pg

⟩g [2, 
15, 24, 35]. This methodology has some drawbacks due 
to its simplifications: (1) the impregnation of tows takes 
place towards the center of them, no matter the magni-
tude or direction of the channel fluid velocity, which is 
not in accordance with other researches [27, 36]–[38, 44, 
45]; (2) the air compressibility and partial air dissolution 
are not taken into account, thereby leading to a constant 
air pressure in the fluid front during the whole filling of 
the tows, which does not necessarily reproduce the real 
situation of liquid composites molding (LCM) processes 
[39, 46]; (3) the capillary pressure is assumed constant 
during the whole RUC filling and the model to compute 
this pressure is employed indistinctively for the warps 
and the wefts; (4) vacuum pressure is not considered 
as an initial condition for the air pressure, which is not 
coherent with some applications of composites manufac-
turing where the vacuum pressure plays a major role [40, 
41, 47, 48]; (5) the prescription of a constant pressure in 
the channels of the RUC is not physically consistent with 
the fact that the fluid is actually moving; (6) the processes 
of void displacement, migration and subsequent split-
ting, which have been reported in previous experimental 
researches [36]–[38, 42, 43], are not captured using this 
simplified methodology. Consequently, this methodology 
to account for the tows saturation is modified here by 
prescribing a pressure gradient along the RUC, ΔP∕Δx, 
and imposing matching conditions between the tows and 
the channel sub-domains to determine the filling of the 
former ones; applying mass conservation, the saturation 
rate of the tows, Ṡt , is established in terms of the differ-
ence between the inlet and outlet flow rates of the RUC, 
which in turns can be directly accomplished from the 
BEM simulations. The present methodology tackles the 
aforementioned drawbacks as follows: (1) decentered 
voids are obtained in the tows due to the prescription of a 
pressure gradient, which is more coherent with previous 
works; (2) air compressibility and partial air dissolution 
are considered by means of an air entrapment parameter, 
� , proposed in [39]; (3) a flow-direction dependent model 
for the capillary pressure not involving experimental 
shape factors is considered [49]; (4) vacuum pressure, 
Pvac , is taken into account as an independent variable 
of the lumped functions; (5) there exists a velocity field 
in the channel consistent with the fluid flow direction; 
(6) displacement, migration and splitting of voids can be 
present. Using the proposed methodology, lumped func-
tions are obtained for the sink term, Sg , and the effective 
unsaturated permeability, Keff  , after running a consider-
able amount of mesosocopic simulations (RUC fillings), 
and then, the macroscopic unidirectional filling is con-
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sidered using the Dual Reciprocity Boundary Element 
Method (DR-BEM) in order to assess the reliability of 
the present methodology regarding previous works [1] 
and experimental results, and to analyse the time and 
space behaviour of the global saturation under both con-
stant pressure and constant flow rate regimes.

Summarizing, given the importance of the filling simula-
tions of dual-scale fibrous reinforcements in the composites 
processing, the present work is focused on the development 
and implementation of a BEM-based numerical methodol-
ogy to tackle this problem using two lumped approaches: 
Richards and equivalent Darcy. The present development 
is boosted by the necessity to deem the influence of several 
aspects at mesoscopic scale (absorption into the tows con-
sidering the fluid motion at channels, air compressibility, 
air dissolution, flow-direction dependent capillary pres-
sure, vacuum pressure and dynamic evolution of voids) in 
the behaviour of the field variables at the macroscopic scale 
(pressure, velocity, saturation, etc.) in a lumped fashion. It is 
worth noting that the present work is supported by previous 
developments [49]–[51], where the benefits of the reduction 
of meshing requirements associated to BEM techniques and 
the use of Euler Method, smoothing and remeshing algo-
rithms to track the fluid front, were discussed.

2  Governing equations, boundary 
conditions and matching conditions

2.1  Volume‑averaged variables

In the volume averaging method [52], a phase volume-aver-
aged variable, 

⟨
B�

⟩
 , refers to the average of the variable in 

the phase “β” with respect to the total RUC volume, VRUC , 
while an intrinsic-phase volume-averaged variable, 

⟨
B�

⟩� , 
is the average with respect to the volume of the phase “β”, 
V� , as shown in the following equations:

where B� is the pointwise variable in the phase “�”. The 
relationship between 

⟨
B�

⟩
 and 

⟨
B�

⟩� is as follows:

being �� = V�∕VRUC the porosity of the phase “ �”.

(1)
⟨
B�

⟩
=
(
1∕VRUC

)
∫
V�

B�dV�

(2)
⟨
B�

⟩�
=
(
1∕V�

)
∫
V�

B�dV� ,

(3)
⟨
B�

⟩
= ��

⟨
B�

⟩�
,

2.2  Modelling at the mesoscopic scale

As the channel Reynolds number and the tows permeability 
are supposed small, the coupling problem between the fluid 
in the channel and the fluid in the porous media (tows in 
this case) can be defined by a Stokes-Darcy formulation as 
follows:

For the channel (Stokes flow)

For the porous media (Darcy flow in the principal direc-
tions of permeability)

where ui , p , � , Ki , ⟨pf⟩f and 
⟨
uf
⟩
i
 represent the channel 

velocity, pressure in the channel, liquid viscosity, main per-
meabilities, pressure in the porous medium, and velocity in 
the porous medium, respectively.

For the Stokes-Darcy problem, the matching conditions 
used here for the channel-tows coupling were discussed in 
previous works [49, 50]. On the other hand, the boundary 
conditions can be classified into three types (see Fig. 1):

• Inlet and outlet conditions at the Stokes domain (channel 
or gap):

where tinl
1

 and tout
1

 are the inlet and outlet surface tractions 
in the horizontal direction, while pinl and pout stand for 
the prescribed inlet and outlet pressures of the RUC. In a 
similar fashion, uinl

2
 and uout

2
 are the inlet and outlet verti-

cal velocities, which are set to zero.
• No penetration conditions at the Darcy domains (tows):

• Free-surface conditions are applied at the moving bound-
aries between the liquid and air phases, which correspond 
to the fluid fronts inside the tows and the bubble front in 
the channels when void migration is present. Free-surface 
conditions are given by:

Kinematic condition:

(4)�
(
�2ui∕�xjxj

)
− �p∕�xi = 0

(5)�ui∕�xi = 0

(6)
�
uf
�
i
= −

�
Ki∕�

�
⋅

�
�⟨pf⟩f∕�xi

�

(7)�
⟨
uf
⟩
i
∕�xi = 0,

(8)tinl
1

= −pinl ⋅ n̂1, uinl
2

= 0

(9)tout
1

= −pout ⋅ n̂1, uout
2

= 0

(10)𝜕p∕𝜕n̂ = 0
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Dynamic condition:

where Pair is the air pressure, Pcap is the capillary pres-
sure and un is the normal velocity of the moving bound-
ary, which is equivalent to the normal pore velocity, 
un = −

[
Ki∕

(
�t�

)]
⋅

(
�p∕�xi

)
n̂i , in the porous medium. In 

this expression, Ki , �t , � , p and n̂i stand for tow permeabil-
ity in “i” direction, tow porosity, liquid viscosity, pressure, 
and outward normal vector. At the liquid–air interface corre-
sponding to the bubble front when void migration occurs, the 
capillary pressure is computed as Pcap = −𝜎𝜅 = −𝜎(∇ ⋅ n̂) , 
where � and � are the surface tension and curvature of the 
liquid–air interface, respectively, with the last one computed 
as previously shown in [49, 51]. On the other hand, the mod-
els used for the calculation of the flow direction- depend-
ent capillary pressure, Pcap , in both the longitudinal tows 
(warps) and the transverse tow (weft) are detailed in [49].

It is worth noting that the air sub-domain is not directly 
modelled in the present work. The time evolution of this 
sub-domain is determined by the velocity field calculated 
along the liquid–air interphase at each time step, which in 
turns depends on the dynamic condition, Eq. (12). There-
fore, the Stokes-Darcy formulation used in the mesoscopic 
simulations is always applied for fully saturated zones in 
both the channel and the tows, and compressibility is not 
directly included on the corresponding governing equations, 
but instead on the dynamic condition, Eq. (12).

In this work, the architecture of the porous media is con-
sidered as a bank of aligned micro-cylinders, and the main 
permeabilities can be computed using the model proposed 
by Gebart [53]:

where Rf  and Vf = 1 − �t are the fiber radius and the fiber 
volume fraction of tow, respectively. In this case, a hexago-
nal array of fibers is considered for the tows.

In Fig. 2, it is shown the Representative Unitary Cell 
(RUC) of a hexagonal array of fibers, where the fiber radius, 
Rf  , and half distance between fibers, d , are identified. The 
tow porosity, maximum fiber volume fraction and Gerbart 
parameters for such particular RUC are given by: 
�t = 1 − �R2

f
∕
�
2
√
3
�
Rf + d

�2�  ,  Vf ,max = �∕
�
2
√
3
�

 , 

c1 = 16∕
�
9�

√
6
�
 and c = 53.

(11)dxi∕dt = unn̂i =
(
uj ⋅ n̂j

)
n̂i

(12)p − Pair = −Pcap,

(13)K1 = 8R2
f
⋅

(
1 − Vf

)3
∕
(
c ⋅

(
Vf

)2)

(14)K2 = c1

(√
Vf ,max∕Vf − 1

)5∕2

R2
f
,

2.3  Modelling at the macroscopic scale

At the macroscopic scale, two approaches to model the 
unsaturated filling are deemed here: Richards and equiva-
lent Darcy. In the first one, two sub-domains are consid-
ered, namely, saturated and non-saturated, with the former 
one including both the channel and the filled zones of the 
tows. In this approach, an effective permeability function in 
terms of the RUC saturation is required. On the other hand, 
the equivalent Darcy approach is obtained from the applica-
tion of the method of volume averaging to two sub-domains 
that are conceived as different phases, namely, the channel 
and the tows. In this approach, a non-linear sink function 
in terms of the tows saturation and other volume-averaged 
variables, which accounts for the mass absorption into the 
tows, is necessary.

In the Richards approach, a fluid phase (f ) , including both 
liquid (l) and gas (g) , is considered, and the gas density and 
velocity are neglected, obtaining the following mass con-
servation equation:

where �l , 
⟨
uil

⟩
 , VRUC , Af  , uif  and n̂if  are the liquid phase 

porosity, phase volume-average liquid velocity, the RUC 
volume, fiber-fluid interphase area, pointwise fluid velocity, 
and the normal unit vector of fiber-fluid interphase, respec-
tively. By defining saturation as the ratio between the volume 
of the liquid and fluid phase, s = Vl∕Vf  , considering that 
�l = Vl∕VRUC and assuming the impermeability and 

(15)
��l
�t

+
�⟨ui⟩l
�xi

= −
1

VRUC
∫
Af

uif n̂if dAf

Fig. 2  Hexagonal array of fibers
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non-deformability of the fibers, i.e., uif = 0 in Af  , Eq. (15) 
can be written as:

where �f  is the porosity of the fluid phase, which remains 
constant.

On the other hand, considering the assumptions men-
tioned above for the fluid and fibers, neglecting gravitational 
effects, and deeming scale constraints of Darcian fluids, the 
following momentum equation is obtained:

As 
⟨
uif

⟩
≈
⟨
uil

⟩
 and considering that both the permeabil-

ity and the pressure shall be regarded as a function of the 
saturation, s , Eq. (17) can be substituted into Eq. (16) to 
obtain the Richards equation:

where Kijf
(s) is known as the effective unsaturated 

permeability.
On the other hand, the equivalent Darcy approach 

employed in the present work for the macroscopic model-
ling of dual-scale porous media was proposed by [54]. Two 
phases are considered (Fig. 1): channels or gaps (g), which 
are assumed to be initially filled with liquid, and bundles 
or tows (t), which are considered initially empty. The mass 
conservation equation is given by:

where 
⟨
uig

⟩
 is the phase volume-average channel or gap 

velocity and Sg is the sink term accounting for the flow 
absorption through the tows as given by:

where Agt, uigt and n̂igt stand for the area, liquid velocity, and 
unit normal vector in the gap-tow interface, represented by 
subscript “gt”. On the other hand, the momentum equation 
in this approach is given by:

(16)�f
�s

�t
+

�
⟨
uil

⟩

�xi
= 0

(17)
⟨
uif

⟩
= −

Kijf

�f

�
⟨
pf
⟩f

�xj

(18)�f
�s

�t
−

�

�xi

(
Kijf

(s)

�f

�
⟨
pf
⟩f
(s)

�xj

)
= 0

(19)
�
⟨
uig

⟩

�xi
= −Sg

(20)Sg = −1∕VRUC ∫Agt

uigt n̂igt dAgt

(21)
⟨
uig

⟩
= −

Kig

�
⋅

�

�xi

⟨
Pg

⟩g
,

where 
⟨
uig

⟩
 and 

⟨
Pg

⟩g stand for the phase volume-averaged 
velocity and intrinsic phase volume-averaged pressure in the 
channels, respectively, whereas Kig

 represents the equivalent 
channel or gap permeabilities in the principal directions “i" 
assuming impermeable tows.

For the particular case of unidirectional filling at the mac-
roscopic scale, the non-dimensionalization of the variables 
depends on the injection regime, as follows (volume-aver-
aged symbols are omitted for sake of simplicity):

• For both constant pressure and constant flow rate 
regimes:

• For a constant pressure regime only:

• For a constant flow rate regime only:

where x , Lff  , t  , p and u1 are the horizontal coordinate, 
fluid front position, time, pressure, and horizontal veloc-
ity, respectively; whereas, x̂ , L̂ff  , t̂ , p̂ and û1 are the cor-
responding non-dimensionalized variables. On the other 
hand, L , � , Pinj , Pvac , Kg , A and Qinj stand for the domain 
length, liquid viscosity, injection pressure, vacuum pres-
sure, gap permeability, cross-section area of cavity, and 
injection flow rate, respectively.

3  Integral equation formulations 
and numerical techniques

3.1  Integral equations at the mesoscopic scale

At the mesoscopic scale (RUC filling), the boundary integral 
formulations for Stokes [55] and Darcy [56, 57] equations 

(22)x̂ = x∕L

(23)L̂ff = Lff∕L

(24)t̂ = t∕
(
L2𝜇∕

(|||Pinj − Pvac
|||Kg

))

(25)p̂ = p∕
|||Pinj − Pvac

|||

(26)û1 = u1∕
((|||Pinj − Pvac

|||Kg

)
∕(L�)

)

(27)t̂ = t∕
(
LA∕Qinj

)

(28)p̂ = p∕
(
QinjL𝜇∕

(
A ⋅ Kg

))

(29)û1 = u1∕
(
Qinj∕A

)
,
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are given in terms of the corresponding Green’s integral 
formulae:

where cij(�) = (�∕2�)�ij , with � as the solid angle at the 
source point, � , whose value is � = � for points located over 
a smooth contour. For points located inside the domain, 
cij = �ij . In a similar fashion, c(�) is equal to 1∕2 for points 
over a smooth surface and 1 for points inside the domain. 
The integral kernels in Eqs. (30) and (31) are given in terms 
of the corresponding fundamental solutions, which are the 
following:

where r = |� − y| , re =
[(
K
2

∕K
1

) 1

2

(
y
1

− �
1

)
2

+
(
K
1

∕K
2

) 1

2

(
y
2

− �
2

)
2

]
1∕2

 and Ke =
(
K1K2

)1∕2 , with � and y as the 
source and field points, respectively. The integrals present 
in the fundamental solutions, Uj

i
(�, y) (Stokes) and p∗(�, y) 

(Darcy), correspond to the single-layer potentials (SLP), and 
those present in Kij(�, y) (Stokes) and q∗(�, y) (Darcy), to the 
double layer potentials (DLP).

3.2  Integral equations at the macroscopic scale

As abovementioned, two approaches are considered for the 
macroscopic modelling in the present work: Richards and 
Equivalent Darcy. In the first one, considering the princi-
pal directions of permeability in Eq. (18) and applying the 
property of the derivative of a product, the next equation is 
obtained:

(30)cij(�)uj(�) = ∫
S

Kij(�, y)uj(y)dSy − ∫
S

U
j

i
(�, y)tj(y)dSy

(31)c(�)p(�) = ∫
S

p∗(�, y)q(y)dSy − ∫
S

q∗(�, y)p(y)dSy,

(32)U
j

i
(�, y) = −

1

4�

[
ln
(
1

r

)
�ij +

(
�i − yi

)(
�j − yj

)

r2

]

(33)Kij(�, y) = −
1

�

(
�i − yi

)(
�j − yj

)(
�k − yk

)
nk(y)

r4

(34)p∗(�, y) = −
1

2�
ln
(
re
)

(35)

q∗(�, y) =
Ki

Ke

�p∗

�yi
(�, y)n̂i(y)

= −

[(
y1 − �1

)
n̂1(y) +

(
y2 − �2

)
n̂2(y)

]

2�
(
re
)2 ,

In the second approach, the combination of the mass con-
servation, Eq. (19), and momentum conservation, Eq. (21), 
leads to the following equation:

The integral formulation for Eqs. (36) and (37) is given 
by:

where the fundamental solutions, p∗ and q∗ , considering a 
uniform anisotropic ratio  (K1/K2) at macroscopic scale, have 
the same form as the ones presented in Eqs. (34) and (35), 
whereas the non-homogeneous terms for Eqs. (36) and (37) 
are given by:

where Kef
(s) =

(
K1f (s) ⋅ K2f (s)

)1∕2 and Keg
=
(
K1g ⋅ K2g

)1∕2 
are the equivalent quasi-isotropic unsaturated and gap per-
meabilities, respectively. The domain integral of Eq. (38) 
can be transformed into boundary integrals using the Dual 
Reciprocity Boundary Element Method (DR-BEM) [58]. 
Firstly, the non-homogenous term, b , is approximated using 
Radial Basis Function (RBF) interpolation with Augmented 
Thin Plate Splines (ATPS) of order n = 2 , which are given 
by the next formulae:

where NB is the number of boundary points, NI is the num-
ber of interior points and r(y, zm) = |y − zm| is the distance 
between the field points, y , and the trial points, zm . The non-
homogeneous term can be expanded as follows:

(36)
Kif

(s)

�f

�2
⟨
pf
⟩f
(s)

�x2
i

= −
�

�xi

(
Kif

(S)

�f

)
�
⟨
pf
⟩f
(s)

�xi
+ �f

�s

�t

(37)
Kig

�
⋅

�2
⟨
Pg

⟩g

�x2
i

= Sg

(38)

c(�)p(�) = ∫
S

p∗(�, y)q(y)dSy − ∫
S

q∗(�, y)p(y)dSy

+ ∫
Ω

b(y)p∗(�, y)dΩy,

(39)b = −
�f

Kef
(s)

⋅

[
�

�xi

(
Kif

(S)

�f

)
�
⟨
pf
⟩f
(s)

�xi

]
+ �f

�s

�t

(40)b =
�

Keg

Sg = −
�

Keg

⎛⎜⎜⎜⎝
1

VRUC
∫
Agt

uigt n̂igt dAgt

⎞⎟⎟⎟⎠
,

(41)f m(y) =

⎧⎪⎨⎪⎩

r2 ln (r) for m ∈
�
1,NB + NI

�
1 for m = NB + NI + 1

y1 for m = NB + NI + 2

y2 for m = NB + NI + 3

⎫⎪⎬⎪⎭
,
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where �m represent the approximation coefficients. The 
ATPS defined in Eq. (41) requires the addition of orthogo-
nality conditions, as shown in the following equation:

After substituting Eq. (42) into Eq. (38), the integral rep-
resentation takes the following form:

The transformation of the domain integral into a bound-
ary integral is accomplished by defining the following aux-
iliary pressure field:

with the particular solutions for the ATPS (Eq. (41)), p̂m 
and q̂m , given in [59].The substitution of Eq.  (45) into 
Eq. (44) and the application of Green’s identities in the 
domain integral lead to the following boundary-only inte-
gral representation:

where the coefficients �m are obtained from the inverse of 
the matrix [F] , which, in turns, is obtained by collocation of 
NB boundary nodes and NI internal nodes.

3.3  Numerical solution

The boundary and the physical variables are discretized 
using quadratic isoparametric interpolation in both prob-
lems, i.e., the mesoscopic and macroscopic problems. In the 
corners, discontinuous shape functions with a collocation 
factor of �dis = 2∕3 are used [60]. Standard Gaussian inter-
polation is implemented to compute the regular integrals. 
The singularities of DLP integrals are treated using the rigid 
body motion principle [56] and the singular integrals of the 
SLP, using the Telles transformation [61].

(42)b(y) =

NB+NI+3∑
m=1

�mf m(y),

(43)
NB+NI∑
m=1

�m =

NB+NI∑
m=1

�mxm
1
=

NB+NI∑
m=1

�mxm
2
= 0

(44)

c(�)p(�) = ∫
S

p∗(�, y)q(y)dSy − ∫
S

q∗(�, y)p(y)dSy

+

NB+NI+3∑
m=1

�m ∫
Ω

p∗(�, y)f m(y)dΩy

(45)
𝜕2p̂m

𝜕yk𝜕yk
= f m(x),

(46)

c(𝜉)p(𝜉) = ∫
S

p∗(𝜉, y)q(y)dSy − ∫
S

q∗(𝜉, y)p(y)dSy

+

NB+NI+3∑
m=1

𝛼m

(
c(𝜉)p̂m(𝜉) − ∫

S

p∗(𝜉, y)q̂m(y)dSy + ∫
S

q∗(𝜉, y)p̂m(y)dSy

)

At the mesoscopic scale, i.e., the coupled problem 
Stokes-Darcy, after the discretization of the contour and 
physical variables of the problem and applying the boundary 
and matching conditions, a system of equations is obtained. 
That system is solved using a singular value decomposition 
(SVD) algorithm due to the ill-conditioning of the system. 
More details about the numerical treatment of the Stokes-
Darcy formulation considered here can be found in previous 
works [49, 50]. On the other hand, at the macroscopic scale, 
the final system can be written as:

where the matrix [M] is as follows:

with 
[̂
p
]
 and 

[̂
q
]
 as the matrices corresponding to the evalua-

tion of the particular solutions, p̂m and q̂m , in all field points, 
whereas 

[
F−1

]
 is the inverse of the matrix [F] . In Eq. (47), the 

term b⃗ is highly non-linear and the system is solved using 
Picard iteration.

3.4  Tracking of the fluid front

The numerical technique used to track the moving bounda-
ries is based on a first-order Euler integration of the kin-
ematic condition, Eq. (11). A detailed description of the 
numerical implementation of this technique for these par-
ticular problems can be found in the Appendix of [50]. Once 
the meshes of the moving boundaries have been recon-
structed at the current time step, and the normal vector and 
curvatures have been computed, the BEM and DR-BEM 
algorithms are used to calculate the velocity at the moving 
boundaries. The cycle is repeated in a quasi-static approach, 
given the low Reynolds approximation of the problem.

3.5  Post‑processing calculations

At the mesoscopic scale, i.e., coupled problem Stokes-
Darcy, the fluid velocity inside the channel is computed 
using Eq. (30) with cij = �ij and the integral representation 
for the pressure is used to compute the pressure field [56]:

where pi(�, y) = −
1

2�r2

(
�i − yi

)
 is the fundamental solution 

for the pressure and 
∏

ik (�, y) =
1

2�

�
�ik
r2

−
2

r4

�
�i − yi

��
�k − yk

��
 

(47)

[H]
(d)

(NB+NI)×(NB+NI)
p⃗ − [G]

(d)

(NB+NI)×NB

q⃗ = [M](NB+NI)×(NB+NI+3) ⋅ b⃗,

(48)

[M](NB+NI)×(NB+NI+3)

=
(
[H]

(d)

(NB+NI)×(NB+NI)

[̂
p
]
(NB+NI)×(NB+NI+3)

− [G]
(d)

(NB+NI)×NB

[̂
q
]
NB×(NB+NI+3)

)

+
[
F−1

]
(NB+NI+3)×(NB+NI+3)

(49)

p(�) = 2� ∫
S

∏
ik
(�, y)n̂k(y)ui(y)dSy − ∫

S

pi(�, y)ti(y)dSy,
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corresponds to the fundamental solution for the pressure 
gradient.

In the porous media, the pressure in the interior points is 
estimated from Eq. (31) doing c(�) = 1 , while the velocities 
are given by the Darcy’s law, approximating the pressure 
gradient in the source point as follows:

At the macroscopic scale, the calculation of the pressure 
in the interior collocation points is straightforward by solv-
ing the system defined in Eq. (47).

4  Methodology for calculation of lumped 
functions of unsaturated permeability 
and sink term

4.1  Main assumptions and simplifications

In the present work, the methodology to compute the lumped 
functions considers both the air compressibility and air dis-
solution. When air dissolution is present, it is possible to 
reach the total tow saturation 

(
St = 1

)
 ; otherwise, an equi-

librium saturation, Seqt  , is reached. An essential difference 
between the present methodology and the one employed in 
[2, 14, 15, 23]–[25] is the prescription of a pressure gradient 
in the channel rather than a constant pressure; hence, flow 
in the channel is modelled using Stokes equation and the 
tows filling is determined by the Darcy law and the matching 
conditions Stokes-Darcy. The RUC geometry and boundary 
conditions are sketched in Fig. 1, where three sub-domains 
can be differentiated: longitudinal tows (warps), transverse 
tow (weft) and channel.

The RUC geometry chosen here is a very simple ideali-
zation of cross-ply or low-crimp degree woven fabrics; this 
allows reducing the dimensionality of the problem from 3D 
to 2.5D or 2D, with the consequent reduction in the com-
putational cost. Similar simplifications has been reported 
before in [2, 9, 13, 18, 26, 27, 45, 62, 65]–[64]. In other 
works, fully 3D simulations have been performed, leading 
to more realistic results, but at the expense of an increase 
of the computational cost [6, 10, 11, 16, 20]. In general, 
the shape of a fiber fabric is not entirely constant in the 
transverse direction, but this change is less influential as 
the yarns spacing and transverse crimp-degree is small; in 
such a case, 2D simplifications can be suitable. On the other 
hand, when positioned in the mold, four principal deforma-
tion mechanisms arises in bi-directional fabrics [66]: inter-
fiber shear, inter-fiber slip, fiber buckling and fiber exten-
sion; additionally, nesting occurs during the ply stacking 
due to the relative layer shift. This causes a more intricated 

(50)
�p(�)

��i
= ∫

S

�p∗(�, y)

��i
q(y)dSy − ∫

S

�q∗(�, y)

��i
p(y)dSy

RUC geometry regarding the simple idealization deemed 
in Fig. 1. However, it is worth mentioning that, in a real 
application, these deformation phenomena are not uniform 
along the injection domain, and therefore, a RUC representa-
tion accounting for them, is not necessarily replicable to all 
points of the domain. The consideration of a particular 3D, 
more complex RUC geometry considering these deforma-
tion phenomena, is out of the scope of the present work, but 
this can be tackled in future researches using the present 
methodology.

As observed in Fig. 1, the air compressibility is consid-
ered for the weft, and total tow saturation is thus not pos-
sible when the air dissolution is neglected. For the warps, 
on the contrary, uncompressed air is deemed because it is 
considered that air can displace towards the adjacent RUC 
in the flow direction, considering that, when the problem 
is conceived at the macroscopic frame (filling of cavities), 
this adjacent RUC is less saturated than the analysed RUC.

4.2  Definition of scale constraints

As aforementioned, the tows are considered as a bank of 
aligned fibers, and two phases can be identified: fibers (fb) 
and fluid (fl). For the modeling of the tows, a Darcy approxi-
mation is considered in the present work, which is valid 
provided that the following conditions are fulfilled [52]:

• The characteristic length of the fluid phase, Lfl , is signifi-
cantly smaller than characteristic length of the RUC of 
the tow, LRUC,tow , namely Lfl ≪ LRUC,tow.

• The following length scale constraints are fulfilled: 
L2
RUC,tow

≪ L𝜀Lp1 and L2
RUC,tow

≪ L𝜀Lv2 , where L� , Lp1 and 
Lv2 are the characteristic lengths associated with the 
change of porosity of fluid phase 

(
�fl
)
 , the change of first 

derivate of the intrinsic-phase fluid average pressure (
∇
⟨
Pfl

⟩fl
)
 and the change of second derivative of the 

intrinsic-phase fluid average velocity 
(
∇∇

⟨
vfl
⟩fl
)

 , 
respectively. If the porous medium is homogeneous and 
the porosity can be considered uniform, these scale 
restrictions are fulfilled since L� → ∞.

• The following length scale constraint is satisfied: |||
⟨
yfl
⟩fl||| ≪ Lv and |||

⟨
yfl
⟩fl||| ≪ Lfl , where 

⟨
yfl
⟩fl is the 

intrinsic phase position vector of the fluid phase regard-
ing the RUC centroid and Lv is the characteristic length 
associated with the change of the intrinsic-phase fluid 
average velocity 

(⟨
vfl
⟩fl
)
 . These restrictions are satisfied 

for well-arranged porous media where local porosity 
changes are negligible.

• The next length scale restriction is fulfilled: 
L2
RUC,tow

≪ LvLv1 , where Lv1 is the characteristic length 
associated to the change of first derivative of the intrin-
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sic-phase fluid average velocity 
(
∇
⟨
vfl
⟩fl
)
 . This is valid 

when large gradients of 
⟨
vfl
⟩fl are not present in the 

porous medium, where the Brinkman correction term can 
be ignored.

In the particular case of the tows considered in the present 
work, the first and second condition are fulfilled since the 
tow porosity is very low and uniform. The third condition 
is valid because the Representative Unit Cell of the tow is 
assumed well-ordered and local porosity changes are not 
relevant. Finally, the fourth condition is satisfied consider-
ing the small velocity gradients in the tows, which allows 
neglecting the Brinkman correction term.

Several simulation cases of the RUC filling are carried 
out to obtain lumped functions for the unsaturated permea-
bility, Kif

(s) , and the sink term, Sg . The RUC geometry and 
prescribed inlet and outlet pressures of these cases shall 
comply with several scale constraints that lead to Darcian 
fluid flow according to [52]. Additionally, the LCM pro-
cesses entail another scale restrictions. First of all, applying 
the constraints given in [52] on the gap phase, Darcy’s sim-
plification is possible provided that the following equation 
is valid for the phase volume-averaged pressure gradient, ⟨
�Pg∕�xi

⟩
:

where Pg stands for the pointwise pressure in the channel 
sub-domain, whereas P̃g = Pg −

⟨
Pg

⟩g is defined as the 
local variation of the pressure and �g = Vg∕VRUC is the 
gap volume fraction, with Vg as the channel volume. Equa-
tion (51), in turns, is valid under the next scale restrictions:

where LRUC and Lg are the characteristic length-scales of 
the RUC and the channel or gap phase, respectively. On 
the other hand, L�g and Lp1g are the characteristic length-
scales defined by the estimates ∇�g = O

(
Δ�g∕L�g

)
 and 

∇∇P
g
g = O

(
∇P

g
g∕Lp1g

)
 , respectively. In the latter, Δ stands 

for the absolute change of the variable, while ∇ and ∇∇ 
represent the first and second derivative, respectively. On 
the other hand, the symbol O is used to denote the order 
of magnitude. The constraint of Eq. (52) is satisfied in the 
present work because the average inter-tow distance, which 
is an acceptable approximation for Lg , is smaller than the 
RUC length, LRUC (See Fig. 1). Similarly, the constraint of 
Eq. (53) is also satisfied here because the porous medium is 

(51)

⟨
𝜕Pg∕𝜕xi

⟩
= 𝜀g

(
𝜕
⟨
Pg

⟩g
∕𝜕xi

)
+
(
1∕VRUC

)
∫
Agt

�Pg ⋅ n̂gtdA,

(52)Lg ≪ LRUC

(53)
(
LRUC

)2
≪ L𝜀gLp1g,

homogeneous at the macroscopic scale, leading to L�g → ∞ 
[52].

Moreover, in LCM processes, the assumption of full-
filled channels is more realistic as the viscous forces exceed 
the capillary ones. This can be valid when: (1) tows perme-
abilities, K1 and K2 , are very small regarding the gap perme-
ability, Kg , and (2) inlet injection pressure, Pinj , is at least 
one order of magnitude larger than capillary pressure, which 
has an order of magnitude of O(3) for LCM processes [5, 
67]–[69]. The first condition is fulfilled since K1 and K2 have 
an order of O(−13) and O(−14) , respectively, while the gap 
permeability has an order of O(−9) , as shown later. To sat-
isfy the second condition, a minimum injection pressure of 
order O(4) is considered in the macroscopic simulations. On 
the other hand, according to Park et. al [1], pressure profiles 
for unidirectional injections in dual-scale fibrous reinforce-
ments can be divided into three categories, as shown in 
Fig. 3a–c. For the fully saturated zone 

(
St = 1

)
 , pressure pro-

file is linear, while in the partially saturated zone 
(
St < 1

)
 , 

pressure profile is non-linear and can be approximated by 
parabolic curves, being concave (Fig. 3a), convex (Fig. 3b) 
or both ones (Fig. 3c) depending on the magnitude of the 
mass absorption into the tows; in general, the larger this 
absorption, the more concave the profile is [70, 71], while a 
convex shape is liable to be obtained as the mass absorption 
decreases [72]. Taking into account the possible forms of 

Fig. 3  Common pressure profiles in unidirectional injections for dual-
scale fibrous reinforcements. a Linear-Concave, b Linear-Convex, c 
Linear-Convex-Concave [1]
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the pressure profile and considering a minimum order for 
the injection pressure, Pinj , of O(4) , and a maximum order 
for the length scale of macroscopic problem, L , of O(0) , it 
is expected a minimum order for the pressure gradient of 
around O(3) . As the order of LRUC is O(−3) in the present 
work, as shown later, the minimum order for the change of 
pressure along the RUC, Δp , could be taken as O(0).

On the other hand, the maximum order for the pressure 
gradient is determined by considering a mesoscopic scale 
restriction for the local velocity variation in the channel 
phase, ũg , which establishes that [52]:

where ũg = ug −
⟨
ug
⟩g , with ug and 

⟨
ug
⟩g as the pointwise 

and volume-average gap velocity, respectively.
In some researches about LCM processes, the maximum 

order for the volume-averaged velocity in the channel, 
⟨
ug
⟩g , 

has been taken as O(−1) [62, 73, 74] and the maximum 
order for the fluid viscosity is O(−1) . Consequently, taking 
into account this, together with the fact that the order of 
magnitude of gap volume fraction is O(−1) and the order 
of magnitude of gap permeability is O(−9) , the maximum 
order for the pressure gradient, according to Darcy’s law, 
is O(6) , which corresponds to a pressure change along the 
RUC, Δp , of order O(3) . Additionally, to be consistent with 
the Stokes approximation for the channels, it is necessary 
to check that the gap Reynolds number, Reg , as defined by 
Eq. (55), remains small.

where � , � and Lg stand for the liquid density, liquid vis-
cosity and characteristic length of the channel or gap sub-
domain, respectively.

4.3  Calculation of effective unsaturated 
permeability and sink functions

Studies about the effect of saturation on the effective per-
meability, Keff  , of fibrous reinforcements, have been con-
ducted before. For instance, Landeryou et al. [4] carried out 
some experiments in nonwoven samples at different flow 
rates. They found that the relationship between unsaturated 
permeability and saturation does not depend on the flow 
rate. Afterwards, Ashari [3, 5] run some FEM simulations 
to study the influence of the saturation, fibre diameter and 
fibre content on the unsaturated permeability of nonwoven 
reinforcements. Recently, He et al. [6] presented a method 
to obtain the random permeability field of single-layer 
woven fabrics using fluid dynamics simulations in ANSYS/
CFX, the Karhuven-Loéve expansion method and dimen-
sion reducing techniques. On the other hand, the influence 

(54)
⟨||| �ug

|||
⟩g

≪
⟨
ug
⟩g
,

(55)Reg = �
⟨
ug
⟩g
Lg∕�,

of intra-yarn flows on 3D woven fabrics permeability was 
tackled using Stokes-Darcy simulations by Julien et al. [10]. 
In the present work, curves of Keff vs St are obtained by com-
puting the value of Keff  in several time instants as follows:

where ΔP∕Δx is the pressure gradient along the RUC and 
⟨ul⟩ is the phase volume-averaged velocity of the liquid 
obtained from the BEM simulations, which includes the 
channel and the saturated volume of the tows.

On the other hand, the sink term, Sg , defined in Eq. (20), 
can be characterized in terms of some volume-averaged vari-
ables of the RUC. According to Simacek and Advani [24], Sg 
can be taken as a function of the volume-averaged pressure, ⟨
Pg

⟩g , and the tows saturation, St . A sink function, Sg , of this 
kind was implemented in macroscopic filling simulations in 
[16, 17, 23, 25, 35]. A lumped function for Sg was deduced 
in [14, 15] as follows:

b e i n g  f1
(⟨

Pg

⟩g)
= �t

(
1 − �g

)
A1

(⟨
Pg

⟩g)  a n d 
A1

(⟨
Pg

⟩g)
=
(
A∗
1
∕�∗

)⟨
Pg

⟩g , while the fitting coefficients 
A∗
1
 , A2 , A3 and �∗ are determined after running several simu-

lations of the tows filling assuming a constant liquid pressure 
in the channels.

In the present work, the sink term, Sg , shall fulfil the prin-
ciple of mass conservation in the gap or channel sub-domain. 
Accordingly, for a unitary width RUC, the following is valid:

where the mean inlet and outlet velocities of the RUC, uin 
and uout , are defined by:

where uin and uout are the pointwise inlet and outlet velocities 
obtained from the BEM simulations, whereas Hg is the gap 
or channel height.

The sink term, Sg , and tows saturation rate, Ṡt , are directly 
related by the following expression:

where �t and �g are the tow porosity and gap volume frac-
tion, respectively.

(56)Keff = −⟨ul⟩�∕(ΔP∕Δx),

(57)Sg =
(
f1
(⟨

Pg

⟩g)
∕�

){
eA2(1−St)

A3

− 1
}
,

(58)Sg =

(
uin − uout

)
Hg

HRUC ⋅ LRUC
,

(59)uin =

(
Hg∕2∫

−Hg∕2

uin dy

)
∕Hg

(60)uout =

(
Hg∕2∫

−Hg∕2

uout dy

)
∕Hg,

(61)Sg = 𝜀tṠt
(
1 − 𝜀g

)
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4.4  Characterization of the RUC and tows

Geometrical data used for BEM simulations were obtained 
from the characterization of a bidirectional fabric. The in-
plane dimensions of the RUC were found by visual char-
acterization using stereomicroscopy. In Fig. 4, it is shown 
how the idealized 2D RUC considered here (Fig. 1) fits to 
the real fabric architecture. According to such figure, tow 
width is 2800 µm and distance between bundles is 700 µm, 
leading to a 2D RUC length of 3500 µm. On the other hand, 
the natural thickness of the textile preform was measured 
following the ASTM D-1777 standard, obtaining a value of 
0.847 mm. However, it is well known that the real preform 
thickness depends on the cavity where it is positioned and 
a larger compaction implies a greater RUC deformation, 
moving away from the idealized 2D RUC represented in 
Fig. 1. Therefore, mould thickness and number of plies for 
experimental tests were selected in order to obtain a similar 
thickness to the natural one and perverse the original RUC 
configuration. Accordingly, cavity thickness is 3.2 mm and 
number of stacked fabrics are 4, reaching an RUC thick-
ness of 0.8 mm, which is very close to the natural one 
(0.847 mm).

For the sake of the RUC idealization, to be consistent 
with the inter-tow free-liquid passage in some parts of the 
fibrous reinforcement generated by the injection pressure 
and with the assumption of full filled channels, it is included 
a small gap between warps and weft (see Fig. 1). The pres-
ence of small inter-tow liquid passages has been considered 
in other works as well [13, 26, 27, 62]–[65].

For the tow characterization, Scanning Electron Micros-
copy (SEM) was used, as can be observed in Fig. 5. Sev-
eral zones of the tow were zoomed in and the average fiber 
radius was found to be Rf = 9.96 μm . The tow porosity 
for each zone was estimated by thresholding binarization 
image analysis using free software ImageJ, obtaining an 
average value of �t = 0.19 . Using the Gebart model [53], 
this leads to main permeabilities of K1 = 1.53 × 10−13 m2 
and K2 = 1.80 × 10−14 m2 . Similar values of tow porosity 
and permeabilities have been considered in previous works 
[2, 7, 10, 69, 75].

5  Simulation planning, results 
and discussion

5.1  Analysis of saturation at the mesoscopic scale

5.1.1  Saturation curves assuming a uniform channel 
pressure

Firstly, some filling simulations of the RUC represented in 
Fig. 1 are run using BEM and assuming a uniform channel 
pressure, as done in [2, 14, 15, 23]–[25]. Additionally, air 
compressibility, partial air dissolution and vacuum pressure 
are not considered, and it is assumed full air dissolution. 
Data to run these simulations are shown in Table 1, where 
the channel pressures, 

⟨
Pg

⟩g , coincide with the ones used in 
[2, 14]. Dimensions of the RUC geometry considered here 

Fig. 4  In-plane characterization of RUC using a stereomicroscope



1235Computational Mechanics (2021) 68:1223–1266 

1 3

(Fig. 1) are reported in Table 1, namely,  LRUC ,  HRUC ,  Hg, 
 a1 and  a2.

It is defined a normalized time to construct the saturation 
curves, as follows:

where tfill is the total filling time, which is obtained from 
the BEM simulations and is reported in Table 2. The RUC 
geometries considered in Wang and Grove [2] and Tan [14] 

(62)� = t∕tfill,

Fig. 5  Tow characterization using Scanning Electron Microscopy and free image analysis software ImageJ. a Front view of one bundle, b Front 
view of zoomed-in zone of the bundle and corresponding thresholding binarization, c Top view of several bundles and diameter measurements
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are represented in Fig. 6a, b, respectively, while the RUC 
geometry of the present work is displayed again in Fig. 6c. 
Using BEM results, the curves of Stvs. � for all values of ⟨
Pg

⟩g of Table 1 were obtained as shown in the Fig. 6f. 
When these curves are compared to the curves of the Fig. 6d, 
e, which correspond to the saturation curves obtained in [2] 
and [14] using FEM, respectively, some similarities can be 
identified. As can be observed, results converge into a single 
master curve; besides, despite curves are not the same since 
RUC geometries are different, a similar general behaviour of 
the saturation rate is observed: it is significant at the begin-
ning of the injection and decreases as the filling occurs.

5.1.2  RUC filling using the present methodology

Two BEM simulations of the RUC filling are compared to 
each other (Figs. 7a–c and 8a–k) to illustrate the principal 
differences between the constant-pressure methodology 
and the present one. In both simulations, for each filling 
instant, they are shown: the ratio of the current time to the 
total simulation time 

(
t∕tsim

)
 , warps saturation ( Swarps) , weft 

saturation ( Sweft) and total tow saturation ( St) . In those fig-
ures, x and y coordinates are reported in normalized form as 
x∗ = x∕LRUC and y∗ = y∕LRUC . The geometric and material 
inputs of both simulations are shown in Table 1. On the other 
hand, the processing inputs for the simulation of Fig. 7a–c 

are a uniform channel pressure of 
⟨
Pg

⟩g
= 122 kPa and 

a fluid front pressure equal to the atmospheric one, i.e., 
Pvac = 0 kPa , whereas, for simulation of Fig. 8a–k, inlet and 
outlet pressures of pin = 125.5 kPa and pout = 118.5 kPa are 
considered, which originates a pressure gradient along the 
RUC of ΔP∕Δx = 2.00 × 103 kPa/m , with a corresponding 
average pressure of 

⟨
Pg

⟩g
= 122 kPa , coinciding with the 

average pressure of the other simulation (Fig. 7a–c). For 
the simulations with the present methodology (Fig. 8a–k), 
a vacuum pressure of Pvac = −75 kPa is taken into account, 
remaining constant in the warps and changing in the weft in 
virtue of the air compression. The case analysed in Fig. 8a–k 
corresponds to full air compressibility, but the present meth-
odology also allows considering the partial air dissolution, 
as shown later.

Several filling instants for the simulation with the con-
stant-pressure methodology are shown in Fig. 7a–c. As can 
be observed in all sub-plots and confirmed with the data tips 
of Fig. 7a, the fluid front moves uniformly, namely, parallel 
to the superior and inferior edges for the warps, and towards 
the center of the RUC for the weft, which is reasonable since 
the pressure is uniform along the channel-tows interface. 
According to this approach, the air in the weft escapes at the 
same tow saturation rate (full air dissolution), leading to the 
total RUC saturation.

For the present methodology, several filling instants are 
represented in Fig. 8a–k. Contrarily to the previous case, as 
the filling occurs, the fluid fronts in the warps and weft are 
not uniform (see data tips of Fig. 8a) since the pressure in 
the channel-tows interface is variable. From Fig. 8a–c, the 
bubble in the weft compresses; but, when air pressure has 
reached the value of the maximum pressure of liquid sur-
rounding the weft plus the capillary pressure, the bubble 
compression stops, and the onset of void mobilization takes 
place (green line in Fig. 8c). From this time instant onwards, 
the change of the weft saturation, Sweft , is negligible and an 
equilibrium saturation, Seqt  , is achieved because the bubble 

Table 1  Data of simulations with the uniform-pressure methodology

Processing data

Number of simulation 1 2 3 4 5 6 7

Channel pressure, 
⟨
Pg

⟩g (Pa) 100 300 500 1000 5000 10,000 50,000

Geometric and material data

Total 
height of 
the RUC, 
HRUC (m)

Length of 
the RUC, 
LRUC (m)

Total 
height of 
the chan-
nel, Hg 
(m)

Major 
semi-axis 
of the 
weft, a

1
 

(m)

Minor 
semi-axis 
of the 
weft, a

2
 

(m)

Viscos-
ity,� 
(Pa.s)

Major 
perme-
ability,  K1 
 (m2)

Minor 
perme-
ability,  K2 
 (m2)

Surface 
tension, � 
(mN/m)

Contact 
angle,�

Fiber 
radius, Rf

(�m)

Tow poros-
ity,�t

8.0E-04 3.5E-03 4.0–04 1.4E-03 1.9E-04 0.1 1.53E-13 1.80E-14 17 30° 9.96 0.19

Table 2  Filling times obtained 
from BEM simulations with the 
uniform-pressure methodology

Simulation 
number

Filling time (s)

1 265.98
2 88.66
3 53.20
4 26.60
5 5.32
6 2.66
7 0.53
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moves towards the right extreme of the weft, changing its 
shape without changing its volume (Fig. 8d–g). The details 
of Fig. 8d, f are shown in Fig. 8e, g, respectively, where 
green lines represent the void displacement. The process of 
void migration can be seen in Fig. 8h–k, where the ratios 
t∕tsim are very close to the unity because this process is much 
faster than the other two processes undergone by the bub-
ble (compression and displacement at constant volume). 
Although the analysis of compression, displacement and 

migration of intra-tow voids is not the focus of the present 
work, it is essential to highlight that the current methodology 
allows simulating these processes, as previously detailed in 
[50].

To conclude the present section, the fulfilment of the con-
straint of Eq. (54) is verified considering the horizontal 
velocities in the channel sub-domain obtained by BEM at 
the filling instants represented in Fig.  8a–j. The ratio 

Fig. 6  Comparison of satura-
tion curves. a RUC geometry 
of Wang and Grove [2], b RUC 
geometry of Tan [14], c RUC 
geometry of present work, d 
Saturation curve of Wang and 
Grove [2], e Saturation curve 
of Tan [14], f Curve St vs. � of 
present work
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⟨|||ũg
|||
⟩g

∕
⟨
ug
⟩g for each of these instants is computed, 

obtaining the results shown in Table 3, where it is appreci-
ated that this restriction is satisfied in all moments.

5.2  Calculation of the lumped functions

5.2.1  Statement of the problem and simulation data

The air dissolution dynamics is a complex phenomenon that 
mainly depends on the partial air pressure (which is function 
on the air composition), temperature and liquid composi-
tion. The Henry´s law approach has been frequently used 

to estimate the solubility of gases into liquids [76], but the 
determination of the Henry´s laws constants is not a simple 
task. Experimental, semi-analytical and numerical methods 
have been employed before, but they could have some draw-
backs. For instance, experimental methods usually demand 
a considerable amount of tests to obtain statistically confi-
dent values, whereas computational methods, like Monte 
Carlo [77, 78] and Molecular dynamics simulations [79, 80], 
do not provide a satisfactory trade-off between time–cost 
and accuracy in complex molecules. On the other hand, the 
application of semi-analytical models is limited and implies 
the availability of other experimental constants, like the sol-
ubility, which in turns depends on another parameters like 
volatilization, entropy, enthalpy of solvation, intrinsic hydro-
phobicity, among others. Many semi-analytical, molecular 
models are based on the supposition that the free energy 
change on dissolution is a linear function of the molecu-
lar properties; these are known as LSER models and have 
shown an acceptable accuracy for the dissolution of some 
organic compounds into water [81]–[84]. In the particular 
case of air dissolution in polymeric resins, some phenom-
ena entail additional complexity [85]–[87]: the continuous 
change of composition of the entrapped air due to the styrene 
vapour formation, the change of the resin temperature, vis-
cosity and species concentration during the curing process, 
the possible change of the resin composition near the void 
due to the fiber sizing wash-out, among others.

Bearing in mind the complexity of the air dissolution 
mechanism, this has been considered at the macroscopic 
equations in a lumped fashion [39, 86] by introducing a 
weighting factor, λ, in the pressure boundary condition of 
the fluid front, in such a way that for λ = 0, the rate of air dis-
solution is so fast that air entrapment is neglected and initial 
air pressure remains constant (full air dissolution), whereas 
for λ = 1, no air dissolution is present and the air pressure 
increases obeying the ideal gas law (full air compressibil-
ity). Both extreme situations were compared in the previous 
section, Figs. 7a–c and 8a–k. According to [39, 69, 86, 88], 
these extreme conditions are not feasible to occur in a real 
situation and the behaviour of the air entrapped inside the 
tow can be considered as a weighted average between both 
limits, with the following equation describing the fluid front 
pressure at the liquid–air interphase:

where Pff  , Plower
ff

 and Pupper

ff
 stand for the fluid front pressure, 

and lower and upper bounds of the fluid front pressure, 
respectively, whereas � is the air entrapment parameter or 
dissolution factor, ranging between 0 and 1. The values of 
Plower
ff

 and Pupper

ff
 are given by the following equations assum-

ing an ideal gas [88]:

(63)Pff = (1 − �)Plower
ff

+ �P
upper

ff
,

Fig. 7  Instants of filling with the constant-pressure methodology. a 
Warps and weft unsaturated, b Total saturation of warps, c Total satu-
ration of the RUC 
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with Pvac , Pcap and Pliquid as the vacuum pressure, capillary 
pressure, and maximum pressure of the liquid surround-
ing the tow. When � = 0 , the case of full air dissolution 
is obtained (Fig. 7a–c), while for � = 1 , the case of full air 
compressibility is reached (Fig. 8a–k).

In the present section, the deduction of the lumped func-
tions is carried out by running several simulations at the 
mesoscopic scale. As shown in Table 4, 56 sets of simula-
tions are considered and, for each set, five air entrapment 
parameters are taken into account; namely, � = 1 (full air 
compressibility), � = 0.75 , � = 0.50 , � = 0.25 and � = 0 
(full air dissolution), obtaining a total of 280 simulations for 
the parametric study. Geometric and material data that are 
kept constants in the simulations are presented in Table 1, 
except for the viscosity, which is changed in the last four sets 
of simulations (53 to 56 in Table 4). The flow orientation-
dependent capillary pressure, Pcap , is computed according 
to the models presented in [49].

5.2.2  Influence of average pressure and pressure gradient 
on the saturation curves

Firstly, to study how the average pressure and pressure gra-
dient affect the behaviour of the total saturation, St , several 
curves of St vs. � are shown in Fig. 9 for the case of full air 
compression, taking Pvac = −75 kPa . In this case, time is 
non-dimensionalized with the equilibrium time, which is the 
time to reach the equilibrium saturation, Seqt  . Curves of Fig. 9 
correspond to some simulations from sets 1 to 31 of Table 4 
considering � = 1 . In all curves, time instant from which the 
total tow saturation, St , remains nearly constant, and void 
mobilisation occurs (see Fig. 8c) corresponds to � = 1 . As 
can be observed, all simulations having the same average 
pressure, 

⟨
Pg

⟩g , tend to converge into a single curve for the 
present small-Reynolds-number simulations, no matter the 

(64)Plower
ff

= Pvac − Pcap

(65)P
upper

ff
= min

(
Pvac∕

(
1 − Sweft

)
,Pliquid

)
− Pcap,

value of the pressure gradient, ΔP∕Δx ; however, the pre-
scription of a pressure gradient, ΔP∕Δx , different to zero, 
induces several physically consistent phenomena at the mes-
oscopic scale that cannot be captured when uniform pressure 
is deemed for the channels, as aforementioned (Fig. 8a–k). 
The same conclusion can be addressed for the other values 
of the air entrapment parameter, � , where the total tow satu-
ration is possible.

5.2.3  Equilibrium saturation

For 𝜆 < 1 , the equilibrium saturation is Seqt = 1 since full 
filling is possible, whereas for � = 1 , the value of Seqt  is not 
known a priori and shall be determined using the results 
of BEM simulations. According to the curves presented in 
Fig. 9, the equilibrium saturation,Seqt  , depends on the aver-
age pressure, 

⟨
Pg

⟩g , in such a way that the larger 
⟨
Pg

⟩g , the 
higher Seqt  . This poses the necessity to obtain a function for 
S
eq

t  when � = 1 . Accordingly, several curves of Seqt  vs. 
⟨
Pg

⟩g 
for different values of vacuum pressure, Pvac , are presented 
in Fig. 10, where it can be observed that a bi-exponential 
fitting is suitable in this case for all values of Pvac , obtaining 
the following regression equation:

The change of the fitting coefficients aeq , beq , ceq and deq 
with the magnitude of the vacuum pressure, ||Pvac

|| , is shown 
in Figs. 11a, b, where some tendencies can be noticed. For 
the fitting coefficients aeq and ceq (Fig. 11a), a linear regres-
sion is adequate, whereas for beq and deq (Fig. 11b), an exact 
bi-exponential interpolation can be deemed. Regression 
equations, fitting coefficients and determination coefficients 
are shown in such figures.

(66)
S
eq

t = aeq
���Pvac

��
�
⋅ ebeq(�Pvac�)⋅⟨Pg⟩g + ceq

���Pvac
��
�
⋅ edeq(�Pvac�)⋅⟨Pg⟩g

Table 3  Ratio 
⟨|||ũg

|||
⟩g

∕
⟨
ug
⟩g 

for filling instants of Fig. 6a-j
Time instant,t∕tsim Description ⟨|||ũg

|||
⟩g

∕
⟨
ug
⟩g

0.010 Warps and weft saturation 0.277
0.023 Total saturation of warps 0.283
0.130 Onset of void mobilization 0.290
0.709 Void displacement at constant volume 0.309
1–2.85 ×  10–5 Onset of void migration 0.320
1–1.48 ×  10–5 Void migration (1) 0.361
1–4.24 ×  10–6 Void migration (2) 0.398
1 Void migration (3) 0.408
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Table 4  Sets of simulations for 
the determination of the lumped 
functions

Set of 
simula-
tions

Inlet pres-
sure, pin 
(kPa)

Outlet pres-
sure, pout 
(kPa)

Vacuum 
pressure, Pvac 
(kPa)

Average pres-
sure, 

⟨
Pg

⟩g 
(kPa)

Pressure gradient, 
ΔP∕Δx (kPa/m)

Viscosity, 
μ (Pa.s)

1 5.50 -1.50 − 75 2 2000 0.1
2 25.50 18.50 − 75 22 2000 0.1
3 45.50 38.50 − 75 42 2000 0.1
4 65.50 58.50 − 75 62 2000 0.1
5 85.50 78.50 − 75 82 2000 0.1
6 105.50 98.50 − 75 102 2000 0.1
7 125.50 118.50 − 75 122 2000 0.1
8 165.50 158.50 − 75 162 2000 0.1
9 205.50 198.50 − 75 202 2000 0.1
10 245.50 238.50 − 75 242 2000 0.1
11 2.50 1.50 − 75 2 285.71 0.1
12 22.50 21.50 − 75 22 285.71 0.1
13 42.50 41.50 − 75 42 285.71 0.1
14 62.50 61.50 −  5 62 285.71 0.1
15 82.50 81.50 − 75 82 285.71 0.1
16 102.50 101.50 − 75 102 285.71 0.1
17 122.50 121.50 − 75 122 285.71 0.1
18 2.04 1.96 − 75 2 21.71 0.1
19 22.04 21.96 − 75 22 21.71 0.1
20 42.04 41.96 − 75 42 21.71 0.1
21 62.04 61.96 − 75 62 21.71 0.1
22 82.04 81.96 − 75 82 21.71 0.1
23 102.04 101.96 − 75 102 21.71 0.1
24 122.04 121.96 − 75 122 21.71 0.1
25 2.00 2.00 − 75 2 2.29 0.1
26 22.00 22.00 − 75 22 2.29 0.1
27 42.00 42.00 − 75 42 2.29 0.1
28 62.00 62.00 − 75 62 2.29 0.1
29 82.00 82.00 − 75 82 2.29 0.1
30 102.00 102.00 − 75 102 2.29 0.1
31 122.00 122.00 − 75 122 2.29 0.1
32 125.50 118.50 − 50 122 2000 0.1
33 125.50 118.50 − 25 122 2000 0.1
34 125.50 118.50 0 122 2000 0.1
35 5.50 -1.50 − 50 2 2000 0.1
36 5.50 -1.50 − 25 2 2000 0.1
37 5.50 -1.50 0 2 2000 0.1
38 25.50 18.50 − 50 22 2000 0.1
39 25.50 18.50 − 25 22 2000 0.1
40 25.50 18.50 0 22 2000 0.1
41 65.50 58.50 − 50 62 2000 0.1
42 65.50 58.50 − 25 62 2000 0.1
43 65.50 58.50 0 62 2000 0.1
44 105.50 98.50 − 50 102 2000 0.1
45 105.50 98.50 − 25 102 2000 0.1
46 105.50 98.50 0 102 2000 0.1
47 165.50 158.50 − 50 162 2000 0.1
48 165.50 158.50 − 25 162 2000 0.1
49 165.50 158.50 0 162 2000 0.1
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5.2.4  Determination of the sink function, Sg

Two procedures can be implemented for the determination 
of the sink term, Sg . In the first one, the saturation rate, Ṡt , 
is computed from the plot of St vs t taking the numerical 
derivatives and then, Eq. (61) is used to calculate Sg ; the gap 
volume fraction, �g , can be computed as follows (see Fig. 1 
for identification of geometrical variables):

corresponding to a value of �g = 0.202 in the present work. 
This indirect procedure for the calculation of Sg has been 
previously used in [2, 14, 15]. On the other hand, in the sec-
ond procedure, Sg is directly acquired from the mass transfer 
from the channels towards the tows, which can be estimated 
once the velocity field along the channel-tows interface is 
known from the BEM solution. The comparison among both 
procedures is shown in Fig. 12a, b considering � = 1 , where 
the plots of Sgvs.St for several combinations of 

⟨
Pg

⟩g and Pvac 
are presented. Considering all points of these figures, the 
average relative difference between both procedures, defined 

(67)�g = 1 −

(
HRUC − Hg

)
LRUC + �a1a2

HRUC ⋅ LRUC
,

Table 4  (continued) Set of 
simula-
tions

Inlet pres-
sure, pin 
(kPa)

Outlet pres-
sure, pout 
(kPa)

Vacuum 
pressure, Pvac 
(kPa)

Average pres-
sure, 

⟨
Pg

⟩g 
(kPa)

Pressure gradient, 
ΔP∕Δx (kPa/m)

Viscosity, 
μ (Pa.s)

50 245.50 238.50 − 50 242 2000 0.1
51 245.50 238.50 − 25 242 2000 0.1
52 245.50 238.50 0 242 2000 0.1
53 125.50 118.50 − 75 122 2000 0.01
54 125.50 118.50 − 75 122 2000 0.05
55 125.50 118.50 − 75 122 2000 0.2
56 125.50 118.50 − 75 122 2000 0.3

Fig. 9  Influence of 
⟨
Pg

⟩g and ΔP∕Δx on the saturation curve St vs. � 
considering full air compression (� = 1)

Fig. 10  Influence of 
⟨
Pg

⟩g and 
Pvac on the equilibrium satura-
tion, Seqt  , for � = 1
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here as L1 =
�
1∕Npoint

�∑Npoint

i=1

���Sindg
− Sdir

g

���∕Sdirg
 , where Npoint , 

Sind
g

 and Sdir
g

 are the number of points, sink term computed by 
the indirect procedure and sink term computed by the direct 
procedure, respectively, is L1 = 0.0554 , obtaining a good 
coincidence.

Using results of FEM simulations, a three-parameter 
regression function for the sink term, Sg , has been adopted 
in previous works [2, 14, 15]. The form of this function 
was presented in Eq. (57) and is the starting point to pro-
pose another lumped function here. Initially, it is essen-
tial to highlight that in the case of full air compressibility, 
� = 1 , the total tow saturation is not possible, and Eq. (57) is 
thereby modified with the purpose to set Sg to zero when the 
equilibrium saturation, Seqt  , is reached. Accordingly, Eq. (57) 
is rewritten as Eq. (68), which can be used for any value of 
� , considering that Seqt = 1 when 𝜆 < 1:

Additionally, to evaluate the convenience of the model 
of Eq. (68), some regression curves of this model for the 
BEM results, computing Sg by the direct method, are con-
sidered. The case of full air compressibility, � = 1, consid-
ering 

⟨
Pg

⟩g
= 202 kPa and Pvac = −75 kPa , is represented 

(68)Sg =
(
f1
(⟨

Pg

⟩g)
∕�

){
eA2(S

eq
t −St)

A3

− 1
}

in Fig. 13a, whereas a second case corresponding to par-
tial air dissolution with � = 0.5 , 

⟨
Pg

⟩g
= 62 kPa and 

Pvac = −25 kPa , is represented in Fig. 13b. In both cases, 
some significant differences between the fitting model and 
BEM results can be noticed. Similar differences were found 
in the work of Wang and Grove [2], as shown in Fig. 13c. 
A potential type function is added here to improve this fit-
ting model with an extra free parameter, A4 , as shown in 
Eq. (69). It is worth-mentioning that this equation also fulfils 
the physical condition of zero net infiltration into the tows, 
Sg = 0 , when the equilibrium saturation is reached, St = S

eq

t .

(69)
Sg =

(
f1
(⟨

Pg

⟩g)
∕�

){
eA2(S

eq
t −St)

A3

− 1 +
(
S
eq

t − St
)A4

}

Fig. 11  Change of fitting coefficients of the function Seqt  with the vac-
uum pressure. a aeq , ceq vs. ||Pvac

|| , b beq , deq vs. ||Pvac
||

Fig. 12  Comparison between direct and indirect procedures for the 
calculation of Sg . a Complete range of Sg , b Reduced range of Sg . In 
the indirect procedure, the saturation rate is obtained from numerical 
derivatives of St vs t curves and Sg is computed using Eq. (61). In the 
direct procedure, Sg is obtained from the mass transfer from channels 
towards tows computed in the BEM solution
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Fig. 13  Comparison between fitting models. a Original fit model for 
� = 1, 

⟨
Pg

⟩g
= 202 kPa and Pvac = −75 kPa , b Original fit model for 

� = 0.5, 
⟨
Pg

⟩g
= 62 kPa and Pvac = −25 kPa , c Original fit model 

in the work of Wang and Grove [2], d Improved fit model for � = 1, ⟨
Pg

⟩g
= 202 kPa and Pvac = −75 kPa , e Improved fit model for 

� = 0.5, 
⟨
Pg

⟩g
= 62 kPa and Pvac = −25 kPa
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The fitting curves of the modified model for the two cases 
referred to before are presented in Fig. 13d, e, respectively, 
where it can be observed a better correlation with BEM 
results. The value of the determination coefficient of the 
modified model is R2 = 0.995 for the first case (Fig. 13d) 
and R2 = 0.996 for the second one (Fig. 13e), whereas, for 
the original model, these values are R2 = 0.941 (Fig. 13a) 
and R2 = 0.949 (Fig. 13b), respectively.

Considering the dependency of fitting coefficients of 
Eq. (69) on 

⟨
Pg

⟩g , Pvac and � , a more general form of this 
equation can be written as:

Using a similar approximation to previous works 
[2, 14, 15], the function f1 of Eq. (70) can be written as: 
f1
(⟨

Pg

⟩g
,Pvac, �

)
= �t

(
1 − �g

)
⋅ A1

(⟨
Pg

⟩g
,Pvac, �

)
 .  The 

fitting parameters A1,A2,A3 and A4 for each combination of ⟨
Pg

⟩g and Pvac are obtained using the curve fitting toolbox 
of Matlab with a non-linear least square, bi-square weighted 
method employing the truss-region algorithm; this tool is 
integrated with an in-house algorithm to estimate the upper 
and lower bounds of the fitting parameters to reach mono-
tonic relationships between these parameters and 

⟨
Pg

⟩g , Pvac 
and � based on prescribed trend equations.

To illustrate how parameters A1,A2,A3 and A4 are 
achieved, the case of full air dissolution, � = 0 , is considered. 
Initially, fitting parameters are not bounded, and their behav-
iour with 

⟨
Pg

⟩g and Pvac is observed to establish possible 
monotonic trends. Then, the upper and lower bounds of the 
fitting parameters are recursively modified to improve the 
observed correlations, aiming to maintain the precision of the 
fitting model, Eq. (70). This process is done with the help of 
the Matlab curve fitting toolbox and the in-house algorithm 
developed here; this is not carried out simultaneously in all 
parameters, but consecutively, since the modification of the 
bounds of one parameter can lead to the change of the 
remaining parameters as well, with the possible modification 
of their behaviour with 

⟨
Pg

⟩g and Pvac . Using this procedure, 
a linear relationship between A1 and 

⟨
Pg

⟩g can be achieved 
when vacuum pressure,Pvac , is constant, as shown in Fig. 14a. 
Additionally, the fit curves are nearly parallel each other, as 
it can be confirmed by comparing the slopes of the regression 
equations; the average slope of these curves is 
mav

1
= 9.88 × 10−7 . On the other hand, according to Fig. 14b, 

the intercepts of the fitting curves of Fig. 14a change almost 
linearly with ||Pvac

|| , and the slope of the linear fitting curve 
for the plot of Intercept vs ||Pvac

|| shown in Fig.  14b is 

Sg =
(
f1
(⟨

Pg

⟩g
,Pvac, �

)
∕�

)
.

(70)

⎧
⎪⎨⎪⎩
e
A2

�⟨Pg⟩g,Pvac,�
�
⋅(Seqt −St)

A3(⟨Pg⟩g ,Pvac ,�)

−1 +
�
S
eq

t − St
�A4

�⟨Pg⟩g,Pvac,�
�

⎫
⎪⎬⎪⎭

m∗
1
= 1.051 × 10−6 . As mav

1
 and m∗

1
 are similar, it is reasonable 

to suppose that A1 is approximately a linear function of |||Pvac −
⟨
Pg

⟩g||| , which can be confirmed in Fig. 14c. A similar 
analysis can be done for the parameter A2 , which can also be 
conceived as a linear function of |||Pvac −

⟨
Pg

⟩g||| , see Fig. 14d. 
Considering the linear variation of parameters A1 and A2 with |||Pvac −

⟨
Pg

⟩g||| , parameters A3 and A4 are found to fit well to 
a power-type function in terms of |||Pvac −

⟨
Pg

⟩g||| , as shown 
in Fig. 14e, f. Accordingly, Eq. (70) can be expressed as a 
function of |||Pvac −

⟨
Pg

⟩g||| as follows:

where:

and the fitting coefficients obtained are given in Table 5. The 
abovementioned procedure is repeated for the other values of 
� considered in this work (� = [0.25, 0.5, 0.75, 1]) . Accord-
ing to the BEM results, the functions for A1,A2,A3 and A4 
have the same form as for the last case of � = 0 (Eq. (73) 
to Eq. (76)), with fitting coefficients also given in Table 5.

5.2.5  Determination of the effective unsaturated 
permeability function, Keff

Equation (56) is used to compute the effective unsaturated 
permeability, Keff  , of the fibrous reinforcement. In that equa-
tion, ⟨ul⟩ is the phase volume-averaged horizontal velocity 
in the liquid phase, which can be obtained from the BEM 
simulations as follows:

(71)

Sg =
�
f
1

����Pvac −
�
Pg

�g���
�
∕�

�

⋅

�
e
A
2

����Pvac−⟨Pg⟩g���
�
⋅(Seqt −St)

A
3(�Pvac−⟨Pg⟩g�)

− 1 +
�
S
eq

t − St
�A

4

����Pvac−⟨Pg⟩g���
��

(72)f1

(|||Pvac −
⟨
Pg

⟩g|||
)
= �t

(
1 − �g

)
A1

(|||Pvac −
⟨
Pg

⟩g|||
)

(73)A1

(|||Pvac −
⟨
Pg

⟩g|||
)
= �1

|||Pvac −
⟨
Pg

⟩g||| + �1

(74)A2

(|||Pvac −
⟨
Pg

⟩g|||
)
= �2

|||Pvac −
⟨
Pg

⟩g||| + �2

(75)A3

(|||Pvac −
⟨
Pg

⟩g|||
)
= �3

|||Pvac −
⟨
Pg

⟩g|||
�3

(76)A4

(|||Pvac −
⟨
Pg

⟩g|||
)
= �4

|||Pvac −
⟨
Pg

⟩g|||
�4

(77)⟨ul⟩ =

�
∫
Ag

ug ⋅ dAg + ∫
Asat
tows

�
utows
l

�l
⋅ dAsat

tows

�

ARUC

,
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Fig. 14  Plots to find the fitting 
coefficients of the sink function, 
Sg , for � = 0 . a A

1
vs

⟨
Pg

⟩g for 
several values of Pvac , b 
Intercept vs ||Pvac

|| , c 
A
1

vs
|||Pvac −

⟨
Pg

⟩g||| , d 
A
2
vs

|||Pvac −
⟨
Pg

⟩g||| , e 
A
3
vs

|||Pvac −
⟨
Pg

⟩g||| , f 
A
4
vs

|||Pvac −
⟨
Pg

⟩g|||
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where ug is the pointwise horizontal velocity of liquid in the 
channel or gap sub-domain, Ag is the area of the channel 
sub-domain, 

⟨
utows
l

⟩l is the intrinsic-phase volume-averaged 
horizontal velocity of liquid in the tows, Asat

tows
 is the saturated 

area of the tows and ARUC is the total area of the RUC. It is 
important to remark that the numerical calculation of the 
velocity fields of channel and tows by BEM techniques was 
presented in Sect. 3. Equation (77) can also be written in 
terms of the phase volume-averaged velocity of the channel 
sub-domain, 

⟨
ug
⟩
 , as follows:

Simulations considered for calculation of Sg (see Table 4) 
were considered as well for calculation of Keff  . Curves of 
Keff vs. St for different values of 

⟨
Pg

⟩g , Pvac and � are pre-
sented in Fig. 15a–c, where it is observed that these curves 
are not significantly dependent on the vacuum pressure, Pvac ; 
they are functions of the average pressure, 

⟨
Pg

⟩g , and the 
dissolution factor, � . The behavior of the Keff  vs St curve 
depends on the micro-structure of the porous medium. In the 
present case, an increase in the curve slope can be noticed 
as St tends to 1. This behavior has been previously reported 
for the in-plane effective permeability in non-woven fabrics 
[4, 89, 90] and wicks [91] in a more noticeable way, but, to 
the best of our knowledge, no additional works have been 
conducted in cross-ply or low-crimped woven fabrics to vali-
date this behavior. For the through-plane permeability of 
non-woven fabrics, an opposite behavior has been reported, 
namely, curve slope decreases with saturation [5].

On the other hand, the ratios between the saturated and 
unsaturated permeabilities reached from Fig.  15a–c are 
greater than one, with a maximum ratio of 1.47. According 
to Park and Lee [1], this ratio can be larger or lower than the 

(78)⟨ul⟩ =
�
ug
�
+

⎛⎜⎜⎜⎝
∫

Asat
tows

�
utows
l

�l
⋅ dAsat

tows

⎞⎟⎟⎟⎠
∕ARUC

unity, but in an experimental benchmark exercise conducted 
by recognized universities [92], it was found that this ratio 
is larger than one for bidirectional fabrics, agreeing with 
the present numerical results. It is important to mention that 
the maximum ratio found here (1.47) could be in the range 
of experimental uncertainty of the tests used for the per-
meability characterization. For instance, in the benchmark 
exercise previously mentioned [92], the uncertainty of some 
saturated and unsaturated permeability tests, as quantified by 
the ratio between the maximum and minimum measurement, 
exceed this value; however, the average values reported for 
the saturated and unsaturated permeabilities in such a work 
are consistent with the results of saturated/unsaturated per-
meability ratios greater than one obtained here.

In Fig. 16, they are considered several plots of Keff vsSt 
for the full air dissolution case, � = 0 , with their respective 
third-order polynomial fitting curves, regression equations 
and determination coefficients  (R2), obtained with the Mat-
lab's curve fitting toolbox. As can be observed, a third-order 
polynomial fitting is suitable to represent Keff  in terms of St , 
in such a way that the following regression equation can be 
considered:

with P1 , P2 , P3 and P4 as fitting coefficients linearly depend-
ent on 

⟨
Pg

⟩g , as shown in Fig. 17; this way, any fitting 
parameter of Eq. (79), Pi , with i = 1,2,3,4, can be written as:

where mpi and bpi stand for the slope and intercept of the 
fitting curve for Pi in terms of the average pressure, 

⟨
Pg

⟩g . 
For the other values of the dissolution factor, � , the fit model 
given by Eq. (79) and Eq. (80) is applicable as well. Fit-
ting coefficients mpi and bpi of the regression model for 

(79)
Keff

(
St
)
= P

1

(⟨
Pg

⟩g
, �
)
⋅ S3

t
+ P

2

(⟨
Pg

⟩g
, �
)

⋅ S2
t
+ P

3

(⟨
Pg

⟩g
, �
)
⋅ St + P

4

(⟨
Pg

⟩g
, �
)

(80)Pi = mpi ⋅

⟨
Pg

⟩g
+ bpi

Table 5  Fitting coefficients of 
the regression model for Sg

Air entrap-
ment param-
eter, λ

Fitting parameter  A1 Fitting parameter  A2 Fitting parameter  A3 Fitting parameter  A4

α1 = 9.939E−07 α2 = 3.077E−07 α3 = 5.363E + 00 α4 = 1.145E + 00
β1 = 6.979E−01 β2 = 3.639E + 00 β3 = 3.682E−02 β4 = −2.208E−02

0.25 α1 = 9.629E−07 α2 = −1.143E−07 α3 = 5.011E + 00 α4 = 8.617E−01
β1 = 8.215E−03 β2 = 3.692E + 00 β3 = 4.103E−02 β4 = −1.232E−02

0.50 α1 = 8.477E−07 α2 = −2.346E−07 α3 = 4.620E + 00 α4 = 6.383E−01
β1 = 6.773E−03 β2 = 3.715E + 00 β3 = 4.901E−02 β4 = 2.557E−02

0.75 α1 = 8.346E−07 α2 = −5.285E−07 α3 = 1.752E + 00 α4 = 1.942E−01
β1 = 1.310E−03 β2 = 3.831E + 00 β3 = 1.271E−01 β4 = 1.527E−01

1 α1 = 1.212E−06 α2 = −5.898E−07 α3 = 5.102E−06 α4 = 2.440E−01
β1 = 9.224E−17 β2 = 4.950E + 00 β3 = 1.148E + 00 β4 = 1.222E−01
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Fig. 15  a Curves of Keff vs. St 
for different values of 

⟨
Pg

⟩g and 
Pvac , with � = 0 , b Curves of 
Keff vs. St for different values of ⟨
Pg

⟩g and Pvac , with � = 0.5 , c 
Curves of Keff vs. St for different 
values of 

⟨
Pg

⟩g and � , with 
Pvac = 0kPa
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the effective unsaturated permeability, Keff  , are shown in 
Table 6. In this point, it is essential to remark that St refers 

to the total tows saturation and is related to the total RUC 
saturation, s, as follows: s = Sch�g + St

(
1 − �g

)
 , where Sch 

is the saturation of the channel or gap sub-domain; since it 
is supposed that the time scale of the gap filling is several 
orders of magnitude lower than such of the tows filling, Sch 
can be set to one in the last expression.

5.2.6  Determination of the gap permeability, Kg

Gap permeability, Kg , accounts for the easiness of impregna-
tion of the channels considering that the tows are imperme-
able. Accordingly, this property is only dependent on the 
channels architecture in the RUC. This is estimated in the 
present work by setting the normal permeability of tows to 
zero and using the following equation:

where 
⟨
ug
⟩
 is the phase volume-averaged horizontal velocity 

in the channel or gap sub-domain obtained by BEM.
In Fig. 18, Kg is reported for several values of ΔP∕Δx and ⟨

Pg

⟩g , finding a negligible standard deviation for the results, 
SD = 6.56 × 10−14 , which corroborates that Kg should 
remain constant, independent of the processing parameters, 
as long as the RUC geometry is not altered. Therefore, the 
gap permeability can be reported here as the average value 
shown in Fig. 18, i.e., Kg = 1.98 × 10−9m2 . It is imperative 
to notice that this value of Kg confirms the principal assump-
tion of the present work: gap permeability is several orders 
of magnitude larger than tows permeabilities.

It is important to emphasize that the gap permeability, 
Kg , accounts for the easiness of impregnation of the chan-
nels network of the fabric, assuming that tows are imperme-
able. Therefore, in the numerical computations, the main 
difference between Kg and Keff  when St = 0 is that the last 
one considers the mass absorption rate from the channels 
towards the tows (warps and weft), which is usually very 
small regarding the fluid flow rate in the channels domain 
(even for St = 0 when this mass absorption is the maxi-
mum). This is the reason why the gap or channel perme-
ability, Kg , approximates to Keff  when St = 0 . Since the gap 

(81)Kg =
⟨
ug
⟩
�∕(ΔP∕Δx)

Fig. 16  Fitting curves of  Keff vs  St for several values of 
⟨
Pg

⟩g , with 
� = 0.

Fig. 17  Fitting parameters, Pi , in terms of the average pressure, ⟨
Pg

⟩g , with the corresponding linear regression equations, for � = 0

Table 6  Fitting coefficients of the regression model for Keff

Dissolution 
factor, λ

P1 P2 P3 P4

Slope  (mp1) Intercept  (bp1) Slope  (mp2) Intercept  (bp2) Slope  (mp3) Intercept  (bp3) Slope  (mp4) Intercept  (bp4)

0 2.627E−15 9.522E−10 −4.812E−15 −8.600E−10 3.618E−15 7.168E−10 7.330E−16 2.129E−09
0.25 3.814E−15 6.866E−10 −6.898E−15 −4.466E−10 4.202E−15 6.059E−10 6.354E−16 2.067E−09
0.5 4.049E−15 4.629E−10 −7.119E−15 −1.604E−10 4.442E−15 4.530E−10 5.798E−16 2.042E−09
0.75 6.381E−15 2.462E−10 −8.165E−15 2.673E−10 5.554E−15 2.994E−10 5.088E−16 1.483E−09
1 7.377E−15 1.316E−10 −9.798E−15 8.553E−10 6.554E−15 8.126E−11 4.330E−16 6.343E−10
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permeability, Kg , does not consider the tows saturation, it 
does not tend to Keff  when St = 1.

5.3  Macroscopic unidirectional simulations

5.3.1  Assessment of the accuracy of the DR‑BEM scheme

In this section, the DR-BEM scheme presented in Sect. 3 
is used to simulate the macroscopic unidirectional filling 
of dual-scale fibrous reinforcements using the sink term 
approach. This numerical scheme is validated with the ana-
lytical solution proposed in [25] for unidirectional fillings, 
in which the non-dimensional position of the macroscopic 
fluid front in the time, L̂ff  , and the non-dimensional length of 
the unsaturated region, L̂us , at a constant injection pressure 
regime, are predicted as follows:

Non-dimensional position of the macroscopic fluid front, 
L̂ff :

Non-dimensional length of the unsaturated region, L̂us:

(82)L̂ff =
1

k1
cosh−1

(
𝜓2
1
t̂

𝜀g
+ 1

)
, 0 ≤ t̂ ≤ �ts

(83)

L̂ff =
−

√(
𝜀RUC

)2
−
(
𝜀g
)2

+

√(
𝜀RUC

)2
−
(
𝜀g
)2

+ 2𝜀RUC𝜓
2

1

(
t̂ − �ts

)

k1𝜀RUC

+
1

k1
cosh

−1

(
𝜀RUC
𝜀g

)
, �ts ≤ t̂ ≤ �tfill

(84)t̂s = 1∕�2

where t̂s and t̂fill are the dimensionless times (see Eq. (24)) 
when total saturation is reached at the inlet and when the 
fluid front arrives at the end of the domain, respectively, 
while �RUC , �1 and �2 are the bulk porosity of the RUC and 
two model parameters, respectively, defined by:

where Vg , V
(i)
t  , V (i)

pt  and VRUC represent the channel or gap 
volume, the volume of tow “i”, the porous volume of tow 
“i” and RUC volume, respectively. On the other hand, in the 
calculation of �1 and �2(Eqs. (87) and (88)) three parameters 
of the tows are considered, namely, minor permeability 

(
K2

)
 , 

tow height 
(
ht
)
 and tow porosity 

(
�t
)
 . The details of the cal-

culation of the fitting parameter “a” appearing in Eq. (87) 
can be found in [25]. A pressure-dependent linear function 
for the sink term, Sg , is considered, as required in [25]:

The fixed and computed parameters used in the present 
validation are summarized in Table 7. The comparison 
between the analytical and numerical results is carried out 
based on the L2 relative error norm and the relative error,E , 
which are defined as follows:

where L̂(i)
ff ,anal

 and L̂(i)
ff ,drbem

 are the analytical and DR-BEM 
solutions of the non-dimensional fluid front position in the 
time instant “i”, whereas L̂us,anal and L̂us,drbem represent the 
analytical and DR-BEM solutions of the non-dimensional 
length of the unsaturated region, L̂us.

(85)L̂us =
1

k1
cosh−1

(
𝜀RUC
𝜀g

)
,

(86)

�RUC =

∑
V
(i)
pt + Vg

VRUC

=
�t
∑

V
(i)
t + Vg

VRUC

= �t
�
1 − �g

�
+ �g

(87)�1 =

√√√√a
(
1 − �g

)
L2Kt

h2t Kg

(88)�2 =
k2
1(

1 − �g
)
�t
,

(89)Sg = c
⟨
Pg

⟩g

(90)c =
aKt

h2t �t�

(91)L2 =

√∑
i

(
L̂
(i)

ff ,anal
− L̂

(i)

ff ,drbem

)2

∕
∑
i

(
L̂
(i)

ff ,anal

)2

(92)E =

√
|||L̂us,anal − L̂us,drbem

|||∕L̂us,anal,

Fig. 18  Non-dependency of Kg on the processing parameters
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The plots of L2 relative error norm vs. Mesh size for sev-
eral values of the constant of Courant-Friedrich-Levy, CFL , 
which is used in the advancement of the moving interface, 
are presented in Fig. 19a, where the mesh size is reported 
as h = e∕L , with e as the size of one quadratic element and 
L as the domain length. The results allow concluding that 
the DR-BEM scheme is accurate enough to conduct mac-
roscopic filling simulations of dual-scale fibrous reinforce-
ments for a pressure-dependent linear sink function. Addi-
tionally, the relative errors, E , between the analytical and 
the numerical solutions of the non-dimensional length of 
the unsaturated region, L̂us, which are shown in Fig. 19b, 
confirms the accuracy of the present DR-BEM scheme. The 
graphical comparison between the analytical and numerical 
non-dimensional fluid front positions is shown in Fig. 20 
for h = 1.11 × 10−2 and CFL = 1 , which are the parameters 
employed in the forthcoming simulations.

5.3.2  Sets of simulations

After having validated the DR-BEM scheme presented 
here, this is employed for unidirectional macroscopic sim-
ulations using the lumped functions obtained for the sink 
term, Sg , and the effective unsaturated permeability, Keff  . 
The material parameters and RUC geometry data of the 
following simulations are the same as in Table 1. On the 
other hand, the characteristics of the macroscopic domain 
and the processing data are presented in Table 8. In Set 
1, it is considered a constant pressure regime with two 
inlet pressures, i.e., Pinj = [10, 100] kPa , a single vacuum 
pressure of Pvac = 0 kPa and five cases of air dissolution, 
namely, full air dissolution (� = 0) , partial air dissolution 
(� = 0.25, � = 0.50, � = 0.75) and full air compressibility 
(� = 1) . On the other hand, Set 2 corresponds to constant 
pressure injections where two vacuum pressures are consid-
ered, i.e., Pvac = [0,−75] kPa , while the inlet pressure is kept 
constant in Pinj = 50 kPa and the air entrapment parameters 
are the same as in Set 1, namely, � = [0, 0.25, 0.50, 0.75, 1] . 

Table 7  Data for comparison between the analytical and DR-BEM results of macroscopic unidirectional simulations

Fixed parameters

Radius of the 
fiber, Rf(�m)

Tow porosity, �t Height of the 
tow, ht (m)

Gap volume 
fraction, �g

Gap permeabil-
ity, Kg  (m2)

Inlet pressure, 
pin (kPa)

Length of the 
mold, L (m)

Fluid viscosity, � 
(Pa.s)

9.96 0.19 2 × 10

−4 0.202 1.98 × 10

−9 100 0.5 0.1

Computed parameters

Transverse tow 
permeability,K

2
 

 (m2)

Bulk porosity of 
the RUC, �RUC

a k
1

k
2

c t̂s L̂us

1.80 × 10

−14 0.354 0.157 2.667 46.912 3.714 × 10

−6 0.0213 0.435

Fig. 19  Plots of convergence for the solution of macroscopic uni-
directional filling using the present DR-BEM scheme. a  L2 relative 
error norm vs Mesh-size for the fluid front positions,L̂ff  b Relative 
error, E , vs. Mesh-size for the length of the unsaturated region, L̂us
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In Set 3, a constant flow rate regime is considered with inlet 
flow rates of Qinj =

[
7 × 10−7, 2 × 10−6

]
m3∕s , a single vac-

uum pressure of Pvac = 0 kPa and � = [0, 0.75, 1] . In Set 4, 
both constant pressure 

(
Pinj = 100 kPa

)
 and constant flow 

rate ( Qinj = 1 × 10−6m3∕s ) regimes are taken into account, 
for the case of full air compressibility (� = 1) , with vacuum 
pressures of Pvac = [0,−50,−75] kPa.

5.3.3  Comparison between sink term and Richards 
approach

Experimental injections at constant pressure regime were 
carried out in the unidirectional permeability mold shown in 
Fig. 21. The arrival time of the fluid front at predetermined 
positions equally spaced by 20 mm can be captured using 
a manual push button. Geometrical dimensions of the mold 
are given in Table 8, namely, length of 400 mm, width of 
100 mm and thickness of 3.2 mm; four preforms were posi-
tioned on the cavity to obtain similar RUC dimensions to 
the ones reported in Table 1. Three cases were considered 
with constant injection pressures of Pinj = [10, 50, 100] kPa 
and vacuum pressure of Pvac = 0 kPa (no vacuum), tak-
ing five replications for each case. These experiments are 
numerically reproduced using the two lumped approaches 
considered in the present work, with the lumped functions 
for the sink term, Sg , and the effective unsaturated perme-
ability, Keff  , previously deduced in Sects. 5.2.4 and 5.2.5, 
respectively.

Firstly, the curves of saturation 
(
St
)
 vs normalized lon-

gitudinal position (x̂) obtained by both approaches (Rich-
ards and sink term) are shown in Fig. 22a–f for several fluid 
front positions and � = [0, 0.5, 1] . As can be observed, both 
approaches describe a similar general behaviour of the satu-
ration, St , along the longitudinal direction, although Rich-
ards approach predicts larger values of St as points are far-
ther from the fluid front. Thereby, for all injection pressures 

Fig. 20  Comparison between analytical and DR-BEM fluid front 
positions for macroscopic unidirectional injections

Table 8  Data of macroscopic unidirectional simulations

Geometric parameters of the mold
Length of the mold. L(mm) Width of the mold. b (mm) Thickness of 

the mold. th 
(mm)

400 100 3.20

Parameters of the Set 1

Inlet pressure. Pinj(kPa) Vacuum pressure. Pvac(kPa) Air entrapment parameters. λ

10 100 0 0 0.25 0.50 0.75 1

Parameters of the Set 2

Inlet pressure. Pinj(kPa) Vacuum pressure. Pvac(kPa) Air entrapment parameters. λ

50 0 −75 0 0.25 0.50 0.75 1

Parameters of the Set 3

Inlet flow rate. Qinj

(
m

3∕s
)

Vacuum pressure. Pvac(kPa) Air entrapment parameters. λ

7 × 10

−7
2 × 10

−6 0 0 0.75 1

Parameters of the Set 4

Inlet pressure. Pinj(kPa) Inlet flow rate. Qinj

(
m

3∕s
)

Vacuum pressure.Pvac(kPa) Air entrapment parameters. λ

100 1 × 10

−6 0 −50 −75 1
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and � = [0, 0.5] (Fig. 22a,b,d,e,g,h), the inlet becomes totally 
saturated for a lower fluid front position in the Richards 
approach and the fully saturated length for a determined 
fluid front position is greater for this approach as well. For 
the full compressibility case, � = 1 (Fig. 22c,f,i), which is an 
extreme scenario where total saturation is not possible, the 
equilibrium saturation at the inlet is reached for a lower fluid 
front position in the Richards approach. Both approaches 
predict a similar influence of the injection pressure, Pinj , 
on the saturation, St , namely, for a determined fluid front 
position, the higher Pinj , the larger the fully saturated length 
for � = [0, 0.5] ; for the full compressibility case, � = 1 , the 
equilibrium saturation at the inlet is more significant as Pinj 
increases, as it is reasonable.

In the experimental tests carried out in the present 
work, it is not possible to directly obtain the air dissolu-
tion factor, � , that better describes the evolution of the 
air pressure inside the tows. In order to estimate this 
value, the arrival times of the fluid front to the 20 fixed 
positions along the mold (20 mm, 40 mm, 60 mm, until 
400 mm) are retrieved from the DR-BEM simulations for 
� = [0, 0.25, 0.50, 0.75, 1] , and then, these numerical results 
are compared with the experimental ones taking the  L2 rela-
tive error norm, in such a way that the value of � leading 
to the minimum error is selected to evaluate the accuracy 
of the sink term and Richards approaches. For instance, 
in Fig. 23a–e, they are shown the dimensionless times at 
several fluid front positions and considering Pinj = 50 kPa , 
obtained from experiments 

(
t̂exp

)
 and DR-BEM simulations 

by the sink term approach at different dissolution factors (
t̂𝜆=0, t̂𝜆=0.25, t̂𝜆=0.5, t̂𝜆=0.75, t̂𝜆=1

)
 ; in Fig. 24a–e, an analogous 

comparison is carried for the Richards approach. Accord-
ing to the  L2 relative error norm, � = 0.75 is the more suit-
able approximation for both approaches, with correspond-
ing errors of  L2 = 5.20% and  L2 = 7.35% for the sink term 
and Richards approach, respectively. For the other values 
of injection pressure, Pinj = 10 kPa and Pinj = 100 kPa , 

� = 0.75 is the more appropriate dissolution factor as well. 
In Fig. 25, the  L2 relative error norms for the three injection 
pressures (10 kPa, 50 kPa and 100 kPa) and five dissolu-
tion factors (0,0.25,0.50,0.75,1) are shown, confirming that 
� = 0.75 leads to the lower error regarding experimental res
ults.

The experimental and numerical curves of the normalized 
fluid front position 

(
L̂ff

)
 vs. dimensionless time 

(
t̂
)
 for the 

three injection cases, Pinj = [10, 50, 100] kPa , considering 
� = 0.75 , are compared to each other in Fig. 26a–c. In each 
figure, it is also represented the curve corresponding to a 
single-scale porous medium (sink term, Sg , is neglected in 
the mass conservation equation), taking the fully saturated 
effective permeability, Ksat

eff
 , as computed by doing St = 1 in 

Eq. (79); in that case, the closed analytical expression for the 
normalized fluid front position, L̂ff  , is given by:

where �RUC is the bulk porosity of the RUC as computed by 
Eq. (86). Firstly, it is worth-noting that the curves obtained 
by the sink term and the Richards approach have a similar 
behaviour to the experimental curve for all values of Pinj 
considered, whereas the curve for the single scale porous 
medium noticeably differs from these three curves, denot-
ing the importance of considering the sink effect during the 
preform filling. In general, results obtained by the sink term 
approach are in better agreement with experimental results 
than those obtained by the Richards approach, which can 
be confirmed with the  L2 relative error norms (see Fig. 25 
for � = 0.75 ); for the sink term approach, this error norm is 
4.84%, 5.20% and 3.81% for Pinj = 10 kPa , Pinj = 50 kPa 
and Pinj = 100 kPa , respectively, whereas the correspond-
ing values for the Richards approach are 6.41%, 7.35% and 
5.67%.

The differences obtained between the experimental and 
numerical results can be attributable to different types of 
errors: idealization, modelling, discretization, solution and 
experimental errors. The geometrical simplifications of 
the RUC, as dimensionality reduction, not consideration 
of deformation mechanisms, generation of pressure-inde-
pendent liquid passages, assumption of hexagonal arrays of 
fibers, among others, are sources of idealization errors. On 
the other hand, the consideration of the air dissolution phe-
nomenon in a lumped fashion by means of the parameter 
� , which is assumed constant during the whole injection, 
can represent a source of modelling errors. The selection 
of the slip coefficient of the Stokes-Darcy matching con-
dition is another source of modelling errors; details about 
this selection are given in [49, 50]. Additionally, the mesh 
density in both the mesoscopic and macroscopic simulations 

(93)L̂ff =

√√√√ 2.Ksat
eff

𝜀RUC.Kg

.t̂

Fig. 21  Unidirectional permeability mold
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Fig. 22  Curves of saturation (
St
)
 vs. Normalized longitudinal 

position (x̂) . a Pinj = 10 kPa 
and � = 0 , b Pinj = 10 kPa 
and � = 0.5 , c Pinj = 10 kPa 
and � = 1 , d Pinj = 50 kPa 
and � = 0 , e Pinj = 50 kPa and 
� = 0.5 , f Pinj = 50 kPa and 
� = 1 , g Pinj = 100 kPa and 
� = 0 , h Pinj = 100 kPa and 
� = 0.5 , i Pinj = 100 kPa and 
� = 1
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is tightly associated to spatial discretization errors since this 
have an influence on the solution of field variables and track-
ing of the fluid front; it is important to remark that mesh-
dependency analyses for the mesoscopic BEM simulations 
were previously carried out in [50], whereas these analyses 
for the macroscopic DR-BEM simulations were performed 
here in Sect. 5.3.1. The choice of the time step based on the 
CFL condition and other constraints described in [50], is 
the principal source of the time discretization error. On the 
other hand, solution errors of BEM-based techniques are 
present as well, with the singularity errors when computed 
the layers potentials and the ill-conditioning errors as ones 
of the most important in the present case. Errors associated 
to the interpolation order, choice of the collocation factor for 
corner treatments, numerical integration and post-processing 
operations can be influential as well.

On the other hand, experimental errors can be classified 
into image analysis errors and injection test errors. Despite 

not quantified in this study, image analysis carried on several 
kinds of errors: preparation (saturation, shadowing, etc.), 
integration (number, density and location of discrete pixels) 
and analysis errors (segmentation and measurement calibra-
tion). On the other hand, unidirectional injection tests could 
entail several errors as well: uncontrolled capillary effects, 
racetracking, variations of inlet pressure during injection, 
measurement errors associated to inadequate parallax, erro-
neous time response, non-uniform fluid fronts, incorrect 
contrast perception; fabric shearing by careless manipula-
tion, which in turns can lead to significant through-plane 
flow even for in-plane injections. To minimize these error 
sources, recommendations of two benchmark exercises 
about permeability measurement were followed here in the 
experimental tests [92, 93].

Fig. 23  Dimensionless times obtained from experiments and DR-BEM simulations for several fluid front positions considering the sink term 
approach. a L̂ff = 0.2 , b L̂ff = 0.4 , c L̂ff = 0.6 , d L̂ff = 0.8 , e L̂ff = 1
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5.3.4  Parametric study on the influence of the inlet 
pressure, vacuum pressure, inlet flow rate and air 
dissolution factor on the saturation behaviour

In the present section, the sink term approach is used to 
study the influence of several variables on the behaviour of 
the saturation along the longitudinal direction. Curves of 
tows saturation 

(
St
)
 vs. Normalized longitudinal position (x̂) , 

for several fluid front positions, provide useful information 
to carry out this analysis (Figs. 27, 28, 29, 30). The slopes of 
these curves in the partially saturated region account for the 
sink effect, in such a way that the bigger the slopes, the faster 
the liquid absorption into the tows regarding the fluid front 
velocity, leading to a more significant change of St with x̂ . 
The evolution of the fully saturated length is another indica-
tion of the difference between the impregnation velocities of 
tows and channels. For the extreme case of full air compress-
ibility, � = 1 , where total tows saturation is not possible, 
the evolution of the inlet saturation allows elucidating the 

Fig. 24  Dimensionless times obtained from experiments and DR-BEM simulations for several fluid front positions considering the Richards 
approach. a L̂ff = 0.2 , b L̂ff = 0.4 , c L̂ff = 0.6 , d L̂ff = 0.8 , e L̂ff = 1

Fig. 25  L2 relative error norm vs. Air dissolution factor for Richards 
and sink term approaches at several injection pressures
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behaviour of the sink effect until the equilibrium is reached. 
In this point, it is important to highlight that the sink effect, 
as analyzed in this section, refers to the magnitude of the liq-
uid absorption into the tows relative to the fluid front veloc-
ity; this means, for instance, that steeper slopes for lower 
injection pressures does not necessarily represents a larger 
absolute value of the sink term, Sg , but a greater value rela-
tive to the fluid front velocity; in other words, the higher 
the sink effect, the higher the tows saturation rate relative to 
the channels filling. Bearing this in mind, despite the tows 
saturation rate,Ṡt , and consequently the sink term,Sg , for a 
given saturation level, St , always increases with the injection 

pressure 
(
Pinj

)
 , vacuum pressure 

(
Pvac

)
 and injection flow 

rate 
(
Qinj

)
 , since the fluid front velocity increases with these 

parameters as well, the slope of the non-dimensional satu-
ration curves for a given longitudinal position, x̂ , does not 
necessarily increase with these injection parameters.

5.3.4.1 Results of  Set 1: Change of  injection pressure, 
Pinj Some simulations of Set 1 of Table 8 are now deemed. 
In Figs. 27a–c, St vs. x̂ curves for Pinj = [10 kPa, 100 kPa] 
and � = [0, 0.75, 1] are presented. When total saturation is 
possible, namely, for � = [0, 0.75] , Figs. 27a, b show that the 

Fig. 26  Experimental and 
numerical curves of Normal-
ized fluid front position 

(
L̂ff

)
 

vs. Dimensionless time 
(
t̂
)
 . a 

Pinj = 10 kPa , b Pinj = 50 kPa , 
c Pinj = 100 kPa



1258 Computational Mechanics (2021) 68:1223–1266

1 3

slopes for all curves are very steep at points near the fluid 
front, which means a significant sink effect; as points move 
away from the fluid front (from right to left in the figures), 
the saturation curves for Pinj = 10 kPa and Pinj = 100 kPa 
diverge from each other. Accordingly, for � = 0 (Fig. 27a), in 
the partially saturated region, the sink effect is more impor-
tant in the simulation with Pinj = 10 kPa for the second, third 
and fourth fluid front positions; on the other hand, from the 
five fluid front position onwards, it is more relevant in the 
simulation with Pinj = 100 kPa . For � = 0.75 (Fig. 27b), the 
sink effect is more important with Pinj = 10 kPa for all fluid 

front positions, which in turn leads to larger fully saturated 
lengths for this injection pressure. In the case of full air com-
pressibility ( � = 1 ), Fig. 27c, the sink effect near the fluid 
front is not as significant as in previous cases ( � = 0 and 
� = 0.75 ); namely, curve slopes are lower for all fluid front 
positions. For such a case (Fig. 27c), the change of the sink 
effect (curve slope) as points get away from the fluid front is 
not monotonic and depends on the inlet saturation. Accord-
ingly, for a given fluid front position, if the behaviour of St 
vs. x̂ curve is analysed from right to left, it can be noticed 
that sink effect (curve slope) experiences an increase, is kept 

Fig. 27  Saturation 
(
St
)
 vs. Normalized longitudinal position (x̂) for simulations of Set 1. a � = 0 , b � = 0.75 , c � = 1
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almost constant, and then it decreases from a determined 
point until the inlet (this is more perceptible for the curves 
of the last fluid front positions with Pinj = 100kPa ). For a 
determined fluid front position and � = 1 , lower slopes are 
expected for the minor injection pressure, Pinj = 10 kPa , 
since the tows saturation is bounded by the equilibrium satu-
ration, Seqt  , which in turn is lower for this injection pressure.

5.3.4.2 Results of  Set 2: Change of  vacuum pressure, 
Pvac The influence of the vacuum pressure,Pvac , on 
the behaviour of the St vs. x̂ curves can be figured out in 

Figs.  28a–c, which corresponds to some simulation of 
Set 2 of Table  8. General findings previously obtained in 
Figs.  27a–c can be extended to this particular case, infer-
ring that the positive 

(
Pinj

)
 and negative pressure ( Pvac ) 

have a similar influence on the sink effect. Accordingly, for 
the total and partial dissolution cases ( � = 0 and � = 0.75 , 
respectively), Figs. 28a, b, sink effect is considerably more 
significant near the fluid front than for the full compress-
ibility cases ( � = 1 ), Fig. 28c. Moreover, when � = 0 , in the 
partially saturated region, sink effect is lower for the greater 
vacuum pressure, Pvac = −75 kPa , from the second to the 

Fig. 28  Saturation 
(
St
)
 vs. Normalized longitudinal position (x̂) for simulations of Set 2. a � = 0 , b � = 0.75 , c � = 1
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fifth fluid front positions, but this tendency is reversed from 
the sixth fluid front position onwards; when � = 0.75 , the 
initial trend is kept for all fluid front positions, entailing 
larger fully saturated lengths for the smaller vacuum pres-
sure, Pvac = 0 kPa . For the full compressibility case ( � = 1 ), 
Fig. 28c, St vs. x̂ curves behave in a similar manner as in 
Fig.  27c, namely, sink effect is small near the fluid front, 
then it increases as points move away from the fluid front, 
there is a region where it is almost constant and finally, 
it decreases from a determined point until the inlet. For a 
determined fluid front position and � = 1 , lower slopes are 

obtained for the inferior vacuum pressure, Pvac = 0 kPa , 
because equilibrium saturation, Seqt  , is lower as well.

5.3.4.3 Results of  Set 3: Change of  injection flow rate, 
Qinj The St vs. x̂ curves of Fig. 29a–c correspond to a con-
stant flow rate regime, Set 3 of Table 8. The behaviour of 
these curves has some similarities to the curves previously 
analysed for the three dissolution factors, � = [0, 0.75, 1] , 
but some differences can be identified too. In general, for 
� = 0 (Fig.  29a) and � = 0.75 (Fig.  29b), the sink effect 
(curve slope) and consequently, the saturation 

(
St
)
 for a 

given longitudinal position ( ̂x ), as well as the fully satu-

Fig. 29  Saturation 
(
St
)
 vs. Normalized longitudinal position (x̂) for simulations of Set 3. a � = 0 , b � = 0.75 , c � = 1
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rated length, are greater for the lower injection flow rate, 
Qinj = 7 × 10−7m3∕s , for all fluid front positions. For the 
full compressibility case ( � = 1 ), Fig.  29c, the main dif-
ference with curves of Figs. 27c and 28c lies on the inlet 
saturation. For the constant pressure regimes (Figs. 27c and 
28c), the inlet saturation threshold is the equilibrium satura-
tion,Seqt  , which does not change since the injection and vac-
uum pressures remain constant during the whole filling; on 
the other hand, for the constant flow rate regime (Fig. 29c), 
the equilibrium saturation is not reached at the inlet, in such 
a way that if the unidirectional injection continues indefi-
nitely, Pinj → ∞ as St → 1.

5.3.4.4 Result of Set 4: Influence of vacuum pressure, Pvac , 
for the full compressibility case (� = 1) The influence of 
the vacuum pressure, Pvac , on the saturation curves for the 
full compressibility case (λ = 1) can be investigated from 

the results of simulations of Set 4 of Table  8, which are 
shown in Fig.  30a, b. The general behaviour of the sink 
effect (curve slope) is analogous to the one of the formerly 
analysed curves (Figs.  27c, 28c, and 29c): sink effect is 
small near the fluid front, it grows and then remains almost 
constant until a certain point, from which it reduces until 
the inlet. For the constant pressure regime 

(
Pinj = 100 kPa

)
 , 

Fig. 30a, for a determined fluid front position, the relation-
ship between the sink effect (curve slope) and the vacuum 
pressure, Pvac , is not equal at all longitudinal positions, x̂ . 
For instance, the three curves corresponding to the last fluid 
front position are analyzed. For points very close to the fluid 
front, the lower sink effect is reached for the greater vacuum 
pressure (green curve), Pvac = −75 kPa , whereas the bigger 
one is achieved for the intermediate vacuum pressure (red 
curve), Pvac = −50 kPa . This causes a higher tow satura-
tion, St , for the case of Pvac = −50 kPa than for the other two 
cases ( Pvac = −75 kPa and Pvac = 0 kPa ). As points move 
away from the fluid front, the sink effect increases for all 
curves and, from a determined point, this increment is more 
notorious for the greater vacuum pressure (green curve), 
Pvac = −75 kPa . From a determined longitudinal position to 
the inlet, a common trend is maintained: the greater Pvac , the 
more significant the sink effect and, consequently, the higher 
the tow saturation, St . As it is logical, the inlet saturation 
is always higher as the vacuum pressure is greater. For the 
constant flow rate regime 

(
Qinj = 1 × 10−6m3∕s

)
 , Fig. 30b, 

the last analysis is applicable for the St vs. x̂ curves, but it 
is worth noting that, for a determined fluid front position, 
the differences between the three curves (green, blue and 
red curve) are not as considerable as for the constant pres-
sure regime (Fig. 30a), which is associated with the continu-
ous increment of the inlet pressure in the constant flow rate 
regime.

5.3.4.5 Pressure profiles for constant pressure and constant 
flow rate regimes Another verification of the macroscopic 
simulations using the present sink term approach can be car-
ried out by comparing the numerical pressure profiles with 
the profiles presented in Fig. 3. According to [1], the sink 
effect in the partially saturated region determines whether 
the pressure profile is convex or concave. As mentioned 
above, for the full and partial air dissolution cases (λ = 0 
and λ = 0.75, respectively), the sink effect is very signifi-
cant at points very close to the fluid front, which, accord-
ing to [1], leads to a concave pressure profile, as shown in 
Fig. 3a. Accordingly, the pressure profiles for several fluid 
front positions corresponding to a constant-pressure-regime 
simulation ( Pinj = 10 kPa , Pvac = 0 kPa , � = 0.75 ) and a 
constant-flow-rate-regime simulation ( Qinj = 2 × 10−6m3∕s , 
Pvac = 0 kPa , � = 0 ) are represented in Fig. 31a, b, respec-
tively, where marker points are added to some profiles to 
indicate the transition between the fully saturated and the 

Fig. 30  Saturation 
(
St
)
 vs. Normalized longitudinal position (x̂) for 

simulations of Set 4. a Pinj = 100 kPa , b Qinj = 1 × 10
−6m3∕s
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partially saturated zones; some dotted lines are also shown 
indicating the projection of the linear part of these profiles. 
As can be observed, the change of the pressure from the 
inlet until the marker point is linear, but from the marker 
point until the fluid front, the curve is concave, coinciding 
with the results reported in [1, 70, 71].

On the other hand, the slope of the pressure profiles in 
the fully saturated region for the constant flow rate regime 
(Fig. 31b) is another parameter that can be used to validate 
the numerical results. As Sg = 0 in this region, according 
to Eqs. (19) and (21), and considering that the horizontal 
velocity is ug = Qinj∕A , the slope of the pressure profile in 
the fully saturated region shall be the same for all fluid front 
positions where this region is present and equal to:

where the point 
(
xsat, psat

)
 is the coordinate corresponding 

to the threshold of the fully saturated region in each pres-
sure profile (this threshold is represented in non-dimensional 
form by the marker points of Fig. 31a, b). If xsat and psat are 
non-dimensionalized using Eqs. (22) and (28), respectively, 
the non-dimensional slope shall be m̂linear = −1 , which is in 
agreement with the slopes obtained in Fig. 31b. It is impor-
tant to notice that p̂sat is practically constant during the 
whole injection for the constant flow rate regime (Fig. 31b), 
whereas it decreases as the injection develops for the con-
stant pressure regime (Fig. 31a).

6  Conclusions

In the present work, BEM techniques were applied to the 
problem of impregnation of dual-scale fibrous reinforce-
ments used in the processing of composite materials. A 
Stokes-Darcy formulation was used to conduct filling simu-
lations of RUC´s under different parameters complying with 
predetermined scale constraints; lumped functions for the 
sink term, Sg , and the effective unsaturated permeability, 
Keff  , were obtained from these simulations. It is important to 
highlight that the fitting parameters of the lumped functions 
Sg and Keff  are dependent on the geometry configuration of 
the RUC and tows. Modifications of resin viscosity, injec-
tion pressure, injection flow rate and/or vacuum pressure 
do not have any influence on these fitting parameters, as 
long as these physical variables remain inside the ranges 
considered here.

The methodology used to conduct the RUC filling sim-
ulations allows considering the fluid pressure gradient at 
channels (fluid motion), air compressibility, air dissolution, 
flow-direction dependent capillary pressure, and vacuum 
pressure, as well as capturing several phenomena involved in 

(94)mlinear =

(
psat − Pinj(t)

)
xsat

= −
Qinj�

AKg

,

the dynamic evolution of intra-tow voids, such as compres-
sion, displacement and migration, with the last phenomenon 
having a time scale several orders of magnitude lower than 
the other two phenomena. The present methodology can 
be extended to any well-characterized microstructure since 
the fitting parameters are directly obtained from numerical 
BEM results. However, it is worth noting that the air dissolu-
tion phenomenon is accounted here in a lumped fashion by 
means of the prescribed factor λ, which does depict the com-
plex dynamics of the air dissolution mechanism and whose 
estimation could imply non-trivial experimental tests [69, 
88] that are out of the scope of the present work. In further 
works, the modelling of the air dissolution phenomenon 
could be included to enhance the robustness of the present 
methodology.

The main conclusions obtained from the RUC filling sim-
ulations (mesoscopic scale) can be summarized as follows:

Fig. 31  Normalized pressure (p̂) vs. Normalized longitudinal posi-
tion (x̂) . a Constant pressure regime with Pinj = 10 kPa , Pvac = 0 kPa , 
� = 0.75 , b Constant flow rate regime with Qinj = 2 × 10

−6
m

3∕s

,Pvac = 0 kPa , � = 0
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• When any fraction of air dissolution is considered 
(𝜆 < 1) , the total tows saturation is possible 

(
St = 1

)
 , with 

the saturation rate, Ṡt , inversely proportional to � . How-
ever, in the extreme scenario of full air compressibility 
(� = 1) , total saturation is not possible 

(
St < 1

)
 and an 

equilibrium saturation, Seqt  , which depends on the chan-
nel, vacuum, and capillary pressure, is reached instead.

• The prescription of a pressure gradient, ΔP∕Δx , along 
the RUC length, instead of a uniform channel pressure, 
induces several phenomena that are more consistent with 
experiments, namely, velocity field in the channel is pre-
sent, decentered voids can be obtained in the tows, dis-
placement and migration of intra-tow voids is possible, 
among others. However, saturation curves seem to be 
not very sensible to ΔP∕Δx for the small gap Reynolds 
numbers, Reg , considered here.

• The lumped functions obtained for the sink term, Sg , and 
the effective unsaturated permeability, Keff  , describe 
properly the behaviour of these variables with the satu-
ration, St , for any combination of average channel pres-
sure 

(⟨
Pg

⟩g) , vacuum pressure 
(
Pvac

)
 and air entrapment 

parameter (�) . In the particular case of Sg , the lumped 
function was obtained by modifying an existing function 
with the addition of a potential-type term that improves 
the data fit and is physically consistent with the saturation 
behaviour.

Afterwards, a DR-BEM scheme was implemented to per-
form macroscopic simulations (mold filling). Firstly, this 
scheme was validated with a benchmark analytical solution 
of a constant-pressure unidirectional injection, considering 
a pressure-dependent linear function for the sink term, Sg ; 
satisfactory results were obtained for the non-dimensional 
position of the macroscopic fluid front and non-dimensional 
length of the unsaturated region. Once validated with an 
analytical solution, the DR-BEM scheme was used to con-
duct macroscopic simulations using two lumped approaches 
(sink term and Richards approach), where the non-linear 
lumped functions computationally obtained for Sg and Keff  
were implemented in the corresponding governing equa-
tions. These approaches were compared with each other, 
achieving the following conclusions:

• Both approaches describe a similar general behaviour of 
the saturation, St , along the longitudinal direction of the 
mold, although the Richards approach overpredicts the 
saturation at points far from the fluid front, as well as the 
fully saturated length for a particular fluid front position, 
regarding the sink term approach.

• The curves of Normalized fluid front position 
(
L̂ff

)
 vs. 

Dimensionless time 
(
t̂
)
 predicted by both approaches 

are in acceptable agreement with experimental curves 
obtained in constant-pressure unidirectional tests, allow-

ing to figure out the importance of considering the sink 
effect in the filling of dual-scale fibrous reinforcements 
when compared to a single-scale approximation. In gen-
eral, it was found a better agreement with experimental 
results in the sink-term approach.

• The consideration of the air dissolution phenomenon is 
critical to obtained to obtain numerical results consist-
ent with experimental tests. Extreme conditions of full 
air dissolution (λ = 0) and full air compressibility (λ = 1) 
seems not to be achievable in LCM processes.

The sink term approach was then used to conduct a para-
metric study on the influence of the inlet pressure, vacuum 
pressure, inlet flow rate, and air dissolution factor on the 
saturation behaviour, obtaining the following conclusions:

• When 𝜆 < 1 , the general behavior of the saturation curves 
is similar for the two dissolution factors considered, 
� = [0, 0.75] , in both constant-pressure and constant-
flow rate regimes: sink effect (curve slope) near the fluid 
front is very high, then it decreases and remains almost 
constant in a portion of the partially saturated region, to 
decrease again until it becomes zero in the fully saturated 
region.

• When 𝜆 < 1 , the sink effect, which refers to the rate of 
liquid absorption into the tows relative to the fluid front 
velocity, does not have a unique behaviour with the injec-
tion and vacuum pressures during the whole mold fill-
ing, since this depends on the fluid front position and air 
dissolution factor, � . On the other hand, for the constant 
flow rate simulations, results showed that the sink effect 
and injection flow rate are inversely proportional for all 
fluid front positions and dissolution factors, � . For this 
injection regime, the saturation ( St ) for a given longitu-
dinal position ( ̂x ), as well as the fully saturated length, 
also decreases with the injection flow rate.

• In the extreme scenario of full air compressibility, � = 1 , 
the general behaviour of the saturation curves is similar 
in both constant-pressure and constant-flow rate regimes: 
sink effect near the fluid front is not significant, but then 
it considerably increases and is kept almost constant in a 
portion of the partially saturated region, to then decreases 
until the inlet.

• In the extreme scenario of full air compressibility, � = 1 , 
the lower the injection pressure, vacuum pressure and 
injection flow rate, the lower the saturation and sink 
effect for points far from the fluid front. The main differ-
ence between the constant-pressure and constant- flow 
rate injections when � = 1 lies in the inlet saturation, 
which is bounded by the equilibrium saturation Seqt  for 
the former injection regime, whereas it is continuously 
increasing for the second one due to the inlet pressure 
increment.
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Finally, it is worth mentioning that the present compu-
tational development will be implemented in future works 
for other RUC and mold geometries, as well as for different 
processing and material parameters, to evaluate the scope of 
the present conclusions.
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